DE GRUYTER

Open Engineering 2023; 13: 20220403

Research Article

Waad Falah Kamil* and Imad Jasim Mohammed

Deep learning model for intrusion detection
system utilizing convolution neural network

https://doi.org/10.1515/eng-2022-0403
received October 26, 2022; accepted January 10, 2023

Abstract: An integral part of any reliable network security
infrastructure is the intrusion detection system (IDS). Early
attack detection can stop adversaries from further intruding
on a network. Machine learning (ML) and deep learning
(DL) techniques to automate intrusion threat detection at
a scale never previously envisioned have snowballed during
the past 10 years. Researchers, software engineers, and net-
work professionals have been encouraged to reconsider
the use of ML techniques, notably in cybersecurity. This
article proposes a system for detecting intrusion with two
approaches, the first utilizing a proposed hybrid convolu-
tional neural network (CNN) and Dense layers. The second
utilizes naive Bayes (NB) ML techniques and compares the
two approaches to determine the best detection accuracy.
The preprocessing of network data is necessary. The sug-
gested technique is evaluated using the UNSW-NB15 Dataset
to create a reliable classifier and an effective IDS. The experi-
mental results for the proposed CNN-dense classifier outper-
formed the ML and DL models. CNN has a 99.8% accuracy
rate compared to previous studies. At the same time, the
Gaussian naive Bayes, which is considered the best among
the ML-utilized classifiers, yielded an 83% accuracy rate.

Keywords: intrusion detection system, machine learning,
deep learning, convolutional neural network, naive Bayes,
UNSW-NB15

1 Introduction

Since the Internet’s establishment, information systems
that utilize or are based on it have progressed dramati-
cally, like the World Wide Web. Most cyberattacks are

* Corresponding author: Waad Falah Kamil, Department of Computer
Science, University of Baghdad, Baghdad, Iraq,

e-mail: pcwaad@gmail.com

Imad Jasim Mohammed: Department of Computer Science, University
of Baghdad, Baghdad, Iraq

launched via the notoriously insecure Internet [1]. One of
the most significant issues confronting security manage-
ment system developers is ensuring the protection and
privacy of big data, particularly in light of the widespread
utilization of Internet networks and the explosive develop-
ment in the amount of data created from various sources
[2]. Attempts to breach or circumvent the confidentiality,
integrity, and availability of security processes that protect
networks and computer resources are called intrusions [3].
As an active security mechanism, intrusion detection sys-
tems (IDSs) are a potent tool and a crucial part of the
infrastructure that ensures the safety of the networks we
rely on daily, which can be hardware or software. IDS
monitors and analyzes data as it travels through compu-
ters and networks to detect security problems [4]. Misuse
and anomaly detection are the two fundamental methodol-
ogies utilized by IDSs to examine events and identify
attacks [5].

The challenge is to create methods for identifying
threats through deep learning (DL) approaches to improve
the system’s efficacy and accuracy while decreasing the
number of false alarms with little computing effort [6].
Big data presents a significant challenge to IDSs due to its
volume, diversity, and velocity. “Big data” refers to infor-
mation that is difficult to handle, store, or manipulate uti-
lizing typical methods [7]. The term “big” refers to the
amount of data acquired from various sources, which
has grown significantly in recent years [8]. Machine learning
(ML) and DL methods may be divided into four main groups,
namely supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning, as illu-
strated in Figure 1. The first two categories obtain the
majority of the intrusion detection research that has been
published in the literature [9].

This work proposes a system to detect network intru-
sion based on DL and ML techniques. A convolutional
neural network (CNN) and naive Bayes (NB) were utilized
for classification. These suggested approaches are applied
to the UNSW-NB15 Dataset, which contains a group of
common and updated attacks.

This article is organized as follows: Section 2 discusses
the related works. Section 3 briefly describes the dataset,

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/eng-2022-0403
mailto:pcwaad@gmail.com

2 =—— Waad Falah Kamil and Imad Jasim Mohammed

DE GRUYTER

Supervised Unsupervised S S Reinforcement
upervised
o CNN Clustering Deep | | | Continuity || | Temporal Difference
Neural Network Assumption Learning
Ll RN | | Autoencoder Based || | Cluster || | State-action-reward-
Deep Clustering Assumption state-action
n || Connectivity Based (| | Mainfold || | .
2 Clustering Assumption Q-Learning
o DT || Association Rule
Mining
Distribution Based
T I T Clustring

Figure 1: Classification of ML and DL algorithms for detecting network intrusions [9].

preprocessing, and classification techniques used. Section
4 gives details of the evaluation metrics. Section 5 contains
the findings and discussion. Section 6 ends with the con-
clusion and future work.

