DE GRUYTER

Open Engineering 2022; 12: 878-889

Research Article

Aarne Klemetti* and Erkki Rasanen

Foundations and case studies on the scalable
intelligence in AloT domains

https://doi.org/10.1515/eng-2022-0381
received May 10, 2021; accepted October 23, 2022

Abstract: The Internet-of-things (IoT) concept is based on
networked, mobile, and sensor-equipped microelectronic
devices. They are capable of reacting to their environment
by collecting and processing data, computing, and com-
municating with other IoT devices and the cloud. The
deployment of artificial intelligence (AI) to IoT, referred
to as artificial intelligence of things (AloT), enables
intelligent behavior for the whole cyber-physical system
whether it is designed for human co-operation, comple-
tely autonomous operations, or something in between.
The IoT devices, including smart phones and wearables,
can be applied in a plethora of applications ranging
from building automation and industrial systems to
self-driving vehicles and health services. The distrib-
uted and growing usage of the connected devices deliver
the users more responsive and intelligent support for
decision-making in a given environment. The founda-
tion of Al is based on data fed to algorithms for machine
learning (ML). They require a lot of processing power
due to the amount of data and recursive/concurrent
nature of calculation. Until recently, this has been accom-
plished mainly in the cloud environment, where the raw
data is uploaded into. This exposes all the data, even pri-
vate and sensitive data, to the transmission phase and
processing system. In conjunction with IoT, there is a
possibility to perform ML closer to the origin of data
concerning local intelligence. It means that only the
results of local or edge ML are transmitted to cloud for
more general aggregation of Al. Local systems do not
need to send the raw data anymore, which helps on
prevailing the privacy and security of the data. This
type of ML is referred to as federated/collaborative
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learning. This study focuses on finding the existing
and/or recommended solutions for up-to-date Al close
to the devices. First, definitions of devices are reviewed
to find out classifications of their capacity to contribute
for the computation and scalability. Second, other com-
puting and serving options between devices and the
cloud are studied. Those are referred to as Fog/Edge
services, and they are more stationary than the IoT
devices. Third, the facts learned are being applied in
two use cases to support the discussion and applicability
of AloT in practice. The main conclusion is that currently
there are no single solutions — neither hardware nor soft-
ware — for solving all the identified requirements were
found. Instead, there are multiple options from mutually
connected devices via middle-layer support to cloud ser-
vices and distributed learning, respectively.

Keywords: Internet of things, artificial intelligence of
things, machine learning, federated learning, edge com-
puting, scalability

1 Introduction

When Kevin Ashton used the term Internet of things (IoT)
for the first time in his presentation for Procter & Gamble
in 1999, the whole concept was still waiting to mature:
there were no commodity allround devices, hardware,
and software available in those days. The key idea during
the succeeding years was to enable intelligent behavior
by low-end computers equipped with sensors and actua-
tors. The concepts [oT and cyber-physical systems (CPS)
were applied, often interchangeably. The importance of
discussing these topics is in the ubiquity and accessi-
bility of services independently of power supply, high
bandwidth data transmission, computation, and data
persistence.

The ecosystem around these concepts started to
evolve in 2005, when the project Arduino was launched
in Italy [1]. The power of Arduino’s single board solution
is in its lightweight, easily approachable architecture for
sensor/actuator learning, experimenting, and production
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scale applicability. Arduino can be integrated into edge
environments, but it is a microcontroller: software devel-
opment is done on external systems instead of on the board.

Next step in the evolution took place in 2012, when
a low-cost, general-purpose single-board computer —
Raspberry Pi 1 — was released by Raspberry Pi Foun-
dation [2]. It was a game changer due to the affordability
of additional components and open source software.
During the recent years, we have seen multiple high-
performance devices entering the market based on the
same concept. The idea with Raspberry Pi is that it con-
tains both the properties for sensor/actuator operations
and the whole development environment. No external
computers of software are needed for proceeding from
idea to applications.

Current edge compatible systems are equipped or can
be extended with multicore 64-bit central processing
units, graphics processing units, and even tensor pro-
cessing units (TPUs) along with high-speed connectivity
to large-capacity peripheral devices and networks. By
exploiting these systems, it is possible to build scalable,
high-availability (HA) clusters, not to mention the ability
to run artificial intelligence (AI) and machine learning
(ML) on an industrial scale on the edge.

