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Abstract: Regions characterized by an arid or semi-arid
climate are highly susceptible to prospective climate change
impacts worldwide. Therefore, evaluating the effects of
global warming on water availability in such regions must
be accurately addressed to identify the optimal operation
policy of water management facilities. This study used the
weather generator model LARS-WG6.0 to forecast possible
variations in precipitation and temperature of the Mosul
Dam Reservoir in northern Iraq. Future climate change
was predicted using three greenhouse gas emission
scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) for four time
intervals (2021–2040, 2041–2060, 2061–2080, and 2081–2100)
using five Global climate models (GCMs): CSIRO-Mk3.6.0,
HadGEM2-ES, CanESM2, BCC-CSM1-1, and NorESM1-M. The
model’s calibration and validation were conducted using
data from 2001 to 2020 from eight meteorological stations
in the study area. The results showed that the weather gen-
erator model’s performance was outstanding in predicting
daily climate variables. The results also showed that the
highest increase in maximum and minimum temperatures
was 5.70°C in July and 5.30°C in September, respectively, for
the future period 2081–2100 under RCP8.5. The highly
forecasted minimum and maximum temperatures were
extracted from the CanESM2 and HadGEM2-ES GCMmodels.
It was demonstrated that the study region would experience
different patterns of precipitation change during the wet
seasons in the evaluated periods. Finally, the variations in

precipitation and temperatures in the Mosul dam region
would significantly impact the amount of freshwater
obtained in these areas due to rising loss rates of evapora-
tion. This could lead to a water shortage and mismanage-
ment of the sustainable operations of the dam.

Keywords: Mosul dam, arid and semi-arid climate, GCM
models, RCP, weather generator model

1 Introduction

Climate change is a paramount environmental concern
currently confronting the world [1]. Furthermore, climate
change is defined as a spatial and temporal alteration in
the distribution of rainfall and snowfall patterns within a
specific geographical area [2]. Climate change can seriously
affect many essential aspects of the global economy, including
water resources, agricultural sector, energy production, and
tourism [3–5]. Due to the high concentration of greenhouse
gases resulting from fossil fuels, human activities, and
land use, global warming is responsible for changing
global climate [6].

The Intergovernmental Panel on Climate Change (IPCC)
2014 approved the RCP 2.6, 4.5, 6, and 8.5 as inferential
greenhouse emissions in the present century based on
demographics, financial habits, landscape circumstances,
energy utilization, and climate policy. The Coupled Model
Intercomparison Project, also known as CMIP, is a structure
for a collaborative effort established to enhance the devel-
opment of Global Climate Models (GCMs) [7]. The five-phase
Coupled Model Intercomparison Project, also known as
CMIP5, has more characteristics than the older iteration in
the carbon cycle simulation, anticipating the system in one-
decade steps and identifying the reaction of climate models
[8,9]. The GCMs provided predictions of the climate world-
wide, allowing policymakers to adjust better strategies to
address the consequences of global warming based on the
information supplied by the GCMs. GCMs use the complexity
of the global system to produce valuable results at the
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international, hemispheric, and continental levels. However,
these global processes cannot be shown at the local sub-grid
level [10]. GCMs are extensively used tools to determine the
impact of global warming; however, because of their loose
geographic resolution, their direct application to the sustain-
able management of resources at the regional or local scale
is limited [11]. The downscaling approaches are necessary
for increasing the geographic resolution of GCMs from a
coarse level to a satisfactory level, which is required for
their direct application on a local or regional scale [12].
The two downscaling techniques that are most commonly
used are statistical downscaling and dynamic downscaling.
Both of these methods connect the coarse resolution of
GCMs to local environmental variables [13].

In previous research works, statistical downscaling
methods were chosen because they are more convenient
to use, have more computing power than dynamic down-
scaling techniques, and are cheaper. These are the three
main reasons why statistical downscaling methods were
chosen. Two frequently employed software tools for climate
predictions and the downscaled analysis of past and future
climate data are the Stochastic Weather Generator (Long
Ashton Research Station Weather Generator; LARS-WG),
Climate Generator (CLIGEN), and Statistical Downscaling
Models (SDSM) [14,15]. SDSM can also analyze past climate
data [16]. The LARS-WG model is a type of random weather
generator. It is one of the most widespread models created
to assess climate change’s effects. It has been committed to
investigating various environmental circumstances, during
which it has performed admirably compared to other gen-
erators [1].

