
Regular Article

Ford Lumban Gaol*, Steven Santoso and Tokuro Matsuo

Design and development of the application
monitoring the use of server resources for server
maintenance

https://doi.org/10.1515/eng-2022-0055
received November 06, 2021; accepted July 06, 2022

Abstract: Websites must assure web server availability in
light of the worldwide increase in internet users. Web
server monitoring is the process of examining web appli-
cation server utilization by showing data in the form of
statistics or graphs. Data about web server use will help
server owners make decisions about server availability.
The purpose of this study is to create a web monitoring
program capable of retrieving and storing data from Java
application server resources. The research methodology
utilized in this study is divided into two phases: data
gathering and software development. The data gathering
step includes doing a literature study, conducting a
survey, distributing questionnaires, and analyzing com-
parable apps. The development phase employs the water-
fall methodology. The outcome of this study is a web
application that can monitor the Java application server’s
resource use and send email alerts when resource usage
becomes excessive. To summarize, web application server
monitoring may be utilized to alleviate developer workload.

Keywords: web application, monitoring, java

1 Introduction

The evolution of technology, information, and the internet
has fundamentally altered how people use the internet for

accessing information, entertainment, and e-commerce,
among other things. As a result, many individuals believe
that we are currently living in the age of Industry 4.0. With
the breakout of corona at the end of 2019 that developed
into a pandemic, more people rely on the internet since
activities that were previously performed physically must
now be performed remotely, such as working or studying
from home, or buying and selling items through the
internet. According to Nielsen, Online’s WORLD INTER-
NET USE AND POPULATION STATISTICS 2020 report,
internet users worldwide are increasing year after year
[1]. The table below contains statistics about WORLD
INTERNET USE AND POPULATION STATISTICS 2020
(Table 1).

According to the above statistics, growth from 2000
to 2020 is approximately 1.187%, and penetration rate
is 59.6% in 2020. This is also true in Indonesia, where
penetration is already at 73.7% in 2019, up from about
64.8% a year ago, with year over year growth of
8.9% [2].

With the global rise in internet users, websites must
ensure web server availability. Server availability is cri-
tical, especially if the web server receives a high volume
of traffic, because if a website or server is unavailable
for 90% of the year, it means that the website will be
unavailable for approximately 87 h and 40min, causing
users to visit another website and resulting in a loss of
revenue. Using web server monitoring is one way to
improve and maintain a web server’s high availability.

Web server monitoring is the practice of analyzing
the usage of web application servers by displaying data
in the form of statistics or graphs. Data about web server
use will assist server owners in making choices regarding
server availability. Thus, the author of this research
envisions developing a monitoring program that would
assist server administrators in making decisions. The
following are some examples of how server monitoring
will be used:
1. Confirm the webapp server’s availability at the time of

processing.



* Corresponding author: Ford Lumban Gaol, Computer Science
Department, BINUS Graduate Program – Doctor of Computer
Science, Binus University Jakarta, 11480, Indonesia,
e-mail: fgaol@binus.edu
Steven Santoso: Computer Science Department, Binus Graduate
Program, Binus University, Jakarta, 11480, Indonesia,
e-mail: steven.santoso001@binus.ac.id
Tokuro Matsuo: Advanced Research Center for Service Science and
Artificial Intelligence, Advanced Institute of Industrial Technology,
Tokyo, Japan, e-mail: matsuo@aiit.ac.jp

Open Engineering 2022; 12: 524–538

Open Access. © 2022 Ford Lumban Gaol et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/eng-2022-0055
mailto:fgaol@binus.edu
mailto:steven.santoso001@binus.ac.id
mailto:matsuo@aiit.ac.jp

2. Indicate the current resource consumption of the
webapp server.

3. Facilitate the server owner’s ability to make the best
choice possible based on the facts in the database.

4. Notify the owner via email if the webapp server goes
down or if the server’s resource consumption exceeds
the limit.

The rest of the article is organized as follows: Section
2 discusses other works related to this study and Section 3
gives the system design. Section 4 presents the results of
web server monitoring app and conclusion is drawn in
Section 5.