The advent and current support of technologies for
IoT, Al, and their applications like artificial intelligence
of things (AloT) have contributed to various systems from
regular mobile devices to intelligent vehicles and other
systems in the proximity of where the data is produced
and collected from.

There is no doubt that cloud computing is the most
efficient way to store large amounts of data and perform
scalable computing efficiently. The cloud may not always
be the primary option, though. This is because of the
target system conditions, premises, response time require-
ments, and location. For example if the system is located
in a place, where there is: 1) no connectivity to the
Internet, or 2) too much latency or jitter over the commu-
nication link, and 3) high demand for security and privacy.
Such systems are expected to work in remote areas inde-
pendently, just like unmanned vehicles, which may operate
even offshore, underground, or underwater environments.
In these circumstances, the local scalable computing and
data persistence services are needed. Such services are pro-
vided by edge computing systems.

The edge computing systems may contain several por-
table components and devices, including mobile phones,
laptops, single-board computers, and intelligent vehicles,
with a wide variety of connected sensors and actuators.

The term edge computing can also be referred to as
fog computing. The terminology differs depending on the
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background of the speaker: tele communications, sys-

tems developers, or operators. From the viewpoint of

this survey, differences in terminology are irrelevant.

The main focus of this article is on the AloT provided
by edge computing. The topic is approached with two use
cases: first is to present the setting up of a test platform
with remote building control and surveillance as prac-
tical applications, and the second one is an example of
mining. The research problem is that when, where, how,
and why to implement on-premises Al-related computing
with mobile — or more specifically portable — computing
equipment. Extracted from this problem area, we for-
mulated the following research questions (RQs) to be
answered:

(1) Which are the key properties and requirements to IoT
edge computing? This is expected to lead to the
answer to local data processing and persistence in
the first place. The analysis of smart phones and
detailed sensor/actuator technologies are left outside
of this study.

(2) How to maintain the speed, reliability, safety, and
security in AloT computing? When dealing with the
close to target system operations, it is important to
acknowledge the trusted presence: data should be
processed rapidly, efficiently, and reliably with mini-
mizing possible leaks or intrusions.

The following is the structure of this article:

— After the introduction, we present the methods on how
to address the RQs.

— Next, the literature review is presented.

— Then, the case studies are explored.

— After that the results are collected.

— Finally, the discussion and conclusions wrap up our
achievements.

2 Methods

To understand the current status of AloT, the respecting
research activities needed to be mapped first. The target
was to identify the trends and possible consensus on the
classification of edge systems in respect to AI/ML.

The latest discussions and definitions of edge com-
puting and Al were investigated by literature review. The
scope of the selected materials was based on the rele-
vancy in regard to the RQs and selected keywords of
our topic.

After literature review, we describe and briefly ana-
lyze the commodity systems for providing the means for
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AloT in the edge. We will provide two use cases to illus-
trate the usability and feasibility of these systems in
respect to the requirements and RQs.

3 Literature review

The purpose of this literature review was to identify the
focus areas and topics concerning the research and
development in edge technologies, Al, and optional
implementations. We selected a collection of articles
with different approach angles to this area of interest.
We were looking for possible gaps between research and
development, with the explanation of how to close them.

3.1 Perspectives on evolving technologies in
the edge

The opportunities of doing Al in the edge is the target for
Liu et al. [3]. They emphasize the challenges of compu-
tation and other resources on the edge. Their perspec-
tives are to implement economical techniques for deep
learning feasibility in low-capacity environments.

McMahan et al. [4] deliver an interesting viewpoint
for federated learning (FL). The whole concept provides a
safe way to reinforce the Al without passing data over the
open Internet. Their results are a new solution, which
they claim to reduce the need for transmitting the data
and do ML on the edge in scale.

Computer vision is one of the key areas of AloT. A
survey arranged by Kittley-Davies et al. [5] point out that
the visual feedback of the stages of pattern recognition is
important, but difficult to achieve.

In their research, Lee and Nirjon are looking for a
deep learning solution to edge computing [6]. The focus
of this article is on dataset adaptation, and learning pro-
cess by concentrating on feed-forward execution. The
result is an effective adaptation process with efficiency.

Xiong and Chen point out the challenges on AloT
development [7]. Focusing on existing technologies,
including 5G, their approach is presented with two use
cases, which are considered common to edge com-
puting. Those are streaming video analysis and indus-
trial IoT (IIoT). The authors are in search of developing a
cloud native edge computing system.