There are several studies on the world used the
results from various GCMs to investigate the effect of
global warming on the water resources [17–19]. For
example, Osman et al. [3] studied the effect of climate
changes on Baghdad City in Iraq based on two scenarios
of the seven general circulation model and concluded
that the trend of precipitation increased in the autumn
and winter seasons while the trend decreased in the
spring season for all periods considered in the research.
Mohammed and Scholz [20] utilized LARS-WG to study
the potential impacts of global warming on northern
Iraq’s Lower Zab River watershed. Compared to the
reference period, the findings showed that the maximum
temperatures are expected to rise from 3.17 to 3.70°C
between 2046 and 2065, while the minimum tempera-
tures are expected to increase from 3.02 to 3.33°C during
that same period.

Additionally, Mohammed et al. [1] investigated the cli-
mate change impact on southern Iraq by utilizing the
LARS-WG model based on two emission scenarios of the
five general circulation model, and annual minimum and
maximum temperatures are projected to rise approxi-
mately 6°C under RCP8.5 and 1.5°C under RCP4.5 by the
end of this century, across all survey sites. The outcomes
also reveal that the five GCMs have conflicting projections
for precipitation decline patterns.

The novelty of this study is that it provides a concei-
vable exploration of climate change’s impact on northern
Iraq’s water resources, thereby aiding in decision-making
processes related to water resource management, land-use
planning, and infrastructure development. In this study,
LARS-WG 6.0 was utilized to predict precipitation, minimum,
and maximum temperatures for Northern Iraq (Mosul Dam
Watershed) over four periods: 2021–2040, 2041–2060,
2061–2080, and 2081–2100. Five CMIP5 models, i.e., CanESM2,
CSIRO_Mk3.6, HadGEM2-ES, NorESM1-M, and BCC-CSM1-1
were applied considering three emission scenarios of
RCP2.6, RCP4.5, and RCP8.5.

2 Study area and data

The Tigris River, originating in the Taurus Mountains of
eastern Turkey approximately 25 km southeast of Elazig
and about 30 km away from the source of the Euphrates,
spans a length of 1,800 km. This study was focused on the
Tigris River basin, which is located between latitude 36°35′
20″ to 37°48′00 N and longitude 41°46′33″ to 43°29′17″ as
illustrated in Figure 1. The area of the Mosul Damwatershed
is 11,108 km2, about 48% of which is located within the Iraqi
borders, 44% in Turkey, and 8% in Syria. Climate stations in
this region recorded the highest temperature in August,
46°C, while the lowest was in January. The rainy season
starts in October and continues until May. The annual rain-
fall in this region is more than 1,000mm [21]. This study
selected eight meteorological stations to investigate the
forthcoming precipitation and temperature patterns, as pre-
sented in Table 1. The Climate Hazards Group Infrared Pre-
cipitation with Station data and National Aeronautics and
Space Administration were consulted to obtain historical
data on daily precipitation and maximum and minimum
temperatures. These two sources of historical data were
collected from two different websites. The weather generator
model was calibrated and validated using daily climate data
covering two decades, extended from 2001 to 2020.
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3 Methodology

3.1 Overview of the LARS-WG model

The LARS-WG is a randomized weather generator that can
reproduce weather data at a particular location [22–24]

under present and future climate conditions. These data
are presented in the format of daily time series for several
different climate variables, including precipitation measured
in millimeters, maximum and minimum temperatures mea-
sured in °C, and solar radiation. The initial development of
stochastic weather generators was motivated primarily by
two objectives:
1. Develop a methodology that enables the generation of

synthetic weather time series, possessing statistical char-
acteristics that closely match the historical statistics at a
specific location. The generated time series should also
have sufficient length to assess risks in environmental or
agricultural contexts.

2. For offering a technique for expanding the generation of
weather time series to locations that have not been
observed by using extrapolation of the weather gen-
erator parameters received. Executing the models in
nearby locations will extend the simulation to areas
that have not been followed.

Figure 1: Location of the study area and meteorological stations within it.

