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Abstract: Fractional differential equations (FDEs) are used
for modeling the natural phenomena and interpretation of
many life problems in the fields of applied science and
engineering. The mathematical models which include dif-
ferent types of differential equations are used in some
fields of applied sciences like biology, diffusion, electronic
circuits, damping laws, fluid mechanics, and many others.
The derivation of modern analytical or numerical methods
for solving FDEs is a significant problem. However, in this
article, we introduce a novel approach to generalize Runge
Kutta Mechee (RKM) method for solving a class of fifth-
order fractional partial differential equations (FPDEs) by
combining numerical RKM techniques with the method of
lines. We have applied the developed approach to solve
some problems involving fifth-order FPDEs, and then, the
numerical and analytical solutions for these problems
have been compared. The comparisons in the implementa-
tions have proved the efficiency and accuracy of the devel-
oped RKM method.

Keywords: RKM method, system of fifth-order ODEs, method
of lines, fifth-order PDEs

1 Introduction

We define the class of quasi-linear fractional partial differ-
ential equations (FPDEs) of fifth order as follows:
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and the boundary conditions (BCs):

t t t t( ) ( ) ( ) ( )= =z a φ z b φ, , , ,
1 2

(3)

where < ≤α0 1, f ƒ,
i
, and t( )φ

j
are given functions,

= =i j1,…, 5, 1, 2.
The sense of fractional derivative in equation (1) can

be Caputo fractional derivative or Riemann–Liouville frac-
tional derivative.

Generally, mathematical modeling of real-life situa-
tions yields fractional differential equations (FDEs) using
significant tools like special functions of mathematical phy-
sics and their expansions and generalizations in one or
more variables. Many other models, such as those of fluid
dynamics, quantum physics, electricity, ecological systems,
and so on, rely on fractional-order PDEs to govern the vast
majority of the underlying physical processes, as a conse-
quence, it becomes essential to be familiar with all estab-
lished and applications of new methods for solving PDEs of
fractional order. A lot of these models and issues are unsol-
vable [1]. Thus, many researchers tried to study and create
new numerical algorithms, for example, in 2017, Fu and
Wang created finite difference technique by exploiting
the scheme’s underlying mathematical structure [2]; in
2018, Ara et al. and Yavuz et al. used wavelet optimization
and Laplace perturbation theory to solve FPDEs, respec-
tively [3,4]. As well as, some authors in 2019 conducted
numerical research by using finite difference and Galerkin
finite element techniques on three different types of FPDEs
[5]. Also, Modanli [6] introduced differentiation methods
for the third-order FPDE and the difference schemes
have been analyzed for their stability. Zhang in 2020
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studied the numerical solution of the second problem and
considered FPDE [7]. Moreover, Milici et al. studied the
fractional-order dynamical systems using the Euler and
fourth-order Runge–Kutta techniques [8]. As well as, Yut-
tanan et al. in 2021 suggested a numerical method for sol-
ving FPDEs [9]; furthermore, Burqan et al. in 2023 modified
and developed the methods for solving FPDEs of different
types [10–12]. Finally, Zada and Aziz in 2022 used Haar
wavelet collocation technique to solve the partial differen-
tial equations with fractional order numerically [13]. In
contrast, Kilbas et al. [14] and Ishteva [15] studied the
theory and applications of FDEs. Finally, Mechee and
Senu [16,17] solved fractional ordinary differential equa-
tions (FODEs) using least square and collocation methods,
respectively, while Arshad et al. [18] investigated numer-
ical solutions of first-order FODEs using the proposed Euler
method and derived a two-stage fractional Runge–Kutta
approach, whereas in 2015, Gurung et al. and Goyal et al.
used numerical techniques to solve mathematical models
[19,20]. This article is organized as follows: the first part
contains the introductory information. In part 2, the pro-
posed RKM method is given in specifics, while, in Section 3,
the Runge Kutta Mechee (RKM) method is modified to be
suitable for solving FPDEs. Finally, to prove the reliability
and efficiency of the proposed method, we conduct numer-
ical experiments.

2 Preliminaries and notations

In this section, we present the fundamental definitions and
background concepts of the main issue of this study.

Definition 1. [21]

The Caputo fractional partial derivative operator with
order >α 0 is defined as
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where n is an integer, t > 0.

Definition 2. [21]

For a function t( )ƒ x , , the partial Riemann–Liouville
fractional derivative of order >α 0 with respect to t is
defined as:
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Corollary 1. [21]
Let − < < ∈ ∈m Ƥ m m N Ƥ R1 , , , and ( )ƒ t be such

that tt ( )D ƒ
Ƥ exists, then the following properties for the

Caputo operator hold:
a. t tt ( ) ( )( )=→ D ƒ ƒlim .Ƥ m

Ƥ m
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1 1 .
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Definition 3. (The General Quasi-Linear FPDEs)

If all higher-order derivatives of dependent variables
are linear, then the partial differential equation is said to
be quasilinear. The following form describes the class of
quasi-linear FPDEs:
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with ICs:

( ) ( )( ) = = −−z x ƒ x i n, 0 , 0, 1, 2,…, 1,x i itimes
(7)

and the BCs:

t t t t( ) ( ) ( ) ( )= =z a φ z b φ, , , ,
1 2

(8)

where < ≤α0 1.