2 Related works

According to Ray [3], the study objective is to develop a
server monitoring solution that can be accessed through
a mobile web application from any location. This pro-
gram may be used to monitor the connection server’s
status, port availability, CPU and memory utilization,
network state logging, reboot the host, restart the service,
and send email notifications regarding network condition.

According to Kusuma’s study [4], the researchers
designed a monitoring system based on Simple Network
Management Protocol (SNMP) and used syslog from the
application monitoring. The purpose of this study is to
learn about the SNMP protocol’s usage in monitoring net-
work conditions.

As Prabawati [5] mentioned, the server monitoring
system is built using PHP, SNMP, and a Short Message
Service (SMS) gateway. As a result, administrators may
monitor the health of existing servers even when they are
not physically present in the IT room.

Wijayanto’s [6] research at Diponegoro University’s
Faculty of Mathematical Sciences examines how network
equipment like routers, switches, servers, and access
points are managed. Due to the large number of devices
controlled by the administrator, the procedure is carried
out manually, depending on client complaints in the
event of network difficulties.

The aim of the research performed by Fanggidae
et al. [7] is to create server monitoring applications

utilizing the programming languages Python, PHP, and
shell scripts in conjunction with the SNMP protocol con-
nection. The program is designed to automate the process
of restarting a down server.

Ismaidi’s study [8] developed a monitoring system
web application that makes use of the SNMP to help
administrators in real time by storing and analyzing the
results of server monitoring.

Mathapati’s study [9] demonstrated how to easily
combine numerous sensor inputs and perform human
system administrator analysis to get correct results. Often,
human system administrators monitor just a subset of
accessible system data, including server load, network
load, I/O load, and intrusion detection data. By integrating
this data, a human analyst may determine whether to
examine the behavior of a particular system/server in
more detail. The resource data analysis system is a tech-
nology that enables the rapid integration of sensor resources
and the use of custom-built models to identify the evidence
of the observed activities.

Vusvyta’s study [10] focuses on developing a website
interface with the assistance of a database, network map-
ping, and an early warning system (such as SMSs).

Susilawati et al. [11] demonstrated that the purpose
of developing this application is to create a network mon-
itoring application that can assist network administrators
in monitoring the flow of data on the server via a SMS
server application running on a GSM network, thereby
simplifying network administration.

As a result of Luan’s research [12], a web-based net-
work monitoring application with email notifications was
developed to assist network administrators in not only
retrieving values but also processing and storing them
in a database system in order to display information
reports including the availability of devices connected
to a computer network.

3 Materials and methods

The study methodology comprises six phases: data gath-
ering, data analysis, current state, application design,
application development utilizing the Kanban technique,

Table 1: World internet usage and population statistics 2020

Population
(2020 Est)

Population % of
world

Internet users 31
May 2020

Penetration rate
(% Pop.)

Growth
2000–2020

Internet
world %

Total 7,796,949,710 100% 4,648,228,067 59.6% 1.187% 100%

Design and development of the application monitoring the server maintenance  525

submission and assessment. As shown in Figure 1, the
first step of data collection will include conducting inter-
views with members of the mobile division. In stage two,
we analyze the data collected in step one to conduct
preliminary research and decide which features may be
incorporated. In stage three, we assess the current state
and decide what can be done to alleviate the developer’s
workload associated with server maintenance. After deter-
mining which features to be included and determining
how we can assist the developer, we can create a system
planning diagram such as a use case diagram, flowchart,
activity diagram, and entity relationship diagram. Then,
using the Kanban technique, we build the monitoring
application. Finally, in step six, we submit our application
for user review. If there is a problem, they will create
Kanban cards to assist us in resolving it. If there are no
issues, the application is complete.

3.1 Data collection

The first step is an interview with the head of the produc-
tion department. After obtaining the data that the writer
needs, the writer develops web application monitoring
utilizing a waterfall timeline and Kanban technique. The
rationale for adopting the Kanban method of development
is that it has 14 reasons to be chosen for software devel-
opment [13].
1. Panoramic perspective
2. Establishing a bottleneck
3. Self-managed teams
4. The sequence in which features are released
5. Complete focus on the critical
6. Concentration on job
7. Adaptability
8. The capacity to know everything

9. The absence of the necessity to evaluate characteristics
10. Less chit-chat and more action
11. Cohesion
12. More frequent errors
13. Increased flow
14. Concentrate on a single job.