Table 1: Geographical coordinates of the selected meteorological stations

Station
name

Lat. Long. Length of
record

Location

Station 1 37°08′00 42°43′12″ 2001–2020 Iraq
Station 2 36°52′12″ 43°00′00″ 2001–2020 Iraq
Station 3 37°15′36″ 43°10′00″ 2001–2020 Iraq
Station 4 37°30′00″ 42°54′00″ 2001–2020 Turkey
Station 5 37°24′00″ 42°30′00″ 2001–2020 Turkey
Station 6 37°12′00″ 42°24′00″ 2001–2020 Turkey
Station 7 36°57′00″ 42°30′00″ 2001–2020 Iraq
Station 8 36°42′00″ 42°45′00″ 2001–2020 Iraq
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LARS-WG applies a semi-empirical distribution, the
cumulative probability distribution function, to estimate
the distributions of dry and moist sequences of daily pre-
cipitation and maximum and minimum temperatures. This
allows for a more accurate representation of the cumula-
tive probability distribution function. So, to determine the
value of the climatic variable vi, which corresponds to the
probability pi for each climatic variable v, the following
formula is used:

[ ( ) ]= ≤ ≥ =v v P v v p i nmin : 0, …, ,i iobs (1)

{ }=v vmin ,0 obs
(2)

{ }=v vmax .n obs
(3)

The probability, denoted as P(), relies on the historical
observation {vobs}. For each climatic variable, fixed values,
p0 and pn, are established as p0 = 0 and pn = 1, respectively,
with corresponding values of v0 and vn representing the
variable’s values at the start and end of the intervals. The
climatic variable can accurately approximate extreme values
by assigning some pi near zero for significantly low values
and near one for extremely high values. The remaining pi
values are evenly distributed across the probability scale.

Due to the relatively high probability of experiencing
very low daily precipitation (less than 1 mm) and the
minimal impact of such low precipitation on the output
of a process-based effect model, only two values were uti-
lized: v1 = 0.5 mm and v2 = 1 mm. The associated probabil-
ities were computed as pi = P(vobs vi) for i = 1 and 2. This
approach is based on the fact that the daily precipitation
probabilities being insufficient, i.e., less than 1 mm, is
comparatively high in most cases. Additionally, such little
precipitation has minimal impact on the result of a process-
based effect model. For constructing Synthetic Exceedance
Distributions representing wet and dry series, two values
close to 1 were employed: pn−1 = 0.99 and pn−2 = 0.98.
These values were chosen to account for extremely long
dry and wet periods. Regarding minimum and maximum
temperatures, two values close to 0 and two values close to 1
were utilized, respectively. This choice allows the model to
encompass extremely low to extremely high temperatures.

The sixth version of LARS-WG6, developed and pub-
lished in 2018, incorporates climatic forecasts from 19
GCMs utilized in the IPCC’s (AR5) report, known as CMIP5
models. For this particular study on climate change, five
models described in Table 2 were selected to forecast
changes in precipitation andmaximum andminimum tem-
peratures. This reduced the overall uncertainty associated
with GCMs.

Future precipitation, minimum, and maximum tem-
peratures were determined by LARS-WG6.0 based on daily
historical data of these climate parameters from a parti-
cular location for both the prospect distribution of climate
parameters and their relations.

3.2 Performance criteria of the model

This study applied a non-parametrized Kolmogorov–Smirnov
(K–S) statistical test to evaluate the model’s performance. It
measures whether the seasonal distributions of the series
of wet and dry days and the daily distributions of precipi-
tation obtained from observations and simulations are
equal. This test provides a p-value, which is utilized to
decide whether to agree or disagree with the assumption
that the two sets of data were derived from an identical
distribution. High and low values of (K–S) and (p-value)
statistics indicate that the model is unlikely because the
acquired data are inaccurate and cannot be used to eval-
uate the model. Katz et al. [25] considered a value of 0.01
for the parameter p to be a reasonable range for the model
outputs. According to Mohammed and Hassan [1], the
model was considered to have a perfect fit when the p-
value was equal to 1, and it was supposed to have a very
good fit when the p-value was more significant than 0.7 but
smaller than 1.0. When the p-value was less than 0.7 but
greater than 0.4, it was determined that the model had a
good fit; on the other hand, it was determined that the
model had a poor fit when the p-value fell within the range
of 0–0.4. This statistical index is insufficient to assess the
model calibration and validation, so, in this study, three