2 Related works

Computer networks are implementing the most recent
technologies as technology and current approaches improve,
significantly impacting the intensity of attacks. As a result,
the UNSW-NB15 Dataset was utilized with specific attention
paid to the modern forms of attack. Research utilizing the
UNSW-NB15 Dataset has not yet reached its full potential.
However, certain studies that made use of datasets are sum-
marized here. The relevant research is compared and sum-
marized in Table 1.

For studies based on ML techniques, Kumar et al. [10]
developed a calcification-based integrated network intru-
sion detection system (NIDS) that utilized clusters gener-
ated by IG’s feature selection approach and the k-means
algorithm in conjunction with decision tree (DT) algorithm.
The RTNITP18 Dataset, with 22 features and four types of
network assaults from the UNSW-NB15 Dataset, was used
as a test dataset to assess the efficacy of the proposed
model. Compared to the DT C5 model, whose accuracy
was 90.74%, the proposed model was only 84.83%.

Kasongo and Sun [11] presented the NIDS technology,
which combines the feature selection method of the XGBoost

algorithm with five classification techniques: logistic regres-
sion (LR), k-nearest neighbors (KNN), artificial neural net-
work (ANN), DT, and support vector machine (SVM). The
UNSW-NB15 Dataset was classified using binary and multi-
class techniques. The maximum accuracy of multiclass clas-
sification was 82.66%, whereas the KNN classifier accuracy
was 96.7%.

Kumar et al. [12] recommended the unified intrusion
detection system (UIDS) using the UNSW-NB15 Dataset. The
ruleset (R) utilized to create the proposed UIDS model was
taken from various DT models, including k-means clus-
tering and IG’s feature selection method. The model was
also trained with various methods, including C5, neural
networks, and support vector machines. For this reason,
the suggested model achieved a higher accuracy (88.92%)
than any competing methods. Other algorithms have higher
accuracy, such as C5, neural network, and SVM (89.76, 86.7,
and 78.77%, respectively).

Shushlevska et al. [13] implemented IDS depending on
the UNSW-NB15 Dataset. The dataset has been tested and
trained for nine distinct class assaults. Utilizing four ML
methods, the UNSW-NB15 Dataset was efficiently split into
network traffic of ordinary records and attack logs. The clas-
sification utilizing Random Forest (RF) is more efficient than
with NB, LR, and DT, according to the study of the ML models
for each of the approaches. The RF classifier offers an accu-
racy value of 95.9% in accordance with the results attained.

For studies relying on DL approaches, P. Wu and H.
Guo [14] suggested using a LuNet model to discover

DE GRUYTER

Table 1: Summary of existing studies on IDS based on ML and DL techniques

Limitations

Best accuracy (%)

Algorithm

Datasets

Ref.

ML techniques

This study predicted just four of the nine categories in the UNSW-NB15 Dataset. Furthermore, this study has not

addressed the issue of class inequality.

90.74

UNSW-NB15 DT models (CART, CHAID, QUEST,

[10]

and C5)
UNSW-NB15 LR, K-nearest neighbors, DT, ANN,

96.76 This study did not address the issue of class inequalities. As a result, the model’s accuracy is poor.

[

and SVM
UNSW-NB15 Models of DT (C5, CHAID, CART, and

The UNSW-NB15 Dataset comprises only four types of network attack categories predicted by research. Furthermore,

this study has not addressed the issue of class inequality.

88.92

[12]

QUEST)
UNSW-NB15 RF, LR, NB, and DT

DL techniques

Feature selection methods must be applied to the UNSW-NB15 Dataset.

95.9

[13]

This research did not improve dealing with an RNN algorithm, although there are studies that worked on the same

dataset and gave good results.

84.98

UNSW-NB15 CNN and RNN

[14]

The use of data preparation techniques in this study has not been done well.

93.5

UNSW-NB15 CNN

[15]
[16]
(17

Feature, selection, or reduction methods do not apply to the UNSW-NB15 Dataset.

This study must be expanded to detect multiclass classification intrusions.

94.22

UNSW-NB15 CNN

92.10

UNSW-NB15 CNN

Deep learning model =— 3

intrusions on a large-scale network, which is a hierarchical
recurrent neural networks (RNN) and CNN used on the
NSL-KDD and UNSW-NB15 dataset. On the NSL-KDD dataset,
the accuracy in binary classification obtained an average of
99.24%, and on the UNSW-NB15 dataset, it was 97.40%. On
average, NSL-KDD performed with 99.05% accuracy while
UNSW-NB15 performed with 84.98% accuracy in multiclass
classification.

Mahalakshmi et al. [15] created the CNN DL technology
to handle the challenge of detecting network infiltration.
The CNN algorithm was trained to utilize the UNSW NB15
public dataset. In general, the dataset comprises binary
types of “0” and “1” for normal and assault data. The
experimental findings indicated that the suggested model
has a maximum detection accuracy of 93.5%.