3.2 Data analysis

Once the need is obtained, the following step is to decide
which features may be implemented and which tools can
be utilized. Following discussion, JavaMelody is already
deployed on all client servers. JavaMelody is a free and
open-source monitoring solution for JavaEE applications.
JavaMelody’s purpose is to monitor Java or Java EE appli-
cations in quality assurance and production settings. It is
not a tool for simulating user requests; rather, it is a tool
for measuring and calculating statistics on an applica-
tion’s real-world functioning based on actual use [14].

The writer then does research on other technologies
for graph display in web applications and discovered
Grafana’s ability to create graphs. Grafana is a free and
open-source visualization and analysis tool. This enables
querying, visualization, alerting, and exploration of metrics
stored in any location [15]. The issue here is that Grafana
cannot directly access JavaMelody, necessitating the use of
an intermediary application called Prometheus.

Prometheus is a free and open source monitoring and
alerting system developed by SoundCloud. Since its debut
in 2012, Prometheus has been embraced by a large number
of businesses and organizations. Prometheus can read
JavaMelody’s API, while Grafana can read Prometheus’s
data.

3.3 Present condition

At themoment, themobile production developer is required
to perform monthly visits or maintenance to check the
webapp server’s health and to record the daily use of
webapp server resources in the form of CPU,memory usage,
active thread, transactions per minute, and garbage
collector. At the moment, tracking daily webapp server
resource consumption is still done manually by inspecting
JavaMelody, a procedure that consumes between 1.5 and
2 h per server. Because data collection is still manual, it is
prone to mistakes, and each developer has a unique inter-
pretation of the webapp server resources graph.

Application

Completed

Found an

issue

Data

Collection
Data Analysis

Present

Condition

Application

Design

Application

Development

Using Kanban

Method

Submission

And

Evaluation

Figure 1: Research methodology.

526  Ford Lumban Gaol et al.

3.4 Application design

Create a flowchart, an activity diagram, an entity connec-
tion diagram, and a narrative board using the data that
have already been gathered. The chart shown in Figure 2
illustrates the web application Java application server
monitoring flowchart.

Details of explanation of storyboard for web applica-
tion monitoring can be seen in Table 2.

3.5 Application development using Kanban
method

As the name implies, web application for server moni-
toring is developed using Kanban method. List of
Kanban card and its each estimation (days) can be
seen in Table 3.

Additionally, the writer used a simple waterfall chron-
ology for the timeline as shown in Table 4. The aim of this

Figure 2: Flowchart web application Java application server monitoring.

Design and development of the application monitoring the server maintenance  527

Table 2: Storyboard

Storyboard

Project: Monitoring server Layer: 1 of 2
Screen ID: Home

Description:
At homepage, there are several lists of webapp servers that can be clicked to open the server details page.
Link from screen ID: - Link to screen ID: Server details
Text attribute: 1: Arial, 2.75vw, color white #ffffff, background color black #000000
3: Arial, 1.75vw, color grey #dcdde1
4: Arial, 1.75vw, color green #2ecc71
5: Arial, 1.75vw, color red #FE0101
6: Arial, 1.75vw, color yellow #FFFF00
7: 2vw, color black #000000, border 2px solid #9392AE, border radius 90px
Background: 2: color black #000000

Storyboard

Project: Monitoring server
Screen ID: Server details

(Continued)

528  Ford Lumban Gaol et al.

Table 2: Continued

Storyboard

Description:
At Server detail page, there is a feature to search the date between two dates to display the webapp server resources usage graph on the
screen. At the top right there is a text “Back”, if clicked then web application goes back to home page
Link from screen ID: Home Link to screen ID: -
Text attribute: 2: Arial, 2.64vw, color white #ffffff, background color black #000000
3,7: 1.5vw, color white #ffffff
4,8: input type date
5,6,9,10: input type number
11: input type submit, 1.2vw
12: 1.5vw
Background: 1: color black #000000

Table 3: Kanban card

ID Kanban card Estimation (days)

1 Research JavaMelody 2
2 Research format data that can be read by Prometheus API 2
3 JSON format to use 1.5
4 Set up Java environment and database 1.5
5 Develop homepage 2
6 Store data from API JavaMelody to database 7
7 Store heavy query in database 2.5
8 Send email alert or early warning system if webapp server usage resources are greater than limit 2.5
9 Develop detail server page 7
Total 28

Design and development of the application monitoring the server maintenance  529

timeline is to explain the amount of time that will be spent
processing requirements from start to finish.