Table 2: Five GCM models used in this study

No. GCMs’ name Resolution

1 Canadian Center for Climate Modeling and Analysis, Canada (CanESM2) 2.79° × 2.81°
2 Commonwealth Scientific and Industrial Research Organization, Australia (CSIRO-Mk3.6) 1.8° × 1.8°
3 Met Office Hadley Center, United Kingdom (HadGEM2-ES) 1.25° × 1.87°
4 Norwegian Climate Center, Norway (NorESM1-M) 1.89° × 2.5°
5 Beijing Climate Center, China (BCC-CSM1-1) 2.8° × 2.8°

4  Nasser Kh. Muhaisen et al.



other statistical parameters were used to make the calibra-
tion and validation processes of the LARS-WG model, i.e.,
the coefficient of determination (R2), the Nash–Sutcliffe
(NS), and the root mean square error (RMSE) to the stan-
dard deviation of observed data (STDobs) ratio (RSR).
These statistical parameters are used to compare the simu-
lated results with the actual results of the observed data.
The coefficient of determination (R2) measures how effi-
ciently the model duplicated observed outcomes. The values
of R2 range from zero to one, and better model performance
is when the value of R2 is closer to one, as in previous
literature [26,27]

A Nash–Sutcliffe efficiency (NSE) value equal to or
greater than zero signifies that the simulated value provides

more accurate predictions of the concerned component than
the mean observed value. On the other hand, an NSE value of
one signifies the attainment of ideal modeling. The NSE serves
as a measure to compare the variation between the mea-
sured andmodeled data against a best-fit line with a 1:1 ratio.

The ratio between the RMSE and the standard devia-
tion of the observed data serves as a statistical criterion for
error evaluation. Hence, a simulation is acceptable if the
RSR value is below 0.5, as in the study by Moriasi et al. [28].
These statistical parameters are determined from the fol-
lowing equations:
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Table 3: Assessment of the LARS-WG model according to the seasonal wet and dry distribution series

Season Wet/dry N K–S P-value Assessment Season Wet/dry N K–S P-value Assessment

Station 1 Station 2
DJF Wet 12 0.12 0.7384 Very good DJF Wet 12 0.05 1.00 Perfect
DJF Dry 12 0.05 1.00 Perfect DJF Dry 12 0.08 1.00 Perfect
MAM Wet 12 0.04 1.00 Perfect MAM Wet 12 0.04 1.00 Perfect
MAM Dry 12 0.10 0.99 Very good MAM Dry 12 0.08 1.00 Perfect
JJA Wet 12 0.17 0.71 Very good JJA Wet 12 0.08 0.97 Very good
JJA Dry 12 0.17 0.82 Very good JJA Dry 12 0.18 0.80 Very good
SON Wet 12 0.05 1.00 Perfect SON Wet 12 0.05 1.00 Perfect
SON Dry 12 0.05 1.00 Perfect SON Dry 12 0.06 1.00 Very good

Station 3 Station 4
DJF Wet 12 0.03 1.00 Perfect DJF Wet 12 0.05 1.00 Perfect
DJF Dry 12 0.07 1.00 Perfect DJF Dry 12 0.07 1.00 Perfect
MAM Wet 12 0.03 1.00 Perfect MAM Wet 12 0.05 1.00 Perfect
MAM Dry 12 0.07 1.00 Very good MAM Dry 12 0.05 1.00 Perfect
JJA Wet 12 0.79 0.00 Poor JJA Wet 12 0.68 0.00 Poor
JJA Dry 12 0.17 0.79 Very good JJA Dry 12 0.17 0.80 Very good
SON Wet 12 0.05 1.00 Perfect SON Wet 12 0.06 1.00 Perfect
SON Dry 12 0.07 1.00 Perfect SON Dry 12 0.08 1.00 Perfect

Station 5 Station 6
DJF Wet 12 0.08 1.00 Very good DJF Wet 12 0.05 1.00 Perfect
DJF Dry 12 0.06 1.00 Perfect DJF Dry 12 0.09 1.00 Very good
MAM Wet 12 0.03 1.00 Perfect MAM Wet 12 0.06 1.00 Perfect
MAM Dry 12 0.08 1.00 Very good MAM Dry 12 0.08 1.00 Perfect
JJA Wet 12 0.40 0.20 Poor JJA Wet 12 0.30 0.60 Good
JJA Dry 12 0.16 0.86 Very good JJA Dry 12 0.14 0.92 Very good
SON Wet 12 0.02 1.00 Perfect SON Wet 12 0.02 1.00 Perfect
SON Dry 12 0.07 1.00 Perfect SON Dry 12 0.07 1.00 Perfect