In their article, Lu and Zheng concentrate on the
impact of 6G next-generation information systems [8].
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They are looking forward to seeing the development of
new intelligent solutions and use cases for secure inter-
action with systems. According to the authors, the 6G
concept is in a major role as the enabling technology
for different levels of connectivity and communication
development.

The problem of complexity and management of IoT
networks is addressed by Rafique et al. in their research
on software defined networking (SDN) and edge com-
puting [9]. Their concerns are in the different levels of
vulnerabilities of the IoT systems, which could be
managed by focusing on the SDN-Edge research and
development.

In regard to autonomous systems, Jahan et al. [10]
refer to both physical and virtual robots. Their target is
in learning of security modeling in those environments.
As a result, they emphasize the need for focusing the
research more on possible threats and vulnerabilities on
those application areas.

3.2 Viewpoints on applications

An interesting AIoT scale solution is addressed in
an article concerning garbage classification. In their
study, Song et al. use an applicable dataset [11]. The
results reveal high accuracy for the new algorithm they
developed.

A step toward low-end systems and Al is taken in a
survey by Wang et al. [12]. Their aim is to implement deep
learning with microcontroller units (MCUs). This kind of
computation requires balancing with small memory sizes
— especially considering random access memory (RAM) —
and reduced computing power. With their experiments
they have shown that the deep neural networks can be
reduced to fit into constrained environments with accep-
table performance.

A more focused approach is taken by Gao et al. [13] in
a survey on the transition towards evolving intelligent
robotics. That includes the next steps in collaboration
between humans and robots. Also the interesting devel-
opment of robot operating systems [14] is considered as a
platform for more intelligent operations.

An important use case for realtime edge intelli-
gence is unmanned aerial vehicles (UAVs). They can
be extended to other areas as well, namely, underwater
and terrain/subterrain operating systems. Xue et al.
[15] emphasize the safety and reliability of positioning.
Their solution is to use imagery collected from different
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sources including the UAV’s own camera. With the
application of deep learning, they can detect spoofing.

Human-machine interaction (HMI) is revisited by
Dong et al. [16]. They emphasize the energy supply in
their research as well as the growing capacity of small-
scale systems in the edge. The main conclusions they
have made are the improvement of energy harvesting
for increasing demand coming from more and more
intricate sensors, actuators, computation, and storage
solutions providing sophisticated Al for supporting
decision-making.

Debauche et al. [17] introduce a new architecture for
AloT services deployment. Their approach is on applica-
tion of state-of-the-art solutions: microservices, con-
tainers, Al in a customized perspective, and persistence
of data with Al models. As continuation of the work by
Debauche, they present also an interesting use case that
is dealt with in the article about AloT and real-time
poultry monitoring. The research is carried out by Debauche
et al. [18]. Their solution collects data every minute by a
sensor network. The data is then applied to monitoring and
prediction of conditions of poultry. An interesting finding is
the way they implement a specific Al algorithm — gated
recurrent unit — for environmental analysis.

Autonomous vehicles, and more specifically mari-
time applications, are under investigation by Chan [19].
They focus on background subtraction algorithms to
provide good practices for this kind of special use
cases of AlIoT. As a result, they show its potential
with benchmarks.

A practical approach to AloT is taken by Zhang and
Tao in their application to real-time monitoring of tunnel
construction [20]. The telemetrics of operating tools in
those conditions are collected and stored locally. Then
the data is being applied to ML and to random forest in
their case. The results show rapid responses providing
real-time predictive control of construction equipment.

To the problem of environmentally sustainable sys-
tems, Yang et al. [21] propose the application of Al and
more specifically reinforcement learning (RL). According
to their studies, RL applied in this field of decision-
making will deliver more intelligence to decision-making.

In consideration of the applicability of the [IoT Malik
et al. [22] conclude in their review that applications will
become ubiquitous. The foundation of their claim is in
the availability enabling technologies.

Tanque [23] approach the fundamental building
blocks of providing Al on IoT applications. Their research
supports the usage of advanced technologies in edge-type
environments to develop complete solutions from low-end
data collection to Al
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4 Case studies

To concretize the AloT and related applications, two case
studies were examined from the perspective of edge com-
puting. The first case is about the setting up of an intel-
ligent edge computing platform following the ideas learnt
from earlier studies complemented with the literature
review, and experimenting with available technologies.
The second case is a practical example of a production
scale application of intelligent edge computing in the
mining industry.

