Research Article

Bassam A. Salih, Ali H. Majeed and Alaa A. Aldhalemi*

Designing of a dual-functional XOR block in QCA technology

https://doi.org/10.1515/eng-2022-0374 received May 12, 2022; accepted September 12, 2022

Abstract: Quantum-dot cellular automata (QCA) technology was proposed as a way to implement digital circuits with a transistorless approach for overcoming CMOS limitations in terms of short channel effects and scaledown continuity. The main building block in QCA technology is the square cell with a couple of free movement electrons, the electrons' configuration inside the cell gives the cell the ability to represent binary information. Researchers were attracted to QCA because of its impressive features such as size and speed. Many important circuits, such as multiplexers and exclusive-OR, were presented in QCA technology with various layouts, looking for reducing the main metrics such as cell count, area, and implementation cost. In this work, a dual functional XOR block is proposed. The proposed block can function as a 2-input XOR or a 3-input XOR, providing greater flexibility. When compared to earlier 3-input XOR gates that did not have the dual function, the results show a significant improvement in cell count, area, and cost of about 7%, 50%, and 54%, respectively. The QCADesigner software is used to design the block as well as for verification issues.

Keywords: QCA technology, QCA-XOR, QCADesigner, nanotechnology, nanocircuits

1 Introduction

Many nanoscale technologies, including CNFET, FinFET, and Quantum-dot Cellular Automata (QCA), have been developed as a result of the growing market needs for electronic circuits during the past few decades in terms

* Corresponding author: Alaa A. Aldhalemi, Department of Electrical Engineering, University of Kufa, Kufa, Iraq, e-mail: alaaa.aldhalemi@uokufa.edu.iq

Bassam A. Salih, Ali H. Majeed: Department of Electrical Engineering, University of Kufa, Kufa, Iraq

of size, fast speed, and efficiency. The transistors' small size and introduction into the nanoscale caused a number of issues with leakage current and energy consumption brought on by quantum phenomena. According to the International Technology Roadmap for Semiconductors study, QCA technology offers a novel approach to computation that represents a glimmer of hope of achieving nano-computers that operate at THz-level rates. The general purpose gates such as multiplexer [1-5] and XOR [6-12] have attracted many researchers due to their ability to reduce the complexity of the circuit. Therefore, the improvement of these gates is beneficial to the circuits that use them, thus reducing the cost. In this work, a new structure of the XOR block is proposed in QCA form. The proposed architecture has two functions where it can represent 2-input XOR or 3-input XOR. This option gives the block flexibility to be utilized in different circuits.

2 QCA background

The QCA technology is based on the principle of electrons' repulsion, as the basic building block is a small cell with a shape as shown in Figure 1. Logic gates can be designed by arranging a specific group of cells [13]. In QCA, the basic block is the majority gate as depicted in Figure 2, so that the rest of the gates can be derived from it. So, the researchers paid attention to this important block in terms of reliability, applications, and complexity with different inputs [14–23]. In addition to the majority gate, and to complete all the necessary functions, an inverter block, shown in Figure 3, is required. Circuit blocks can be connected using QCA-wire, accomplished with a chain of cells, as depicted in Figure 4 [12,24].

In addition to the above, it is necessary to provide a clock signal in order to control the flow of data and achieve synchronization to ensure that the results are correct. The QCA circuit that required a large number of cells can be divided into groups of zones where each zone contains four clock transitions (Relax–Switch, Switch–Hold,

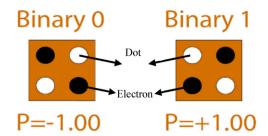


Figure 1: QCA cell configurations.

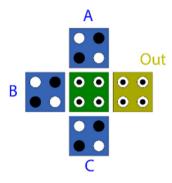


Figure 2: Cell configurations of majority block.

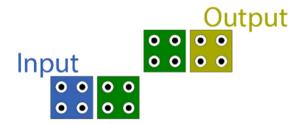


Figure 3: Cell configurations of inverter block.