2.1 Finite difference method [22]

The finite differences are widely used in numerical ana-
lysis to approximate derivatives of different orders in
order to solve differential equations. Euler (1707–1783)
established it in one dimension in 1768, while C. Runge
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(1856–1927) likely developed it to two dimensions around
1908. Over the past 50 years, theoretical conclusions have
been reached on the precision, convergence, and stability
of the finite difference technique for PDEs. Also, FDM has
been developed for solving fractional equations and the
finite difference system as follows:
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= −i N1, 2,…, 1 and =j M1, 2,…, ,where N and M are
the number of subintervals of domain x and t, respectively.

3 Proposed RKM methods for
solving fifth-order quasi-linear
FPDEs

For solving fifth-order quasi-linear FPDEs, the RKM method
developed by combining method of lines (MOL) with numer-
ical RKM method.

3.1 Direct numerical RKM method [23]

Consider the following fifth-order ODE:

( ) ( )( ) = ≥z x f x z x x, , ,

5

0
(10)

with ICs

( )( ) = =z x γ i, 0, 1,…, 4.

i i
0

(11)
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The general form of the RKM method with s-stage for
initial value problems (10) and (11) is as follows:
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for =I 2, 3,…, s. The RKM method assumes the following
real values for the parameters ( ) ( ) ( )′c b b b b b, , , , ,i i i i i i

2 3 4 for
=i j, 1, 2,…, s. It is an explicit method if and only if =a 0ij

for ≤i j , and an implicit method otherwise. Tables 1 and 2
describe the RKM method in Butcher notation.

3.2 Algorithm of the proposed method

In this subsection, we introduce a computational strategy
for solving fifth-order quasi linear FPDEs (1)–(3) using a
hybrid of the MOL and the RKM method.

Specifically, we presume that the x-axis interval [a,b]
and the t-axis interval [0,T] correspond to the numerical
solution, with h = (b − a)/N and k = T/M, where N and M
are the number of points in the x-direction in [a, b] and
t-direction in [0, T], respectively. Combining the MOL and
the RKM method, we can solve problem (1) with given
initial and BCs (2) and (3) by the following algorithm.

Algorithm:
1. While ≤ ≤i N1 , carry out steps 2–6.

Table 1: Butcher tableau for RKM technique
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2. The FPDE (1) can be transformed into the following
equation by fixing the value of =x xi at the point

t( )x , , where = +x a ihi .
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3. The derivatives on the right-hand side of ODE (19), when
substituted with finite difference formulas of orders 1,
…,5, yield a system of FODEs at the fifth order.
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4. Starting conditions (with j = 1)
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6. By using the RKM method, solve the system of fifth-
order FODEs in equation (21), given (ICs) (27) or (28)
and (BCs) (29), at t t= .j

4 Implementations (numerical
examples)

To test our method, we used fifth-order FPDE in the fol-
lowing examples:

Problem 1.
Consider the following fifth-order quasi linear FPDEs:

t t t t
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a b

Table 2: RKM method (three-stage, fifth-order)
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The exact solution is t t( ) = −z x , e e

x , for = =a b0, 1,
and =α 1.

Problem 2.
Consider the following fifth-order quasi linear FPDEs:
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α α
xx
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5 , for = =a b π0, ,
and =α 1.

Problem 3.
Consider the following fifth-order quasi linear FPDEs:
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The exact solution is t t( ) = −z x x, e

5 , for = =a b0, 1,
and =α 1.

A comparison between the numerical solutions ( )w x

evaluated by generalized RKM method versus the exact
solutions t( )z x , for the above problems and for ten lines
of t and =α 0.96 is shown in Figure 1.

5 Discussion and conclusion

In this work, we have focused on developing numerical
techniques for solving fifth-order FPDEs by generalized
RKM methods. This study has accomplished its purpose
by demonstrating the generalizability of several efficient
numerical approaches for solving FPDEs by the RKM type.
In view of the comparison of the numerical solutions of
the proposed method with the exact solutions of various
studied cases demonstrated the efficiency and accuracy of
the modified technique as in Figure 1. Furthermore, the
numerical examples in the implementations of this article

Figure 1: A comparison between the numerical solutions evaluated by
generalized RKM method versus the analytical solutions for (a) Problem
1, (b) Problem 2, and (c) Problem 3 for ten lines of t in the domain
with ==α 0.96.
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proved that the proposed method is a powerful numerical
method for solving the class of fifth-order FPDEs.
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