Singh et al. [16] suggested a brand-new wide deep
transfer learning (TL) GRU model. A preprocessing proce-
dure is created for multi-dimensional point data (multi-
variate time series) (UNSW-NB15). Wide deep is made up
of a linear model, and the deep component is made up of
Base-4GRU, TL-3GRU-1, or TLAGRU-2. According to the experi-
mental findings, the suggested solution beats most of the
current network intrusion detection strategies on ML, with
an evaluation accuracy of 94.22% on the UNSW-NB15.

Almarshdi et al. [17] created an IDS architecture based
on a CNN and LSTM model combination to identify security
assaults in the IoT utilizing the UNSW-NB15 Dataset. The
missing values in the dataset are eliminated based on the
interpolation procedure. The suggested model was com-
pared to the CNN model on a balanced and unbalanced
dataset. Then, utilizing a balanced dataset, they compare
the suggested model against DT and RF ML classifiers. On
the balanced dataset, the suggested model outperformed
CNN, DT, and RF with an accuracy of 92.10%.

3 Proposed methodology

The proposed system includes two methods for intrusion
detection of networks, one utilizing DL and the other based
on ML. In both cases, the data go through a preprocessing
stage. Then the classification is done utilizing the two
methods mentioned above, and the results of the two
methods are compared. Figure 2 explains the overall dia-
gram of the proposed system and the factors considered to
build a hybrid model.

4 — Waad Falah Kamil and Imad Jasim Mohammed DE GRUYTER

UNSW-NB15 Dataset

¥

Label Encoder Categorical

¥

Dataset (Max/Min Normalization)
¥

Splitting Dataset
I

‘L Testing (30%) —
Training (70%) ML- Methods

11
11
@ !
< |
= Input 1
S |
§ features 42 1 Phasel CNN 3 Phase2 CNN : |
!] f |
E} ‘ Conv ID (F=16, K=3) ﬂ I Conv ID (F=256, K=3) \i] : 1
| MaxPool (size=1) U | Maxpool (size=1) 3
—| \ Conv 1D (F=32, K=3) | Conv ID (F=512, K=3) ﬂ | e R H : :
| . Ij onv 1D (F=64, K=3) ||
. MaxPool (Size=1) l MaxPool (Size=1) Ij |
| Flatten Laver | iy
| Conv ID (F=64, K=3) | Conv 1D (F=1024, K=3) b a0 11
ropout (0. 1!
L | MaxPool (Size=1) |j | MaxPool (Size=1) U : :
| - — g | Dense (2, SoftMax) 1
Conv ID (F=128 K=3) | Dense (1024, Linear) i1
| 1!
| MaxPool (Size=1) Ij 1!
11
| Conv ID (F=128, K=3) 1!
11
| MaxPool (size=1) i
| Dense (128. Linear) : :
|— 11
< 1!
{ v D \ 4 1!
11
Gaussian Bernoulli Multinomial Complement CNN 1!
Naive Bayes Naive Bayes Naive Bayes Naive Bayes 1!
11
I | | | 11
1!
A ML 1
N 1 D e (O e 1
orma O Prediction]:- DL 1
Attack 04— ——————————————————
v
Conv: Convolutional Evaluation
F: Filter Accuracy, Precision, Recall, F-score
K: kernel

Figure 2: The proposed CNN-Dense classification framework vs ML.

DE GRUYTER

3.1 A summary of the considerations for the
proposed

Early Stopping: Training should be halted when the vali-

dation error exceeds the minimum.

* Dropout: A regularization technique that is similar to
training. Randomly ignoring some layer outputs forces
nodes inside a layer to assume greater or lesser respon-
sibility for the inputs.

+ Adam’s optimizer integrates the techniques for gradient
descent, momentum, and Root Mean Squared Propagation.
Every node in the network has its learning rate updated by
Adam’s optimizer, which lowers the overall error rate.
It can process large datasets quickly and efficiently using
less memory than other optimization methods and
requiring less tuning.

* In the convolutional layers, we used a leaky rectified linear
unit (ReLU) activation function. It has the same form as the
ReLU, except that positive values close enough to zero will
lead to zero. Avoid the dead node issue and do not have a
vanishing gradient.

+ In the medial dense layers, the linear activation function

combines strong and close-to-strong features from the

layers preceding it.

In the last dense layer (classification), the SoftMax activation

function is used for problems with more than one class.

Methods take in a vector of the raw outputs of a neural

network and give back a vector of probability scores.

» The last convolutional layer used a linear activation

function with a small filter size to extract close-to-strong

features from the layer preceding it.