Figure 4: Cell configurations of QCA binary wire.

Hold-Release, Release-Relax) [25]. Figure 5 represents the clock signal that is commonly used in QCA technology.

3 Related work

The logic circuit can be designed using AND, OR, and NOR gates. There are other gates presented to simplify the circuit such as MUX and XOR. Previously, designing

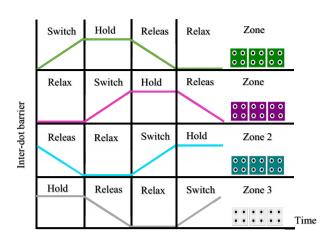


Figure 5: Clock signal zones and phases [26].

the XOR circuit using QCA technology faced the wire-crossing issue, as the main problem [27,28]. There are different attempts to implement XOR structure without wire-crossing [9,11,29,30]. However, all the prior implementations suffer from consuming a large area and delay (clock phases). These issues are attempted to be address in the current work. In 2015, Ajitha et al. [29] presented a new architecture of the QCA-XOR gate as depicted in Figure 6. This gate has many limitations where one of its inputs is not reachable in one layer and the design required three clock phases delay.

In 2016, Singh et al. [30] proposed a different layout of the QCA-XOR gate as shown in Figure 7. Although authors used it to construct an even parity generator, this gate required a high cell count and a three clock zones delay.

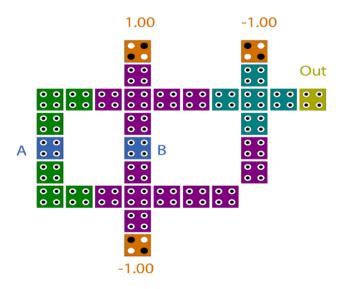


Figure 6: 2-input XOR gate proposed in ref. [29].

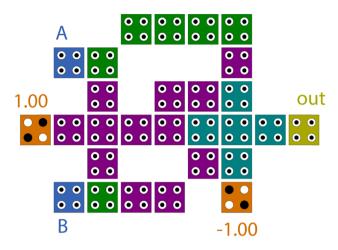


Figure 7: 2-input XOR gate proposed in ref. [30].

In 2017, Goswami et al. [9] suggested a new structure of 3-input XOR as shown in Figure 8. This gate was constructed based on 5-inputs majority voter. Although the suggested design takes two clock zones delay, it required a large cell count and it has an input not reachable in a single layer.

In 2018, Poorhosseini and Hejazi presented different structures of XOR gate in QCA form as shown in Figure 9 [11]. These two structures consume high cell count and

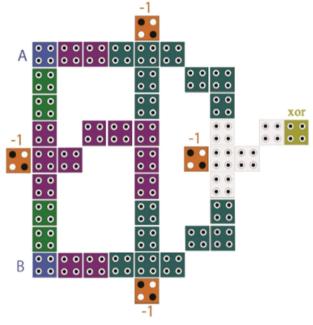


Figure 8: 2-input XOR gate proposed in ref. [9].

four clock phases delay although the inputs can be accessed in a single layer.

4 Proposed design

From the previous research related to QCA technology, the XOR gate has drawn attention due to its importance in digital systems. The currently available circuits regarding

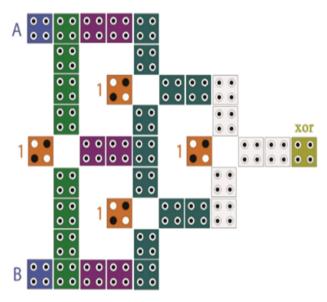


Figure 9: Different structures of 2-input XOR gate proposed in ref. [11].