3.6 Submission and development

The results of black box testing for server monitoring
application are shown in Table 5.

4 Results

4.1 Application implementation

To perform this webapp application monitoring, we need
the following hardware and software configurations: Minimum
hardware specifications allow for web server monitoring that
watches about 35 web apps in 15–25 s; however, we increase
the timeout to 20 s if the connection is sluggish. As a result,
each loop takes about 35–45 s to complete. To ensure that the
program runs smoothly, each loop must be completed in less
than 1min. As a result, we need the following minimum hard-
ware requirements as shown in Table 6.

Software definition that is both minimal and optimal.
The reason Prometheus and Grafana need the right ver-
sion is because the automated dashboard required to
execute this application is obsolete and will be removed
in the future edition of Grafana. For that reason, as shown

in Table 7, we utilize Grafana v6.0.2, which retains the
programmed dashboard, and then Prometheus v2.8.0,
which was published at the same time as Grafana v6.0.2.

4.2 Application guidelines

The following is a tutorial for running the application. On
the home page, the top part displays language such as
current server monitor and server status, which includes
Maintenance, Up, and Down, as well as the total number
of web servers associated with each of those statuses.
Each status is explained as follows:
1. The grayed-out Maintenance Status shows that the

webapp server is undergoing maintenance.
2. The Up Status, which is highlighted in green, shows that

the webapp server is operational and accessible to users.
3. The Down Status, which is highlighted in red, shows

that the webapp server is unavailable to users. This
may also occur if the web server monitoring service
does not get a response from the web application
server after about 20 s (timeout).

4. The Danger Status, which is highlighted in yellow,
shows that the webapp server’s resource usage has
exceeded the configured limit.

Figure 3 shows a list of web application servers, along
with their current state. When we click on one of the ser-
vers, the system takes us to the server’s details page.

Table 4: Timeline

Month February 2021 March 2021 April 2021 May 2021 June 2021 July 2021

Week 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Data collection
Company survey X
Interview with user X X
Data analysis
Problem analysis and
problem solving

X X X

Application design research X X
Application design
UML creation X X
ERD creation X X
Application development
App design and bug fixing X X X X X X
Internal testing X X X
Submission and development
Testing by user X X X X
Application usability
questionnaire

X X

Documentation X

530  Ford Lumban Gaol et al.

Ta
bl
e
5:

B
la
ck

bo
x
te
st
in
g

N
o.

Te
st
in
g
sc
en

ar
io

Ex
pe

ct
ed

re
su

lt
Te

st
re
su

lt
Co

nc
lu
si
on

1
C
lic

ki
ng

th
e
w
eb

ap
p
se

rv
er

na
m
e
w
ill

di
sp

la
y
se

rv
er

de
ta
ils

pa
ge

D
is
pl
ay

se
rv
er

de
ta
ils

pa
ge

S
uc

ce
ss
fu
lly

di
sp

la
ys

th
e
se

rv
er

de
ta
ils

pa
ge

S
uc

ce
ss

2
If
th
e
in
te
rn
et

co
nn

ec
ti
on

is
lo
st

D
is
pl
ay

te
xt

“T
he

re
is

no
in
te
rn
et

co
nn

ec
tio

n”
S
uc

ce
ss
fu
lly

di
sp

la
yi
ng

te
xt

“T
he

re
is

no
in
te
rn
et

co
nn

ec
tio

n”
S
uc

ce
ss

3
S
ea

rc
h
ra
ng

e
da

te
D
is
pl
ay

s
th
e
se

rv
er

de
ta
ils

pa
ge

ac
co

rd
in
g
to

th
e

da
te

an
d
ti
m
e
in

th
e
sp

ec
ifi
ed

ra
ng

e
S
uc

ce
ss
fu
lly

di
sp

la
ys

de
ta
il
se

rv
er

pa
ge

ac
co

rd
in
g
to

th
e
da

te
an

d
ti
m
e
in

th
e
sp

ec
ifi
ed

ra
ng

e.