3.2 Dataset description

The Cyber Range Lab at the Austrian Centre for Cyber
Security uses raw network packets from the UNSW-NB15

Table 2: UNSW-NB15 Dataset categories [18]

Deep learning model = 5

Dataset to construct hybrid real-time normal operations
and simulate current attack behavior using the IXIA Perfect-
Storm technology. Tcpdump stores 100 GB of raw traffic.
Forty-nine characteristics, including the class label, are
generated using the Argus and Bro-IDS tools and 12
methods. Most researchers have utilized these datasets
independently to test the efficacy of their IDSs. The ori-
ginal dataset comprises 2,540,044 packets spread over
four CSV files. Information types and their respective
descriptions are included in Table 2.

3.3 Dataset splitting

A common approach for model validation is data splitting,
which splits a given dataset into training and testing sets.
The training data is then utilized to fit and evaluate statistics
and ML models. It may test and compare the accuracy of
several models’ predictions without worrying about poten-
tial overfitting of the training set, provided it keeps a sepa-
rate dataset for validation [19]. They can employ the afore-
mentioned data-splitting strategies once they have defined a
splitting ratio. A typical ratio is 80:20, which means that 80%
of the data is utilized for training and 20% for testing [20]. In
practice, alternative ratios such as 70:30, 60:40, and even
50:50 are used. There does not appear to be clear informa-
tion on what ratio is ideal or best for a particular dataset.
The 80:20 split is based on the well-known Pareto principle;
however, this is merely a practice-based recommendation.
Based on the theoretical or numerical study, there is no
agreement on the optimal data-splitting ratio [21].

3.4 Dataset preprocessing

Data may be interpreted as the model algorithm per-
forming a rapid study of the data’s features. Data

Attack family Description No. of samples
Normal Natural transaction data. 2,218,763
Analysis Includes port scan, spam, and HTML file intrusion techniques. 2,677
Backdoor A method for sneakily getting into a computer or its data by getting around a system’s security. 2,329
DoS The goal is to disable host services so users cannot access network resources. 16,353
Exploits The attacker exploits a software or operating system security flaw. 44,525
Fuzzers Sends a large amount of data to cause a computer program to crash. 24,246
Generic A strategy is effective against all block ciphers regardless of the form of the block cipher. 215,481
Reconnaissance The goal of this is to collect information. 13,987
Shellcode Most of the time, a small piece of code is used to take advantage of a software flaw. 1,51
Worms To get to other computers, the attacker copies itself. Most of the time, it spreads through a computer network. 174

6 —— Waad Falah Kamil and Imad Jasim Mohammed

preprocessing is the most important and critical stage for a
DL algorithm to perform effectively in terms of generaliza-
tion [22]. The training data grow exponentially in response
to the input spatial dimension. It is predicted that prepro-
cessing might take up to 50-80% of the time necessary for
the whole classification process, highlighting its impor-
tance in model construction. The datasets need numerous
preprocessing steps to contain undesirable elements such
as missing, redundant, or infinite values that must be
removed or changed to improve data quality for improved
performance [23].

3.4.1 Dataset label encoder

Label encoding is a technique to preprocess categorical
variables by assigning a unique integer to each label based
on alphabetical ordering. These integers replace the vari-
able in the same column. This is the method that was uti-
lized in this study. The additional variables make the data
more complex. For example, there are 135 variables in the
“protocol” column, 13 in the “service” column, and 16 in the
“status” column.

3.4.2 Apply min-max normalization

The min-max technique normalizes data for each feature by
converting the minimum value to decimal numbers between
0 and 1. This ensures the data can be more easily understood
and reduces training time. It is required when attributes
have different scales [24]. According to equation (1),

X = @

where Xp.x and Xpi, are the maximum and minimum fea-
ture values (x), resulting in output within the 0-1 range.

3.5 Classification algorithms

Five classification algorithms, i.e., CNN and NB models
(Gaussian naive Bayes [GNB], Bernoulli naive Bayes [BNB],
multinomial naive Bayes [MNB], and complement naive
Bayes [CNB]), were employed to train the proposed model.

3.5.1 Data classification depending on CNN

CNN architecture includes convolution layers, pooling
layers, and fully connected layers. A famous architecture

DE GRUYTER

is the recurrence of a stack of several convolution layers and
a pooling layer, followed by one or more fully linked layers.
Forward propagation is the method through which input
data is converted into output data via these levels [25].

3.5.1.1 Convolution layer

The convolution layer, an essential component of CNN
design, extracts features by combining linear and non-
linear operations, such as convolution and activation func-
tions [26].

* Convolution: A linear procedure called convolution is
utilized to extract features. A Kkernel is applied to the
input, a tensor array of integers. A feature map, some-
times referred to as an output value at the corresponding
position of the output tensor, is created by computing an
element-wise product between each element of the kernel
and the input tensor at each point of the tensor and
adding the results.