Table 1: The functionality table of DFXOR

Selector (S)	Α	В	C	Function	Output
0	0	0	х	A XOR B	0
0	0	1	Х	A XOR B	1
0	1	0	Х	A XOR B	1
0	1	1	Х	A XOR B	0
1	0	0	0	A XOR B XOR C	0
1	0	0	1	A XOR B XOR C	1
1	0	1	0	A XOR B XOR C	1
1	0	1	1	A XOR B XOR C	0
1	1	0	0	A XOR B XOR C	1
1	1	0	1	A XOR B XOR C	0
1	1	1	0	A XOR B XOR C	0
1	1	1	1	A XOR B XOR C	1

the XOR gates are either with two inputs or with three inputs. In this research, a new Dual Function Block of XOR gate (DFXOR) will be presented. The DFXOR is the programmable XOR circuit in terms of choosing the number of necessary entries, as it works either as two inputs or as three inputs according to the selector (S). The truth table of the proposed circuit is detailed in Table 1. The QCA layout of the proposed gate is depicted in Figure 10. In QCA, the efficiency of a circuit could be

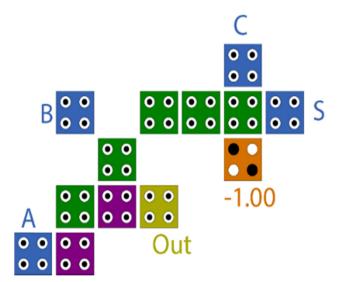


Figure 10: The QCA layout of the proposed gate.

measured by many metrics such as cell count, area, latency (delay), and cost. The proposed design is accomplished with noticeable values in all metrics where cell count, area, latency, and cost are 13, $0.01\,\mu\text{m}^2$, 2 clock phases, and 0.13, respectively. The cost of the circuit was calculated in the same manner as presented in ref. [31].

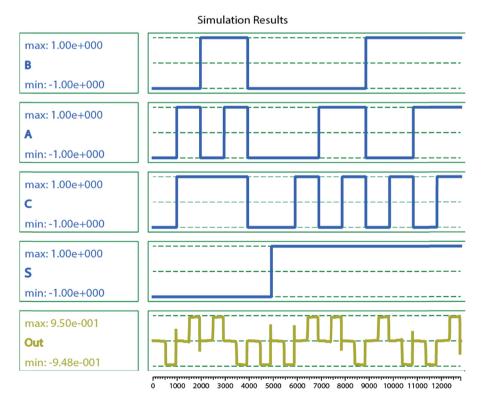


Figure 11: Simulation results of the proposed design.

Table 2: Result comparison table

Circuit	Area (μm²)	Latency (clock phases)	Cell count	Cost (area × cell count)
2-bit XOR [32]	0.22	4	121	26.62
2-bit XOR [33]	0.17	6	115	19.55
2-bit XOR [34]	0.08	5	51	4.08
2-bit XOR [11]	0.05	4	45	2.25
layout 1				
2-bit XOR [11]	0.03	4	37	1.11
layout 2				
2-bit XOR [29]	0.04	3	32	1.28
2-bit XOR [30]	0.02	3	28	0.56
2-bit XOR [35]	0.02	3	28	0.56
2-bit XOR [35]	0.02	3	20	0.4
2-bit XOR [36]	0.01	2	14	0.14
3-bit XOR [27]	0.07	5	93	6.51
3-bit XOR [9]	0.04	2	47	1.88
3-bit XOR [37]	0.02	2	14	0.28
The proposed DFXOR	0.01	2	13	0.13

5 Simulation results and comparison

In this work, a dual-function block of the XOR gate is designed. The proposed design uses the intercellular effects to produce the output. The DFXOR has excellent features in terms of complexity, speed, and cost. The proposed gate was designed using the QCADesigner software Version 2.0.3. Using this free designing tool, the practical authenticity of the suggested designs has been confirmed. The following settings are modified using the coherence vector simulation engine as follows: cell size is set to 18 nm, and all other parameters are left at their default values. Figure 11 shows the input/output waveforms, where the blue color represents the input signals (A, B, and C) in addition to the selector (S) and the yellow color represents the output of the DFXOR. When the selector is connected to logic 0, the output equals (A XOR B), and when the selector is connected to logic 1, the output is (A XOR B XOR C). The results show that the proposed design is free of errors. From Table 2, it is clear that the proposed structure has competitive values in terms of complexity (area and cell count) in comparison with the same counterparts although it has a dual function. Compared with the previous 3-input XOR gates, which do not have the dual function, the results showed a significant improvement in terms of cell count, area, and cost by 7%, 50%, and 54%, respectively.