Station 7 Station 8
DJF Wet 12 0.03 1.00 Perfect DJF Wet 12 0.05 1.00 Perfect
DJF Dry 12 0.09 1.00 Perfect DJF Dry 12 0.06 1.00 Perfect
MAM Wet 12 0.03 1.00 Perfect MAM Wet 12 0.04 1.00 Perfect
MAM Dry 12 0.09 1.00 Perfect MAM Dry 12 0.08 1.00 Perfect
JJA Wet 12 0.06 1.00 Perfect JJA Wet 12 0.04 1.00 Perfect
JJA Dry 12 0.27 0.41 Good JJA Dry 12 0.17 0.75 Very good
SON Wet 12 0.07 0.96 Very good SON Wet 12 0.03 1.00 Perfect
SON Dry 12 0.06 1.00 Perfect SON Dry 12 0.08 1.00 Perfect

Impact of climate change on water resources in Northern Iraq  5



Table 4: Assessment of the LARS-WG model according to the fitting of monthly precipitation

Month N K–S P-value Assess. Month N K–S P-value Assess.

Station 1 Station 2
J 11.5 0.104 0.9904 Very good J 11.5 0.065 1 Perfect
F 11.5 0.117 0.9872 Very good F 11.5 0.091 0.9936 Very good
M 11.5 0.0656 1 Perfect M 11.5 0.078 0.9968 Very good
A 11.5 0.1062 0.991 Very good A 11.5 0.0576 1 Perfect
M 11.5 0.1126 0.9792 Very good M 11.5 0.117 0.9384 Very good
J 11.5 0.3742 0.197 Poor J 11.5 0.3742 0.197 Poor
J 11.5 0.435 0.017 Poor J 11.5 1 0 Poor
A 11.5 0.6002 0.0012 Poor A 11.5 0.783 0 Poor
S No precipitation S 11.5 0.3476 0.16 Poor
O 11.5 0.091 0.9936 Very good O 11.5 0.1774 0.8176 Very good
N 11.5 0.117 0.9388 Very good N 11.5 0.1482 0.903 Very good
D 11.5 0.0974 0.9956 Very good D 11.5 0.0856 0.9964 Very good

Station 3 Station 4
J 11.5 0.065 1 Perfect J 11.5 0.091 0.9936 Very good
F 11.5 0.065 1 Perfect F 11.5 0.065 1 Perfect
M 11.5 0.065 1 Perfect M 11.5 0.065 1 Perfect
A 11.5 0.0858 0.9954 Very good A 11.5 0.0704 1 Perfect
M 11.5 0.1518 0.9152 Very good M 11.5 0.1446 0.9276 Very good
J 11.5 0.261 0.359 Poor J 11.5 0.1408 0.909 Very good
J 11.5 0.5044 0.0134 Poor J 11.5 0.8524 0.0004 Poor
A 11.5 0.3824 0.0536 Poor A 11.5 1 0 Poor
S 11.5 0.2526 0.4444 Good S 11.5 0.2128 0.61 Good
O 11.5 0.104 0.953 Very good O 11.5 0.0892 0.993 Very good
N 11.5 0.1022 0.992 Very good N 11.5 0.117 0.9388 Very good
D 11.5 0.0978 0.995 Very good D 11.5 0.0764 0.9962 Very good

Station 5 Station 6
J 11.5 0.143 0.9324 Very good J 11.5 0.078 0.9968 Very good
F 11.5 0.104 0.9904 Very good F 11.5 0.078 0.9968 Very good
M 11.5 0.065 1 Perfect M 11.5 0.0668 1 Perfect
A 11.5 0.0646 1 Perfect A 11.5 0.0942 0.9898 Very good
M 11.5 0.1692 0.8362 Very good M 11.5 0.1182 0.9852 Very good
J 11.5 0.3824 0.0536 Poor J 11.5 0.523 0.216 Poor
J 11.5 1 0 Poor J No precipitation
A 11.5 0.6696 0 Poor A No precipitation
S 11.5 0.3564 0.1096 Poor S 11.5 0.609 0 Poor
O 11.5 0.077 1 Perfect O 11.5 0.1306 0.9614 Very good
N 11.5 0.091 0.9936 Very good N 11.5 0.117 0.9872 Very good
D 11.5 0.0794 0.9952 Very good D 11.5 0.0924 0.9936 Very good