Activation function: The outputs of a linear operation,
such as convolution, are then passed through a nonlinear
activation function. The Leaky ReLU activation function
was utilized in the proposed model. It is an effort to
address the fading ReLU issue. When x<0, a leaky
ReLU will have a modest negative slope as opposed to
zero (of 0.01 or so). The function computes this as shown
in equation (2), where a is a small constant [27].

fO0 = 1(x < 0)(ax) + 1(x 2 0)(x). @

3.5.1.2 Pooling layer

A pooling layer conducts a typical down-sampling proce-

dure that reduces the in-plane dimensionality of the fea-

ture maps to introduce translation invariance to small
shifts and distortions and to minimize the number of
ensuing learnable parameters. It is crucial to note that
none of the pooling layers has learnable parameters.

However, filter size, stride, and padding are hyperpara-

meters in pooling operations, just as they are in convolu-

tion operations.

* Max pooling: The most common sort of pooling proce-
dure is max pooling. It accepts patches from the feature
maps as input, outputs the most outstanding value in
each patch, and discards all other values [28].

3.5.1.3 Fully connected layer
The final convolution or pooling layer’s output feature
maps are typically flattened or converted into a one-

DE GRUYTER

dimensional (1D) array of numbers (or vectors) and con-
nected to one or more dense layers, also known as fully
connected layers, in which a learnable weight connects
each input and output. A subset of fully connected layers
maps the properties of convolution and down-sampling
layers to the network’s final outputs, such as the probabil-
ities for each class in classification tasks. The number of
output nodes in the final fully connected layer usually

equals the number of classes [29].

+ SoftMax activation: A different kind of LR called SoftMax
Classifier may classify more than two classes. The output
of the last layer may be transformed to its underlying
probability distribution utilizing SoftMax. SoftMax has
the advantage that the output probability can be between
0 and 1, and the sum of the probabilities is 1 [30].

3.5.1.4 Dropout layer

Dropout layers were used to keep from overfitting [29],
which made the training last longer. It prevents overfitting
by changing specific input units to 0 randomly throughout
training. Those inputs not set to 0 are scaled by 1/(1 - rate)
to keep the same total sum. So, there are dropout layers,
and each one is meant to lower the chance of overfitting by
making the neurons that come after it depend less on the
neurons that came before it.

3.5.1.5 The proposed CNN-Dense model design

The proposed CNN-Dense model consists of 22 layers as
follows:

+ CNN layers (9).

» Max pooling layers (8).

* Dense layers (3).

* Flatten layer (1).

* Dropout layer (1).

Table 3 explains these layers in some detail.

3.5.2 NB classifier

The NB classifier applies the Bayes theorem and operates
on the probabilistic premise that features are independent
and equally weighted [31-36]. One of the NB challenges is
the zero frequency or probability scenario, in which the
model cannot forecast if it has not seen a specific category
in the training dataset yet does so in the test dataset when it
encounters a novel and previously unknown input vari-
able. Laplace estimates and other smoothing techniques

Deep learning model == 7

Table 3: The proposed (CNN-Dense) layers and parameters settings

No. Layer type Filters Size/stride Activation function
1 Convolutional 16 3N Leaky ReLU
2 Max pooling - 7 -

3 Convolutional 32 3N Leaky ReLU
4 Max pooling - 171 -

5 Convolutional 64 3n Leaky RelLU
6 Max pooling - 11 -

7 Convolutional 128 31 Leaky RelLU
8 Max pooling - il -

9 Convolutional 128 3N Leaky ReLU
10 Max pooling - 171 -

1" Dense 128 - Linear

12 Convolutional 256 31 Leaky RelLU
13 Max pooling - 11 -

14 Convolutional 512 3N Leaky ReLU
15 Max pooling - il -

16 Convolutional 1,024 31 Leaky ReLU
17 Max pooling - 171 —

18 Dense 1,024 - Linear

19 Convolutional 64 31 Leaky RelLU
20 Flatten - - -

21 Dropout - 0.1 -

22 Dense - - SoftMax

can be used to prevent this undesired situation [32]. Because
it is straightforward to implement, computationally quick,
and resilient, it has been widely used in text classification
and other classification domains, with several changes to the
traditional NB [33]. NB is one of the simplest Bayesian net-
work methods, and when combined with kernel density esti-
mation, it could be more accurate [34].

4 Evaluation metrics

The confusion matrix, considering the calculated predicted
class vs the actual class variables, defines various perfor-
mance metrics [35,36].

* True positive (TP): The number of harmful codes that
have been accurately discovered.

* True negative (TN): The number of innocuous codes
successfully identified.

* False positive (FP): The number of times a detector
incorrectly identifies a benign file as malware.

* False negative (FN): The number of malicious codes
detected by a detector incorrectly since the virus is
new and no signature is yet accessible.