6 Conclusion

The XOR gate has attracted the attention of researchers, as it is used in many circuits in order to reduce its complexity. As the QCA technology is an emerging technology presented to replace CMOS technology, the researchers focused on designing different important circuits in this technology. In previous literature, many QCA-XOR structures have been proposed in different forms, some accepting two inputs, others three, as each design has a different performance and structure. The most previous designs suffer from consuming more area and cost. In this work, a dual-functional XOR gate is proposed. The proposed gate is simple and adapted to work either as a two-input XOR gate or a three-input XOR gate. The results obtained showed that the proposed block is effective and a strong competitor in terms of cost and area needed for implementation.

Conflict of interest: Authors state no conflict of interest.

References

- Majeed AH. An ultra-low complexity of 2:1 multiplexer block in QCA technology. Indonesian J Electr Eng Comput Sci. 2021;21(3):1341-6.
- [2] Khan A, Arya R. Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int Nano Lett. 2021;12:67–77.
- [3] Ahmadpour S-S, Mosleh M, Rasouli Heikalabad S. Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis.

 J Supercomput. 2021;78:1672–95.
- [4] Almatrood A, George AK, Singh H. Low-power multiplexer structures targeting efficient QCA nanotechnology circuit designs. Electronics. 2021;10(16):1–11.
- [5] Seyedi S, Navimipour NJ. An efficient structure for designing a nano-scale fault-tolerant 2:1 multiplexer based on quantumdot cellular automata. Optik. 2022;251:168409.
- [6] Majeed AH, Zainal MSB, Alkaldy E, Nor DM. Full adder circuit design with novel lower complexity XOR gate in QCA technology. Trans Electr ElectrMater. 2020;21(2):198–207.
- [7] Abutaleb MM. A unique cell-based configuration of XOR gates in quantum-dot cellular automata nanotechnology. 2019 IEEE International Conference on Sensors and Nanotechnology; 2019. p. 1–4.
- [8] Bahar AN, Waheed S, Hossain N, Asaduzzaman M. A novel 3input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex Eng J. 2018;57(2):729-38.
- [9] Goswami M, Mohit K, Sen B. Cost effective realization of XOR logic in QCA. 2017 7th International Symposium on Embedded Computing and System Design (ISED); 2017. p. 1–5.