4.1 Case study 1 - Experiences on setting up
a scalable Al/ML with single-board
commodity development devices

The first case is about setting up an AloT system with a
target as an intelligent home environment in a rural area.
The purpose of this system is to show the optional inde-
pendence of the data-to-knowledge process from the
cloud services. Even though the cloud is considered as
an important part of these kinds of systems, the network
outage should not be a show stopper. This is provided by
the local operations at the edge.

Power shortage may be addressed as well by using
batteries and generators. Same ideas could be applied in
an industrial environment as well.

The sensors and respective data collection described
here is exemplary, not meant to represent fully digi-
talized living conditions. It is possible that with the
selected components, one might approach this environ-
ment by compiling a digital twin, with a disclaimer that
not everything is being controlled, though.

The communication technology to the Internet is
based on 4G with speed varying from download speed
between 10 and 50 Mbps and upload speed between
1-15 Mbps. Speed depends on the load based on nearby
highway, and the net activity of neighbors. In this con-
text, the cloud-only approach is not the primary choice,
given that the 4G connections can also be occasionally
down. These facts motivate us to examine on-premises
AloT services, with possible cloud options, naturally.

Since this case discusses about home dependent
data, it is important that following conditions are met:
— Privacy: No data nor Al models in any form may leak

from the premises without consent,
— Security: If data or Al is transmitted, it should be kept
in encrypted format.
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— Reliability: The systems should keep data and Al per-
sistent, even though individual components might
crash or shut down.

The example system in this case is based on the following
list of components (see also Figure 1 showing some com-
ponents of the architecture):

— Computer development boards and other equipment:

1 Raspberry Pi 4/8GB with Samsung 970 EVOPlus
500 GB SSD [24] memory device.

1 Coral Google Edge TPU ML Accelerator [25] con-
nected to the previous Raspberry.

6 Raspberry Pi 4/4GB with Samsung 970 EVOPlus
500 GB SSD and 256 GB microSD memory devices:
4 are connected as a cluster; 1 as an in-house, 1 as
storage building data collection stations.

1 Raspberry Pi 3 with a 256 GB microSD memory
card: collecting streaming video with Raspberry Pi
official NoIR camera V.2 and also data from one
Ruuvi multisensor [26].

2 Nvidia [27] Xavier 16 GB with 256 GB microSD
memory cards: one system runs a container with
Timescaledb, and another container with GraphQL
Application programming interface (API) between
data provider, persistence, and consumers. Second
Xavier 16 GB is for data science and ML development
and operations.

Figure 1: Example of edge system components.
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Netatmo [28] weather system contains a base sta-
tion, 3 additional integrated sensor stations, an
anemometer, and a rain gauge.

4 Arlo [29] wireless 4K cameras and 2 wireless video
doorbells for surveillance of the surroundings.

7 RuuviTag [26] Bluetooth Low Energy (BLE) multisen-
sors (temperature, humidity, pressure, accelerometer,
and telemetrics of the devices) measuring conditions
in the refrigerator, freezer, sauna, rooms not covered
with Netatmo stations, and 3 storage spaces.

2 DJI Tello [30] lightweight drones with cameras and
accessible APIs.

All devices are connected to local Intranet — wired or
wireless depending on their location and equipment.

— Software tools and components
— Operating systems for Raspberry Pis are 64-bit

Raspbian versions [31]. For Nvidia devices, the oper-
ating systems are 64-bit Ubuntu versions embedded
into the JetPack architecture of Nvidia [32].

— All services are packaged into containers accessed

from Docker repository, or built locally. Helm is
applied for running the containers in Kubernetes [33].

— In the cluster the containers are managed with

Rancher K3S [34]. The idea here is to enable scaling
out with additional different computers, but option-
ally to the cloud as well.
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— Tensorflow, Tensorflow Lite, and Tensorflow RT for
deploying AI/ML [35].

— Timescaledb [36] as an industrial-scale time series
database is implemented for close to real-time
response times for data persistence. It is also exe-
cuted in containers.

— GraphQL [37] running in its own container was
selected because of its flexibility to query and muta-
tion variations. API for dynamically changing opera-
tions with database is the target here.