S
uc

ce
ss

4
C
lic

k
te
xt

“b
ac
k”

on
se
rv
er

de
ta
ils

pa
ge

D
is
pl
ay

ho
m
e
pa

ge
S
uc

ce
ss
fu
lly

di
sp

la
ys

ho
m
e
pa

ge
S
uc

ce
ss

5
C
lic

k
se

rv
er

na
m
e
on

th
e
se

rv
er

de
ta
ils

pa
ge

W
ill

re
se

t
da

te
se

ar
ch

ra
ng

e
an

d
di
sp

la
y
to
da

y’
s

gr
ap

h
S
uc

ce
ss
fu
lly

di
sp

la
ys

to
da

y’
s
gr
ap

h
S
uc

ce
ss

6
If
th
e
w
eb

ap
p
se

rv
er

is
do

w
n,

th
e
w
eb

ap
p
se

rv
er

w
ill

ch
an

ge
co

lo
rt
o
re
d
an

d
th
e
do

w
n
st
at
us

w
ill

in
cr
ea

se
by

1
on

ho
m
e
pa

ge
W
eb

ap
p
se
rv
er

w
ill

tu
rn

re
d
an

d
th
e
do

w
n
st
at
us

w
ill

in
cr
ea

se
by

1
on

ho
m
e
pa

ge
S
uc

ce
ss
fu
lly

ch
an

ge
s
th
e
co

lo
r
to

re
d
an

d
th
e

do
w
n
st
at
us

in
cr
ea

se
s
by

1
on

ho
m
e
pa

ge
S
uc

ce
ss

7
If
th
e
w
eb

ap
p
se

rv
er

re
so

ur
ce
s
us

ag
e
ex
ce
ed

s
th
e
lim

it
,
th
e

se
rv
er

w
ill

tu
rn

ye
llo

w
an

d
th
e
da

ng
er

st
at
us

w
ill

in
cr
ea

se
by

1
on

ho
m
e
pa

ge

W
eb

ap
p
se
rv
er

w
ill

ch
an

ge
co
lo
r
to

ye
llo

w
an

d
th
e

da
ng

er
st
at
us

w
ill

in
cr
ea

se
by

1
on

ho
m
e
pa

ge
S
uc

ce
ss
fu
lly

ch
an

ge
s
th
e
co

lo
r
to

ye
llo

w
an

d
th
e

da
ng

er
st
at
us

in
cr
ea

se
s
by

1
on

ho
m
e
pa

ge
S
uc

ce
ss

8
If
w
eb

ap
p
se

rv
er

m
on

it
or

ti
m
e
is
be

tw
ee

n
m
ai
nt
en

an
ce

st
ar
ta

nd
m
ai
nt
en

an
ce

en
d,

th
e
se

rv
er

w
ill

tu
rn

gr
ay

an
d
th
e
m
ai
nt
en

an
ce

st
at
us

w
ill

in
cr
ea

se
by

1
on

ho
m
e
pa

ge

W
eb

ap
p
se
rv
er

w
ill

tu
rn

gr
ay

an
d
th
e
m
ai
nt
en

an
ce

st
at
us

w
ill

in
cr
ea

se
by

1
on

ho
m
e
pa

ge
S
uc

ce
ss
fu
lly

ch
an

ge
d
th
e
co

lo
r
to

gr
ay

an
d
th
e

m
ai
nt
en

an
ce

st
at
us

in
cr
ea

se
d
by

1
on

ho
m
e
pa

ge
S
uc

ce
ss

9
If
w
eb

ap
p
se

rv
er

ha
s
cr
os

se
d
th
e
al
er
t
lim

it
se

ve
ra
l
ti
m
es

in
a
ro
w

An
em

ai
lr
eg

ar
di
ng

th
e
w
eb

ap
p
se
rv
er
’s

re
so

ur
ce
s

us
ag

e
w
ill

be
se
nt

to
th
e
re
gi
st
er
ed

em
ai
la

dd
re
ss

S
uc

ce
ss
fu
lly

se
nt

an
em

ai
la

le
rt
to

th
e
re
gi
st
er
ed

em
ai
l
ad

dr
es

s
S
uc

ce
ss

10
If
th
e
us

e
of

th
e
qu

er
y
ex
ec
ut
io
n
ti
m
e
ex
ce
ed

s
th
e
sp

ec
ifi
ed

m
ax

or
m
ea

n
lim

it
Th

e
qu

er
y
is

st
or
ed

in
th
e
da

ta
ba

se
S
uc

ce
ss
fu
lly

st
or
ed

th
e
qu

er
y
in

th
e
da

ta
ba

se
S
uc

ce
ss

Design and development of the application monitoring the server maintenance  531

If there is no connection, system will not show any-
thing but a text “There is no internet connection” as
shown in Figure 4.

When the user clicks on one of the server’s home
page, the server details page will appear as shown in
Figure 5. It includes the webapp’s name in the upper
middle area. The top right corner has a back button
that takes us back to the main page. It includes an input
area for the time filter underneath the name section.

Additionally, this page includes six graphs that illus-
trate the webapp server’s resource consumption. The fol-
lowing is an explanation of the six graphs.
1. Active Threads. These are used to refer to the processes