* Accuracy: It indicates the accuracy or proximity of the
estimated value to the actual value of the model,

8 —— Waad Falah Kamil and Imad Jasim Mohammed

implying that a part of the total samples is properly clas-
sified. The model’s accuracy is calculated using the fol-
lowing formula:

A) TP + TN (3)
CCUraCY = P+ IN + FP + N’

Precision: It indicates the percentage of relevant occur-
rences that are genuinely positive among the selected
instances. To calculate precision, use the following formula:

TP

. 4
TP + FP @

Precision =

Recall or true positive rate (TPR): It computes the per-
centage of true positives that are accurately detected.
The recall formula is as follows:

TP
Recall = ———. 5
eca P + IN (5)

F1-score: The harmonic mean of accuracy and memory is
interpreted as the Fl-score, which combines the weighted
average of precision and recall. Fl-score is calculated
using the following formula:

Flgr = ——2 ®)
Score = TP + FP + FN

5 Experiment and result analysis

The experimental setup was created utilizing the methods
described in Figure 2. The UNSW-NB15 Dataset was divided
first in this study. Then, data standardization is utilized to
rescale the dataset’s data values. Finally, five classification
algorithms, including CNN-Dense and four NB models, are
employed to differentiate between attack groups and reg-
ular traffic.

5.1 Performance analysis of the proposed
CNN-Dense classification model

In the first method, the proposed CNN-Dense model was
used, as shown in Table 4.

From Table 4, it is clear that the results of the method
were perfect, the accuracy of the detection was very high,
and the best value reached 99.8%. The reason for this is
that the techniques used, whether in the preprocessing of
the data or the proposed model structure of a one-dimen-
sional convolutional neural network (1D-CNN), have

DE GRUYTER

Table 4: Results of the proposed CNN-Dense model

Accuracy (%) Precision (%) Recall (%) F1-score (%)

99.8 99.89 99.76 99.8

significantly reduced the computational complexity and
speed of intrusion detection.

5.2 Performance analysis of NB classification
models

In the second method, the NB models were used, as shown
in Table 5.

5.3 Comparison between DL and ML models
results

The results of the first suggested DL model are better than
those of ML because it can improve results automatically
and without human intervention through a process called
backpropagation. It can also use considerable datasets in
real time, which may contain many different kinds of
unstructured data. Figure 3 shows the chart of this
comparison.

5.4 Comparison with previous studies

The comparison of results with the related studies men-
tioned in Section 2 is explained in Table 6 and Figure 4.

The results in Table 6 and Figure 4 clearly show that
the proposed method, based on a 1D-CNN, gave the best
intrusion detection accuracy compared to our second
method or related studies.

Table 5: Results of the NB models

Technique Accuracy (%) Precision (%) Recall (%) F1-score (%)

GNB 83 84 81 82
BNB 69 70 67 67
MNB 80 74 77 75
CNB 80 81 78 78

DE GRUYTER Deep learning model == 9

Comparison Results

100
80
60
40
20
0

CNN-Dense Gaussian Naives Bernoulli Naive Multihomia Complement

Bayes Bayes Naive Bayes Naive Bayes

OAccuracy BPrecision ORecall OF1-Score

Figure 3: ML and DL experimental results comparison.

Table 6: Comparison results with related studies

Ref. Technique Dataset Accuracy (%) Precision (%) Recall (%) F-score (%)
[10] DT UNSW-NB15 90.74 93 89.78 89.1
[11] ANN UNSW-NB15 71.51 77.51 71.51 71.51
[12] DT UNSW-NB15 89.76 90 89.23 89.12
[13] RF UNSW-NB15 95.9 96.9 95.9 95.9
[14] DNN UNSW-NB15 84.98 85.1 84.8 84.98
[15] CNN UNSW-NB15 93.5 93 93.56 93.6
[16] CNN UNSW-NB15 76.3 90.4 76.1 78.2
[17] CNN UNSW-NB15 92.10 93 92.1 92.1
Our methods (CNN-Dense) UNSW-NB15 99.8 99.89 99.76 99.8
GNB UNSW-NB15 83 84 81 82
BNB UNSW-NB15 69 70 67 67
MNB UNSW-NB15 80 74 77 75
CNB UNSW-NB15 80 81 78 78

Results Comparison with Related Studies

N I R e e
&
@)

H Accuracy H Precision H Recall F-score

100

80

60

40

20

Figure 4: Comparison results of our proposed models with the previous studies.

10 — Waad Falah Kamil and Imad Jasim Mohammed

6 Conclusions

This study presents a framework for detecting network intru-
sions. The suggested framework’s performance was analyzed
and assessed using the UNSW-NB15 Dataset. Preprocessing
steps such as label encoders and normalization datasets are
important stages before performing DL algorithms. Its pur-
pose is to initialize the data and reduce the complexity of the
calculations in the algorithm. The results demonstrated sig-
nificantly improved accuracy, particularly in the first hybrid
technique (CNN-Dense). Based on the evaluation findings, it
can be concluded that the proposed classifier outperformed
the ML and DL models on the UNSW-NB15 Dataset in terms of
accuracy, precision, recall, and Fl1-score metrics.