Experiments carried out with aforementioned equipment:

— Computer vision for showing the possibilities of devel-
opment boards in practical applications. The two camera
systems have different approaches: Arlo is the manufac-
turer of ready-to-use entities with an option to upload
videos to the cloud service. The local storage is also
provided. The second system is Raspberry Pi Camera
concept, where users are required to compile the devices
and software by themselves. The process is presented in
Figure 2.

— Local sensor data collection with Al operations as a
target. The different tags containing sensors and
providing appropriate APIs were put in place within
the range of BLE communication with Raspberry
Pis.
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As a result, only demonstrations were made to learn
the behavior and compatibility of software and hardware
components. The different APIs were experimented, and
it became clear that by splitting the activities between
data collection and further processing can be done, but
it needs a lot of attention and time.

It became also clear that there are APIs available for
many intelligent home appliances. The camera systems
from Arlo and the DJI drones provide their own connec-
tions with the options to communicate with their sensors
and actuators. To set up an industrial-scale surveillance
system with this equipment would require a lot more
reliability and functionality of the systems.

The setup of the experimental system described earlier
required many iterations. The data collection and storage
processes are quite straightforward per se: sensors con-
nected to nearby Raspberry Pis communicating with a
relational database over a standard API technology with
the support of basic operating system timing functionality.

On the other hand, a lot of the work was invested in
detecting compatible software components and to make
them work in practice.

Especially challenging is to make cloud-proven sys-
tems, like high availability Kubernetes to operate smoothly
on the edge. Same applies to Al-related tasks, because of
the novelty of all systems involved.
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Figure 2: Image detection and respective ML process with participating devices and software tools.
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4.2 Case study 2 — Water quality
measurement station at a mining site

Water quality monitoring at mining sites is an excellent
example of industrial IoT (IIoT) application. Water
quality monitoring is required to prevent environmental
emissions. IIoT technology provides a feasible way to
obtain data from a sparsely distributed measurement sta-
tion network.

Mining industry consumes lots of water in the
refining of ore. Used process water is stored into large
tailings ponds. Water is purified and then recycled back
into the process (95%) and outside the mining site as
effluent (5%). The quality of water is monitored, because
the performance of the process depends largely on the
cleanness of the recycled water, and emissions of harmful
substances to nature with effluent must be prevented.

Water quality is monitored continuously at moni-
toring stations, which are located by the tailings ponds.
Monitored parameters include electrical conductivity of
water (salt concentrations), turbidity (suspended solids),
pH, and flow of water. The data from the measurements
are usually transferred via wireless IoT systems.

=

Figure 3: Water quality measurement station.
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Sometimes the mining sites are located in remote
areas where the availability of cellular networks and
electricity is limited. These limitations set the basic
requirements for the IoT edge system (i.e., the moni-
toring system). They usually are powered with solar cells
or/and wind turbines. A radio network, e.g., LoRa, is used
for local data transfer. The system operates in harsh envir-
onmental conditions — in arctic areas, the temperatures in
winter are often below -35°C.

A measurement station is shown in Figure 3. The
system consists of a monitoring well module, measure-
ment sensors, and a LoRa transmitter. The sensors are
hard-wired to the transmitter via CAN bus. The system
is powered with a 100 W solar panel and a wind turbine
(not shown in Figure 3). The transmitter is located
in an insulated cabinet. The cabinet is heated with
a 50 W cabinet heater, which is just enough to keep
the temperature inside above 0°C in freezing (-35°C)
conditions.

From a measurement station, data is sent to the cloud
(InFlux DB) via LoRa/Cellular router utilizing Publish-
Subscribe protocols as described in Figure 4. The data
can also be distributed to the production system of the
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System Architecture

*« MQTT, MQTT-SN protocols

* Client communication with
Broker or other clients; LoRa,
GSM, WiFi, Ethernet

* Local wired sensor network;
CAN Bus

* Local integration to production
site; analog 4 — 20 mA, RS232,
RS485, OPC UA

AWS

» Data Storage; InFluxDB or
MongoDB

* DB Interface; REST
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Figure 4: Water quality station’s loT framework.

mining site via the router, and the customer (mining com-
pany) has access to data stored in the database.

The quality of the data is quite critical, and the sen-
sors are prone to so-called fouling. Foul consists of salts
and dirt deposited on the surfaces of the sensors, and
it interferes with the measurements. Sensors must be
cleaned frequently, and there must be an indication of
how much the fouling causes interference in the mea-
surement. An ML model is used to detect the degree of
fouling. This model is based on the detection of sensor
signal variance and cross-correlation of all sensors with
each other.