that are now being executed on the webapp server.
2. System CPU. The system CPU statistic indicates the

server’s CPU utilization in terms of percentage. The
increased use suggests that we either need to optimize
our code and queries to reduce CPU usage, or we need
to update our hardware.

3. Musculoskeletal Memory. This is used to indicate the
Operating System’s (OS) memory consumption.

4. Utilized Memory. This refers to the amount of Random
Access Memory (RAM) used by the server.

5. Waste Disposal. This is a procedure that is used to
eliminate unwanted objects. This is part of the garbage
collector that is a component of the Java programming
language that runs automatically until the application
is terminated. This graph is necessary to determine if
there is a memory leak, which may result in an error
out of memory.

6. Free Drive Space. The term “Free Disk Space” refers to
the leftover unused space on the server’s hard disk.
The lower the graph becomes, the more likely it is that
we need to delete files that are no longer needed, such
as logs, or transfer the file to another disk.

We may display graph data for a certain time period
by entering the date, hour, and minutes in the From and
End sections and then clicking the Apply button. Here is
an example of a graph over a 30min period as shown on
Figure 6.

4.3 Metrics page (API)

This page provides data about metrics in order for the
Prometheus to access the API and create a graph that
the Prometheus can read.

While the system CPU and garbage collector are mea-
sured in percentages, utilized memory, physical memory,
and free disk space are measured in bytes. When data are
received, it will measure using the current thread’s real

Table 6: Hardware specification

RAM 4 GB
Memory 100MB
CPU 4 × 2.20

Table 7: Software Specification

Database SQL SERVER 2012

JavaMelody >v 1.77.0
Prometheus v 2.8.0
Grafana v 6.0.2

Figure 3: List of web application servers.

532  Ford Lumban Gaol et al.

use thread. Grafana will utilize the Prometheus API to
generate a graph that can be shown in web app server
monitoring once the Prometheus app creates the graph.

Addition of a List Server
If the user wishes to add or delete a web application

server, they may modify the JSON data that the app can
access. This approach is preferred since it is more com-
prehensible and adaptable.

To add or delete a server from the home page, the
user may modify the object data in the JSON file using the
following syntax.

{
“Server”: {

“name”: “adimobile”,
“url”: “https://www.xxx.com/monitoring”,
“servertype”: “webapp”,
“username”: “username”,
“password”: “password”,

“sqlmean”: “6500”,
“sqlmax”: “7500”,
“alertThreads”: “10”,
“alertFreedisk”: “150000000000”,
“alertGcmax”: “5”,
“alertGcmean”: “3”,
“alertSystemCPU”: “50”,
“alertPhysicalMemory”: “16000000000”,
“alerttime”: “5”,
“alertDowntime”: “120”,
“maintenancestart”: “00.00”,
“maintenanceend”: “00.00”

}
}
Explanation of the above JSON.

Name
Name that will be displayed on the webapp server

monitor.

Figure 4: Home page with no internet connection.