In the future, reduction techniques can be used to
reduce the features, or the deep model from one layer
can be used to extract features faster and input the extracted
features to ML for classification, as well as using another
dataset with the proposed model and evaluating the classi-
fied data to detect network intrusion.

Conflict of interest: The authors declare that they have no
conflict of interest.

Data availability statement: Most datasets generated and
analyzed in this study are comprised in this submitted
manuscript. The other datasets are available on reasonable
request from the corresponding author with the attached
Information.

References

[11 Wu M, Moon Y. Intrusion detection system for cyber manufacturing
system.] Manuf Sci Eng. 2019 Jan;141(3):031007.

[2] Mujeeb Ahmed C, Umer MA, Binte Liyakkathali BS, Jilani MT, Zhou J.
Machine learning for CPS security: Applications, challenges, and
recommendations. Machine intelligence and big data analytics for
cybersecurity applications. Cham: Springer; 2021. p. 397-421.

[3]1 Prasad R, Rohokale V. Artificial intelligence and machine learning in
cyber security, cyber security: The lifeline of information and
communication technology. New York, NY: Springer; 2020.

p. 231-47.

[4] Alheeti K, Alsukayti I, Alreshoodi M. Intelligent botnet detection
approach in modern applications. Int | Interact Mob Technol (IJIM).
2021;15(16):113-26.

[5] Obeidat I, Hamadneh N, Alkasassbeh M, Almseidin M, AlZubi MI.
Intensive preprocessing of KDD Cup 99 for network intrusion
classification using machine learning techniques. Int) Interact Mob
Technol (JIM). 2019;13(1):70.

[6] Mishra P, Varadharajan V, Tupakula U, Pilli ES. A detailed investi-
gation and analysis of using machine learning techniques for
intrusion detection. IEEE Commun Surv Tutor. 2019;21(1):686-728.

[71

(8]

[9

[10]

(1]

2]

3]

4]

[5]

[1e]

7

(18]

(9]

[20]

[21]

[22]

[23]

[24]

[25]

DE GRUYTER

Moustafa N, Slay J. The evaluation of network anomaly detection
systems: Statistical analysis of the UNSW-NB15 data set and the
comparison with the KDD99 data set. Inf Secur | A Glob Perspect.
2018;25:18-31.

Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new
intrusion detection dataset and intrusion traffic characterization.
ICISSP. 2018;1:108-16.

Umer MA, Junejo KN, Jilani MT, Mathur AP. Machine learning for
intrusion detection in industrial control systems: Applications,
challenges, and recommendations. Int J Crit Infrastruct Prot.
2022;38:100516. arXiv:2202.11917v1 [cs.CR] 24 Feb 2022.

Kumar V, Sinha D, Das AK, Pandey SC, Goswami RT. An integrated
rule based intrusion detection system: Analysis on UNSW-NB15 data
set and the real time online dataset. Clust Comput. 2020;23:1-22.
Kasongo SM, Sun Y. Performance analysis of intrusion detection
systems using a feature selection method on the UNSW-NB15
dataset. | Big Data. 2020;7(1):38367.

Kumar V, Das AK, Sinha D. UIDS: A unified intrusion detection
system for IoT environment. Evolut Intell. 2021;14(1):47-59.
Shushlevska M, Efnusheva D, Jakimovski G, Todorov Z. Anomaly
detection with various machine learning classification techniques
over UNSW-NB15 dataset. 10th International Conference on
Applied Innovations in IT, (ICAIIT); March 2022. p. 21-7.

Wu P, Guo H. LUNET: a deep neural network for network intrusion
detection. In 2019 IEEE symposium series on computational intel-
ligence (SSCI); 2019. pp. 617-624.

Mahalakshmi GN, Uma E, Aroosiya M, Vinitha M. Intrusion detec-
tion system using convolutional neural network on UNSW NB15
dataset. Adv Parallel Comput Technol Appl. 2021;40:1-8.

Singh NB, Singh MM, Sarkar A, Mandal JK. A novel wide & deep
transfer learning stacked GRU framework for network intrusion
detection. J Inf Secur Appl. 2021;61:102899.

Almarshdi R, Nassef L, Fadel E, Alowidi N. Hybrid deep learning
based attack detection for imbalanced data classification. Intell
Autom Soft Comput. 2022;35(1):297-320.

Rashid OF. DNA encoding for misuse intrusion detection system
based on UNSWNB15 data set. Iraqi] Sci. 2020 Dec;61(12):3408-16.
doi: 10.24996/ijs.2020.61.12.29.