The ML model runs partially in the cloud and in the
sensors as an embedded ML application. The embedded
part of the ML model detects the signal variance index,
while the cross-correlation of all signals is run in the
cloud. Also the signal variance part could be run in the
cloud, but running the model in the sensor instead of
the cloud provided us a proof-of-concept of low-level
embedded edge intelligence.

Referring to our RQs given earlier in the text, we may
ask how the choice between cloud and edge computing
should be made.

Part of the ML model requires information from all
sensors, and there can be tens of monitoring stations at a
mining site. Cross-correlations of all sensors against each
other indicate which sensors begin to foul and should be
maintained. The sensors have enough processing power
to run this kind of model, but it does not make sense to

send all the data to the sensors. Thus, computing the
model in the cloud is justified. Alternatively, there could
be an edge computer dedicated to this purpose.

On the other hand, the signal variance model does
not need data from other sensors. Such a model also
benefits from higher time resolution than the cross-cor-
relation model. Thus, when running this part of the
model in the sensors, we have the benefits of higher
accuracy, because a high-time resolution model can be
run in the processor of the sensor while keeping the data
transmission rate low. This, in turn, saves the energy
needed for the data transmission. Consideration of
energy may sound trivial, but in arctic conditions,
this matter is actually quite critical.

In this case, we have relied on both cloud and edge
computing. The case is quite simple, but the benefits were
well proven. With the ML model, the operators at the
mining site were able to detect the sensors and stations
that were in the need of maintenance. Because the
access to the stations is difficult and distances long, a
considerable amount of work was saved and the relia-
bility of the water quality measurements was increased
significantly.

4.3 Estimates of unit prices

The following price ranges deliver the scale of costs, since
there is variability on both availability of components
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and their market prices. Given the rough price ranges on

the fall 2022, the estimates are following:

— Raspberry Pi: Prices vary from low end model 2 W Zero
starting at 30€ to version 4/8 GB at 150€.

— Nvidia: From Jetson Nano 2GB at 50€ to Jetson AGX
Orin at 2,000€,

— SSD drives: 512 GB at 70€.

— Google Coral TPU accelerator: At 145€.

— Netatmo: Full Weather Station at 380€.

— Arlo: 4 devices at 4K Ultra cameras and the sta-
tion 950€.

— RuuviTag: 40€/tag.

— DIJI Tello: 100€.

— The Lora-IoT base stations: at 15€/customized circuit
board.

— Weatherproof cabinets and other materials at 1,000€.

— Sensors: 1,500€.

5 Results

The amount of information available on AloT shows that
the topic is interesting from the viewpoint of scientific
research. The selections we made on literature review
support our RQs. In our view, a more indepth survey
on scientific papers should be conducted separately.
This should be carried out from the viewpoints of
benchmarking, testing, authorization, trust, and security
of AloT-related concepts and applicable practices in
general.

The different blog articles and tutorials that came up
in our searches can be used as a basis for compiling
functional systems. The code snippets cannot be just
copy-pasted as is, but with careful consideration of soft-
ware development practices. Interestingly, there were
several leads to scientific research in those articles as
well. Also the endeavors to distributed computing and
data persistence were prevalent in several writings.

In reflection to the RQ1, about the key properties and
requirements to IoT edge computing, we can state that
intelligence on the edge in the form of AloT is possible to
accomplish with generally available commodity devices.
It is possible to scale in and out the systems, but one has
to have a policy to do so. The two use cases show that
requested systems can be accomplished independently in
practically any location. The option to compile a local
mini cloud system gives freedom to mission critical
real-time applications to be executed on demand.

Considering the RQ2, on how to maintain the speed,
reliability, safety, and security in AloT computing the use
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case 1 relies on containerized HA where processing and
persistence can be isolated. Use case 2 addresses the
same question in practice by operating closely with the
cloud and extended on-premise environment.

The implementation and delivery of the systems in
two use cases requires experience on installations and
configurations. Especially the setup of containers and
their management required several iterations.

Important notion on the software implementation
of the Raspberry Pis and Nvidia Jetson devices is that
the operating system with required applications can be
relatively easily changed. This is due to the fact that
everything resides in the persistent storage — EEPROMs,
microSDs, and SSDs in the applied hardware of this study
— and the whole nature of the entity can be altered and
adjusted with memory devices, re-settings, and rebooting.