Station 7 Station 8
J 11.5 0.091 0.9936 Very good J 11.5 0.104 0.9904 Very good
F 11.5 0.091 0.9936 Very good F 11.5 0.065 1 Perfect
M 11.5 0.0654 1 Perfect M 11.5 0.065 1 Perfect
A 11.5 0.0628 1 Perfect A 11.5 0.0772 0.9968 Very good
M 11.5 0.0874 0.9964 Very good M 11.5 0.0714 1 Perfect
J 11.5 0.5188 0.0094 Poor J 11.5 0.534 0.203 Poor
J No precipitation J No precipitation
A No precipitation A No precipitation
S 11.5 0 1 Perfect S No precipitation
O 11.5 0.1224 0.988 Very good O 11.5 0.1096 0.9512 Very good
N 11.5 0.1592 0.828 Very good N 11.5 0.134 0.9516 Very good
D 11.5 0.062 1 Perfect D 11.5 0.0928 0.9964 Very good
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Figure 2: Comparison between the monthly and standard deviation of two series for maximum and minimum temperatures, and precipitation,
respectively.
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Figure 2: (Continued)
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Figure 2: (Continued)
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where Qi and Mi are the observed and simulated stream
flow values for the ith pair of stream flow values, respec-
tively. Qa is the mean value of the observed stream flow
values, N is the total number of paired stream flow values,
and Ma is the mean value of the modeled stream flow.

4 Results and discussion

4.1 LARS-WG model calibration and
validation

In this study, daily climate variables (i.e., precipitation,
maximum temperature, and minimum temperature) for
eight stations in the study area were collected for 20 years
as a reference period from 2001–2020 in calibrating and

validating the LARS-WG model. The calibration and valida-
tion process can be summarized in two steps as follows: (1)
using the ANALYSE SITEwindow, the daily observedmeteor-
ological data (precipitation, maximum and minimum tem-
peratures, and solar radiation) of the Mosul Dam watershed
are analyzed to compute their statistical parameters and
save these data to two separate parameters files; (2) from
two parameter files derived in step (1), the statistical para-
meters of eight weather stations were automatically calcu-
lated by LARS-WG version 6.0 as a TST file after using the
generated data in the generation process. Table 3 outlines
the statistical analysis of the measured seasonal climate
variable data (precipitation, maximum, and minimum tem-
peratures) within the validation process. Similarly, the
statistical analysis for the observed monthly precipitation
within the same process is shown in Table 4. The value of
N in each table indicates the total number of tests
performed.

To sum up, the model performs well in assessing the
wet and dry series distributions. All stations had either a
perfect fit or a very good fit throughout the winter:
December, January, February (DJF); autumn: September,
October, November (SON); spring: March, April, May (MAM);
and a poor to very good fit was found during the summer
evaluation: June, July, August (JJA). According to Table 4, the
model’s performance ranges from very good to perfect
when simulating daily rain distributions, except in the
summer; the value of N in each table indicates the total
number of tests performed. According to Table 4, the model’s
performance ranges from good to perfect when simulating
daily rain distributions, except in the summer; the model
cannot adjust for dry periods and accurately assess the
weather due to the lack of precipitation during the dry season.

To validate the model’s prediction of future climate
variables at all locations, the mean value and standard
deviation of two climate variable series (observed and gen-
erated) for all stations in this study were compared for
each month, as illustrated in Figure 2.

Considering how challenging it has been to model
standard deviations satisfactorily in previous studies,
the results are generally encouraging. Figure 2 shows the
model’s adequate record for predicting monthly averages
and standard deviations for minimum and maximum tem-
peratures across all locations. In addition, the model’s
ability to predict low and high temperatures and precipita-
tion would confirm what was previously discussed. This
verifies the tool’s applicability across all areas in the cur-
rent study and suggests it could be used elsewhere to pre-
dict future daily weather values.