- [10] Ahmadpour S-S, Mosleh M, Heikalabad SR. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys B: Condens Matter. 2018;550:383-92.
- [11] Poorhosseini M, Hejazi AR. A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J Circuits Syst Computers. 2018;27(7):1850115.
- [12] Majeed A, Alkaldy E. High-performance adder using a new XOR gate in QCA technology. J Supercomput; 2022;78:11564–79.
- [13] Tougaw PD, Lent CS. Logical devices implemented using quantum cellular automata. J Appl Phys. 1994;75(3):1818-25.
- [14] Hosseinzadeh H, Heikalabad SR. A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron Eng. 2018;192:52–60.
- [15] Sasamal TN, Singh AK, Ghanekar U. Design and implementation of QCA D-Flip-Flops and RAM cell using majority gates. J Circuits Syst Computers. 2019;28(5):1950079.
- [16] Ahmadpour S-S, Mosleh M, Rasouli Heikalabad S. Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl. 2019;47(7):1037-56.
- [17] Majeed AH, AlKaldy E, Zainal MS, Nor DB. A new 5-input majority gate without adjacent inputs crosstalk effect in QCA technology. Indonesian J Electr Eng Comput Sci. 2019;14(3):1159-64.
- [18] Deng F, Xie G, Wang S, Cheng X, Zhang Y. An ultra-low-power five-input majority gate in quantum-dot cellular automata. J Circuits Syst Comput. 2019;29:2050176.
- [19] Majeed A, AlKaldy E, Albermany S. An energy-efficient RAM cell based on novel majority gate in QCA technology. SN Appl Sci. 2019;1(11):1–8.
- [20] Sabetzadeh F, Moaiyeri MH, Ahmadinejad M. A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans Circuits Syst I: Regul Pap. 2019;66:1–9.
- [21] Sasamal TN, Singh AK, Ghanekar U. Design of QCA-based D flip flop and memory cell using rotated majority gate. Smart innovations in communication and computational sciences. Singapore: Springer Singapore; 2019. p. 233–47.
- [22] Deng F, Xie G, Zhu R, Zhang Y. A matrix representation method for decoders using majority gate characteristics in quantum-dot cellular automata. J Supercomputing. 2020;76(4):2842–59.
- [23] Jeon J-C. Designing nanotechnology QCA-multiplexer using majority function-based NAND for quantum computing. J Supercomput; 2020;77:1562-78.

- [24] Goswami M, Roychoudhury M, Sarkar J, Sen B, Sikdar BK. An efficient inverter logic in quantum-dot cellular automata for emerging nanocircuits. Arab J Sci Eng. 2020;45(4):2663–74.
- [25] Ali Hussien M, Mohd Shamian Z, Esam A, Danial Md N. A content-addressable memory structure using novel majority gate with 5-input in quantum-dot cellular automata. Int J Integr Eng. 2020;12(4):28–38.
- [26] Lent CS, Tougaw PD. A device architecture for computing with quantum dots. Proc IEEE. 1997;85(4):541–57.
- [27] Angizi S, Alkaldy E, Bagherzadeh N, Navi K. Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata. J Low Power Electron. 2014;10(2):259–71.
- [28] Shin S, Lee G-J, Kee-Young Y. Design of exclusive-OR logic gate on quantum-dot cellular automata. Int J Control Autom. 2015;8:95–104.
- [29] Ajitha D, Ramanaiah KV, Sumalatha V. An efficient design of XOR gate and its applications using QCA. i-manager's J ElectrEng. 2015;5(3):22-9.
- [30] Singh G, Sarin RK, Raj B. A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J Comput Electron. 2016;15(2):455-65.
- [31] Shiri A, Rezai A, Mahmoodian H. Design of efficient coplanar 1bit comparator circuit in QCA technology. Facta Univ – Ser Electron Energ. 2019;32:119–28.
- [32] Teja VC, Polisetti S, Kasavajjala S. QCA based multiplexing of 16 arithmetic & logical subsystems-A paradigm for nano computing. 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems; 2008. p. 758–63.
- [33] Waje MG, Dakhole PK. Design and implementation of 4-bit arithmetic logic unit using Quantum Dot Cellular Automata. 2013 3rd IEEE International Advance Computing Conference (IACC); 2013. p. 1022-9.
- [34] Santra S, Roy U. Design and implementation of quantum cellular automata based novel adder circuits. Int J Comput Elect Autom Control Inf Eng. 2014;8(1):168–73.
- [35] Khakpour M, Gholami M, Naghizadeh S. Parity generator and digital code converter in QCA nanotechnology. Int Nano Lett. 2020;10(1):49-59.
- [36] Chabi AM, Roohi A, Khademolhosseini H, Sheikhfaal S, Angizi S, Navi K, et al. Towards ultra-efficient QCA reversible circuits. Microprocess Microsyst. 2017;49:127–38.
- [37] Ahmad F, Bhat GM, Khademolhosseini H, Azimi S, Angizi S, Navi K. Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci. 2016;16:8–15.