Figure 5: Time filter period input example.

Figure 6: Server details page with a range of 30 min.

Design and development of the application monitoring the server maintenance  533

Url
App Url that will be monitored and has JavaMelody

applied.
Servertype

Can be choose between webapp/services
Username

Username to access JavaMelody from the given url.
Password

Password to access JavaMelody from the given url.
Sqlmean

Average time (in seconds), which if there is a SQL
query that runs above the limit of the sqlmean, then the
system will record it in the database.
Sqlmax

Max time (in seconds), which if there is a SQL query
that runs above the sqlmax, then the system will record it
in the database.
AlertThreads

Maximum thread in which if there is thread usage
that exceeds the limit of activeThreads, then the webapp
status will change color to yellow or danger.
AlertFreedisk

If the current free disk (in bytes) is below the
AlertFreeDiskValue, then the webapp status will change
color to yellow or danger.
AlertGcmax

Maximum GC (in percentage). If GC usage volume
exceeds alertGcmax, then the webapp status will change
color to yellow or danger.
AlertGcmean

Average GC (in percentage), if GC average usage
exceeds alertGcmean value, then the webapp status will
change color to yellow or danger.
AlertSystemCPU

Maximum SystemCPU (in percentage), if SystemCPU
usage exceeds alertSystemCPU value, then the web app
status will change color to yellow or danger.
AlertPhysicalMemory

Maximum PhysicalMemory (in bytes), if PhysicalMemory
usage exceeds alertPhysicalMemory value, then the webapp
status will change color to yellow or danger.

Alerttime
if there is a webapp server that exceeds n number

times alert in a row, then the system will send notifica-
tion/email to the production team to check the server
condition later.
AlertDowntime

If email has already been sent to the receiver, then
even if it exceeds n number times alert, the email will not
be sent, except if the time period from the last email sent
to current time has exceeded AlertDownTime.

This will minimize spam email to the team if the
server is continuously down and exceed alert limit
Maintenancestart

When the maintenance will start, if the current time
is in the range of maintenancestart and maintenanceend,
then the webapp status will change color to gray or
maintenance.
Maintenanceend

When the maintenance will end, if the current time is
in the range of maintenancestart and maintenanceend,
then the webapp status will change color to gray or
maintenance.

4.4 Email alert

This feature is used to notify the production team if there
is a server which has status of down or danger for n times
in a row.
1. Server Down Alert

Email will be sent to the recipient when the webapp
server cannot be accessed by server monitoring or
experienced timeout as shown in Figure 7.

2. Query Alert
Email will be sent to the recipient when there is a

query that exceeds mean or max time as shown in
Figure 8.

3. Alert Free Disk Space email will be sent to the recipient
when the free disk space is below the settled parameter.
Alert GC Mean, GC Max, Physical Memory, System CPU,

Figure 7: Alert server down example.

534  Ford Lumban Gaol et al.

and Threads have the same format as Alert Free Disk
Space as shown in Figure 9.

Information
Time: 00:38 GMT + 7
Metrics: 76.79GB
Limit: 150GB

4.5 Database

In the database, there are a total of 6 tables used. Name
and usage of each table is as follows.
□ Email
Table is used to send email to recipients if there is a
webapp server that experiences down or resource

Figure 8: Alert query example.

Figure 9: Alert free disk space email example.

Design and development of the application monitoring the server maintenance  535

usage that exceeds the limit. This table has 4 columns.
which is:
1. Emailid

Emailid is the primary key for the table.
2. Email_to

Email_to is the email of the recipient. If there is
more than 1 recipient, we can use semi colon (;) as a
separator. For example if we want to send email to
two recipient: aaa@aaa.com;bbb@bbbb.com

3. Email_cc
Email_cc is the email of the recipient that will

be given carbon copy. If there is more than 1 reci-
pient, we can use semi colon (;) as a separator. For
example if we want to send email to two recipient:
aaa@aaa.com;bbb@bbbb.com

4. Is_active
To mark if the email_to or email_cc is still

active, if not, email will not be sent.
□ Path data

PathData table has 2 columns, which is:
1. Directory

Location in which the file will be read.
2. FileType

There are 2 rows for this table containing JSON
and img

a. JSON: Path where JSON file is located.
b. Img: Path where image is used for attachment

in the email.
□ Query data

This table contains 8 columns as follows:
1. QueryID (PK)
2. ClientCode
3. URL
4. QueryString: Query that is running in the database.
5. MeanTime: Average time needed to execute above

QueryString.
6. MaxTime:Maximum timeneeded to executeQueryString

above.
7. FlagQuery: Can be 0 or 1. 0 means there is no

query LIKE.
8. TimeStamp: Exact time when QueryString taken.