The results for all stations’ average monthly values of
Tmax, Tmin, and precipitation are shown in Table 5, along

Table 5: Statistical parameter results for calibration and validation of the
LARS-WG model over the baseline period (2001–2020)

Station name Climate variable R2 NSE RSR

Station 1 Max. temp. 0.9996 0.9996 0.0203
Min. temp 0.9994 0.9993 0.0256
Precipitation 0.9955 0.9952 0.0694

Station 2 Max. temp. 0.9994 0.9994 0.0246
Min. temp 0.9995 0.9995 0.0225
Precipitation. 0.9886 0.9864 0.1164

Station 3 Max. temp. 0.9993 0.9993 0.0266
Min. temp 0.9992 0.9991 0.0292
Precipitation. 0.9871 0.9864 0.1163

Station 4 Max. temp. 0.9993 0.9993 0.0261
Min. temp 0.9994 0.9992 0.0278
Precipitation. 0.9953 0.9876 0.111

Station 5 Max. temp. 0.9993 0.9993 0.0266
Min. temp 0.9995 0.9994 0.0244
Precipitation. 0.9881 0.9852 0.1214

Station 6 Max. temp. 0.9994 0.9993 0.0256
Min. temp 0.9995 0.9994 0.0236
Precipitation. 0.9931 0.9930 0.0839

Station 7 Max. temp. 0.9995 0.9994 0.0233
Min. temp 0.9995 0.9995 0.0218
Precipitation. 0.9947 0.9943 0.0753

Station 8 Max. temp. 0.9995 0.9995 0.0223
Min. temp 0.9995 0.9995 0.0228
Precipitation. 0.9983 0.9978 0.0470
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with the coefficient of determination (R2), NSE, and RSR.
Across all study stations, statistical indicators showed a
high concordance between observed and down-scaled data
from the downscaling model. As a result, all eight climate
variables had a high coefficient of determination (R2) and
Nash–Sutcliffe coefficient values, between 0.9871 and 0.9996,
and between 0.9996 and 0.9864, respectively, and low RSR
between 0.0203 and 0.1214.

4.2 Future trends in climate variables

The calibrated weather generator model for all stations
was utilized to project the observed min. temp., max.
temp., and precipitation in the baseline period (2001–2020)
onto (2021–2040), (2041–2060), (2061–2080), and (2081–2100).
This study employed various scenarios of greenhouse gas
emissions, namely, RCP2.6, RCP4.5, and RCP8.5. In addition, it
utilizes five GCMs, reviewed in Table 2, to downscale the

climate variables for the watershed. Finally, the watershed’s
projected minimum and maximum temperatures are
plotted as shown in Figures 3 and 4.

Figure 3 shows the simulated maximum and minimum
temperatures concerning the GCM models for four periods
under three greenhouse gas emission scenarios. It is clear
from Figure 3 that there is a discrepancy in predicting the
future minimum and maximum temperatures for each of
the climate change models. The highest future prediction
of these climate variables was those extracted from the
CanESM2 model, then the HadGEM2-ES model, while the
lowest future forecast was from the CSIRO-Mk3.6 model for
all scenarios of greenhouse gas emissions. For this reason,
the future change in minimum, maximum, and precipita-
tion for the study area was calculated according to the
mean value of five GCM model results.

The predicted average monthly minimum and max-
imum temperatures over the four time periods are dis-
played in Figure 4. Figure 4 shows that most of the average

Figure 3: Projected minimum and maximum temperatures for four periods for all scenarios for GCM models.
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monthly maximum temperature has risen in the summer
months of July, August, and September, while the least of it
has risen in the winter months of December and January.
Minimum and maximum temperatures gradually increase
between the observed values for 2001–2020 and those pre-
dicted by this century’s end for all future scenarios. These
results agreed with that reported by Mohammed and
Hassan [1].

The average monthly differences in minimum and
maximum temperatures for all future periods under three
scenarios of climate change are illustrated in Figure 5. The
highest difference (increase) in maximum and minimum
temperatures was 5.70°C in July and 5.30°C in September,
respectively for the future period (2081–2100) under RCP8.5.
In contrast, the lowest difference (increase) in maximum
and minimum temperatures were 0.16°C and 0.05°C in

Figure 4: Future maximum and minimum temperatures for all periods under three climate change scenarios.
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December for the future period (2021–2040) under the
greenhouse gas emission scenarios RCP2.6 and RCP4.5.