Containerization also appeared to be a more flexible
choice than bare metal configuration. It provides tools
for scaling out with additional devices — even with het-
erogeneous architecture — but also an option to move
over to the cloud.

6 Discussion

The two use cases in this study give arguments to con-
sider edge computing as a feasible solution to operations
including local data persistence and Al operations. The
literature search supported this observation by showing
that the edge technologies provide sufficient capacity
in the means of computation, storage, and connec-
tivity. A lot of concern was emphasized about data
and intelligence vulnerabilities through the whole range
from data collection, processing, selection, modeling, and
intelligence.

One notable finding is that the definitions of edge
computing are not explicit but elastic: the range from
intelligent controller equipped sensors to 5G/6G base sta-
tions. One may approach the concept top down or bottom
up and select their platform respectively. Especially the
case of experimenting with the technologies reveal the
possibility of difficulties in implementation of general
purpose tools and frameworks: the software might not
even compile on a selected architecture. This can be cir-
cumvented by scaling out or up to the next level — even to
the cloud.

The RQs we posed were following with respectively
found answers:

(1) Which are the key properties and requirements to

IoT edge computing? Answer to this is that with
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commodity development equipment, it is feasible
to begin to work towards a minimum viable pro-
duct. Simultaneously by prototyping, it is possible
to gain understanding for industrial-scale system
requirements.

(2) How to maintain the speed, reliability, safety, and
security in AIoT computing? This question can be
answered by experiments in a selected environment.
Our cases show, that development should consider
focused systems instead of general purpose systems,
with scalability in mind as well.

In regard to energy demand, there are multiple enabling
technologies for remote power supply: solar and wind
energy harvesting with portable devices, lightweight gen-
erators, and batteries. In this sense, the first RQ — which
are the key requirements to AloT edge computing — is
answered with acknowledgement and the list of devices
in both use cases.

Edge computing is an important option not only for
data collection and HA containerization but also for
further operations: ML, Al, recurrent neural networks,
and FL. Cloud computing should not be overlooked,
though. Whenever powerful calculations are required
along with scalable storage, the cloud is a viable solution.
This was also the vision, when the concept of FL was
originally conceived putting the cloud in the middle of
mobile/edge systems to federate the locally produced and
elaborated models, without transmitting sensitive data
over the internet.

One should take into consideration that AI/ML pro-
cesses may require a lot of data storage, communication
bandwidth, and computing power. That may be alle-
viated with FL and by keeping the processing intensive
operations in the cloud.

Our recommendation for next steps following this
research are as follows:

(1) Set up experiments and benchmarks for:

(a) Scaling in/out the operations individually, like

on persistence and MLOps.

(b) Performance on the FL applications between dif-

ferent edge setups and the cloud.

(c) Endurance in simulated lock down and low-

energy situations.

(d) Optimization of the energy consumption in refer-

ence to the performance.
(2) Inclusion of production scale use cases:

(a) Streaming data from sensors including cameras

and other sensors.

(b) Data and information fusion along with knowl-

edge integration in real time.
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7 Conclusion

In our RQs we were looking for the possibilities, chal-
lenges, and boundaries of edge computing. The focus
was on considering the implementation of AI/ML proces-
sing as close to the data as possible. We needed to under-
stand the state and focus areas in the scientific research
by conducting a literature review on our problem area.
We also learned during the course of using the available
devices and systems that the Internet provides a wide
source of valuable resources in the form of different eco-
systems. We choose not to extend our literature analysis
to blogs, discussion areas, frequently asked questions,
and tutorials because the responsibility of proofing is
left to the receiver instead of reviewers. Ecosystems gen-
erally keep things on track, though.

Our two RQs on the requirements were answered, but
they need to be elaborated in every new implementation.
We recommend also setting up customized environments
for testing the systems. Al is a wide discipline with mul-
tiple possibilities. For edge purposes, the techniques like
FL is a good starting point especially given the security
and trust requirements.

It is important to understand that the technologies
are evolving rapidly. The consequence is that the devices,
hardware, and software are not upgraded and developed
synchronously. With that in mind, the working systems
tend to be version dependent until they are fully matured
to production-scale operations. There is still a lot of work
to be done before the AloT is business as usual. One
should not wait, though, because there are so many dis-
ciplines involved and steep learning curves around.
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