Nurhopipah A, Hasanah U. Dataset splitting techniques compar-
ison for face classification on CCTV images. Indones] Comput
Cybern Syst. October 2020;14(4):341-52.

Nguyen QH, Ly HB, Ho LS, Al-Ansari N, Le HV, Tran VQ, et al.
Influence of data splitting on performance of machine learning
models in prediction of shear strength of soil. Math Probl Eng.
2021;2021:1-15.

Awwalu J, Nonyelum O. On holdout and cross-validation: A com-
parison between neural network and support vector machine. Int |
Trend Res Dev 6(2):235-9.

Huang F. Data processing. In: Schintler L, McNeely C, editors.
Encyclopedia of big data. Cham: Springer; 2019.

Abdulrahman AA, Ibrahem MK. Intrusion detection system using
data stream classification. Iraqi] Sci. Jan. 2021;62(1):319-28. doi: 10.
24996/ij5.2021.62.1.30.

Raju VG, Lakshmi KP, Jain VM, Kalidindi A, Padma V. Study the influence
of normalization/transformation process on the accuracy of super-
vised classification. In 2020 Third International Conference on Smart
Systems and Inventive Technology (ICSSIT). IEEE; 2020. p. 729-35.
Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB,
et al. Deep learning to classify radiology free-text reports.
Radiology. 2018;286:845-52.

https://doi.org/10.24996/ijs.2020.61.12.29
https://doi.org/10.24996/ijs.2021.62.1.30
https://doi.org/10.24996/ijs.2021.62.1.30

DE GRUYTER

[26]

[27]

[28]

[29]

[30]

31

Bezdan T, DZakula N. Convolutional neural network layers and
architectures. International Scientific Conference On Information
Technology and Data Related Research; 2019.

Sultana F, Sufian A, Dutta P. Advancements in image classification using
convolutional neural network. In 2018 Fourth International Conference
on Research in Computational Intelligence and Communication
Networks (ICRCICN). Kolkata, India: IEEE; 2018. p. 122-9.

Thirimanne SP, Jayawardana L, Yasakethu L, Liyanaarachchi P,
Hewage C. Deep neural network based real-Time intrusion detec-
tion system. SN Comput Sci. 2022;3(145):145.

Yamashita R, Nishio M, Do R, Togashi K. Convolutional neural
networks: An overview and application in radiology. Insights
Imaging. 2018;9:611-29.

Ren S, He K, Girshick R, Sun J. Faster RCNN: Towards real-time
object detection with region proposal networks. IEEE Trans Pattern
Anal Mach Intell. 2017;39(6):1137-49.

Granik M, Mesyura V. Fake news detection using naive Bayes
classifier. IEEE First Ukraine Conference on Electrical and Computer
Engineering (UKRCON). Kie; 2017. p. 900-3.

32]

[33]

[34]

Deep learning model = 11

Xu S. Bayesian naive Bayes classifiers to text classification. J Inf Sci.
2018;44(1):48-59.

Sasongko TB, Arifin O, Al Fatta H. Optimization of hyper parameter
band-width on naive Bayes kernel density estimation for the breast
cancer classification. In 2019 International Conference on
Information and Communications Technology (ICOIACT). IEEE;
2019. p. 226-31.

Anand MV, KiranBala B, Srividhya SR, C. K, Younus M, Rahman MH.
Gaussian naive Bayes algorithm: A reliable technique involved in
the assortment of the segregation in cancer. Hindawi. Mob Inf Syst.
2022;2022:1-7.

[35] Jabbar AF, Mohammed IJ. BotDetectorFW: An optimized botnet

[36]

detection framework based on five features-distance measures
supported by comparisons of four machine learning classifiers
using CICIDS2017 dataset. Indones J Electr Eng Comput Sci. Jan.
2021;21(1):377-90. doi: 10.11591/ijeecs.v21.i1.pp377-390.
Mahmood RAR, Abdi A, Hussin M. Performance evaluation of
intrusion detection system using selected features and machine
learning classifiers. Baghdad Sci J. 2021;18(2):884-98.

https://doi.org/10.11591/ijeecs.v21.i1.pp377-390

	1 Introduction
	2 Related works
	3 Proposed methodology
	3.1 A summary of the considerations for the proposed
	3.2 Dataset description
	3.3 Dataset splitting
	3.4 Dataset preprocessing
	3.4.1 Dataset label encoder
	3.4.2 Apply min-max normalization

	3.5 Classification algorithms
	3.5.1 Data classification depending on CNN
	3.5.2 NB classifier

	4 Evaluation metrics
	5 Experiment and result analysis
	5.1 Performance analysis of the proposed CNN-Dense classification model
	5.2 Performance analysis of NB classification models
	5.3 Comparison between DL and ML models results
	5.4 Comparison with previous studies

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