The prediction of precipitation for each scenario is
depicted in Figure 6. However, it can be observed that
there are variations in the projected precipitation values
between each scenario throughout all periods in the future.
These variations are because rainfall does not occur con-
tinuously during the year. As a result, there are missing
values for some months, which makes it challenging to fore-
cast rainfall for the upcoming months.

Figure 7 shows the precipitation trend averaged from
the five GCMs across the entire watershed. In general, it
can be seen that the future change in the precipitation has
fluctuated between increases and decreases, e.g., example,
under the RCP2.6 scenario, the highest increase was found
to be 16 mm in November for the period (2021–2040), while
for the same scenario, the highest decrease was found to be
8.9 mm in May for the period (2041–2060). Therefore, it is
reasonable to infer that the North of Iraq will experience
different patterns of precipitation change during the wet

Figure 5: Average monthly differences in maximum and minimum temperature for all future periods under three climate change scenarios.
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seasons in the future periods. Furthermore, the presented
results were consistent with those reported byOsman et al. [3].

The study demonstrated that the evaluated watershed
would witness an increase in the trend of maximum and
minimum temperatures. For example, the stations located
within the Turkish borders will witness an increase in
maximum and minimum temperatures more than those
located within the Iraqi borders under all climate change
scenarios and for all study periods. This is due to several
factors, including the topography and geography of the
area where the topography of an area can significantly
influence its temperature. Turkish regions may have higher
elevations than Iraqi regions, and temperature changes tend
to be more pronounced at higher altitudes. As the climate
warms, this elevation effect can lead to amplified tempera-
ture increases in Turkish areas. On the other hand, precipi-
tation in the region will witness a slight increase across the
entire watershed, regardless of the position of the stations
inside or outside Iraq (Table 6).

5 Conclusion

This study tested the weather generator model (LARS-WG)
application to downscale the daily climate variables,
including maximum and minimum temperatures and
precipitation in the north of Iraq (Mosul Dam watershed,
which includes many regional areas). Subsequently, the
model was utilized in generating the future daily climate
variables for four periods (2021–2040), (2041–2060),
(2061–2080), and (2081–2100) under three scenarios of green-
house gas emission RCP2.6, RCP4.5, and RCP8.5. In addition,
the observed daily climate variable data for the period
(2001–2020) were used to calibrate and validate the weather
generator model and compared with the future period’s
data. From the analysis of the model in this study, it can
be concluded that:
1. LARS-WG is a statistical downscaling method. It can

relate large-scale predictors with the local climate vari-
ables like rainfall and temperatures.

Figure 6: Average monthly future precipitation for four periods under three climate change scenarios.
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Figure 7: Average monthly difference in precipitation for four periods under three scenarios of climate change.

Table 6: Change in climate variables under corresponding scenarios in the study according to the position of the station

Scenario Period Change in Turkey stations % change in Iraq stations

Max. temp. (°C) Min. temp. (°C) % prec. Max. temp. (°C) Min. temp. (°C) % prec.

RCP2.6 2021–2040 0.81 0.61 7.34 0.63 0.78 7.43
2041–2060 1.36 1.00 4.58 1.04 1.33 7.48
2061–2080 1.45 1.11 4.40 1.11 1.40 7.73
2081–2100 1.52 1.20 5.43 1.21 1.47 8.22

RCP4.5 2021–2040 0.54 0.62 3.61 0.63 0.82 3.90
2041–2060 1.72 1.30 0.12 1.32 1.66 2.50
2061–2080 2.39 1.84 0.49 1.87 2.32 2.78
2081–2100 2.69 2.07 3.34 2.10 2.66 3.66

RCP8.5 2021–2040 1.04 0.76 3.61 0.80 0.99 3.70
2041–2060 2.23 1.78 2.61 1.81 2.18 2.89
2061–2080 3.63 3.03 2.12 3.10 3.58 4.47
2081–2100 4.92 4.18 1.07 4.23 4.87 3.38
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2. The study has a limited number of weather stations
which affect the accuracy of the prediction of climate data.

3. The results obtained by increasing the temperature will
negatively influence water and food security in Iraq.

4. This study’s main finding can help assess the potential
risks and challenges associated with changes in water
availability, agricultural practices, and ecological bal-
ance. Moreover, this research provides valuable infor-
mation for policymakers, water resource managers, and
local communities who can benefit from the findings to
develop strategies to adapt to and mitigate future cli-
mate change impacts in northern Iraq.
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