□ RV_ReportV2
On Table RV_ReportV2 there are 7 columns:

1. ID
2. ClientCod
3. Max_Memory
4. Max_Thread
5. Max_TPM
6. Time_Stamp
7. Max_GC

□ RV_ReportSummary
RV_ReportSummary Table contains daily sum-

mary of resource usage from one webapp server that
is created by stored procedure. There are eight columns
of this table which is time data collected, name of
server, avg memory, max memory, max thread, avg
TPM, max TPM, and max GC on that day.

□ Utilities
InUtilities Table, there are four columns as follows:

1. ID
Primary key of Utilities Table.

2. Name
There are 7 data for this column which is:

Sql_start_check: start hour to check SQL query.
Sql_pause_check: interval in hour between each check.
Sql_end_check: end hour to check SQL query.
Timeout: ping duration to the webapp server (ms)
Send_sql_email: 1 or 0 (1 means email will be sent if
there is SQL query that exceeds the limit)
Send_email_down: 1 or 0 (1 means email will be sent if
there is webapp server which experiences down time)
Alert_count_threshold: number of times webapp server
down is required before sending email.
3. Value

Value of the name. To see the example of the
value, one can refer to the name section above.

4. Description
Description of the name utilities. To see the

example of the value, one can refer to the name
section above.

4.6 Comparison evaluation between
JavaMelody and webapp server
monitoring

Table 8 shows the comparison data between JavaMelody
that is taken manually every day and web server moni-
toring for usage memory in Megabytes and percentage.
For percentage we can use the formula as follows:
a. If Manual ≤ Webapp monitoring, then:

Percentage Manual
Webapp monitoring

100%= ×

b. If Webapp Monitoring < Manual, then:

Percentage Webapp monitoring
Manual

100%= ×

536  Ford Lumban Gaol et al.

Table 8: The comparison data between JavaMelody and webapp server monitoring

18 June 2021

Avg memory Max memory Max Thread Avg TPM Max TPM

Server 1 Webapp
Manual 2,500 5,900 8 388 1,643
Server monitoring 2,402 5,896 11 393 1,740
Diff percentage 96.08 99.94 72.73 98.73 94.43
19 June 2021
Manual 2,000 3,900 9 194 1,329
Server monitoring 1,955 3,882 10 194 1,339
Diff percentage 97.74 99.54 90.00 100 99.25
20 June 2021
Manual 2,100 5,000 10 293 1,272
Server monitoring 2,137 5,016 12 294 1,326
Diff percentage (%) 98.27 99.69 83.33 99.66 95.93

Server 1 Webservices

18 June 2021
Manual 1,500 5,000 24 92 574
Server monitoring 1308.534 5892.933 53 44 572
Diff percentage 87 85 45 48 100
19 June 2021
Manual 1,200 3,800 26 69 316
Server monitoring 1114.839 3619.986 34 37 429
Diff percentage 93 95 76 54 74
20 June 2021
Manual 1,200 4,000 21 94 474
Server monitoring 1053.902 5008.356 48 27 338
Diff percentage 88 80 44 29 71

Server 2 Webapp

18 June 2021
Manual 372 578 1 0 29
Server monitoring 371.6685 581.0834 1 0 32
Diff percentage 100 99 100 100 91
19 June 2021
Manual 368 549 0 0 1
Server monitoring 365.5011 552.3373 0 0 1
Diff percentage 99 99 100 100 100
20 June 2021
Manual 361 542 1 0 29
Server monitoring 361.4444 545.1581 1 0 33
Diff percentage 100 99 100 100 88

Server 2 Webservices

18 June 2021
Manual 372 568 15 6 182
Server monitoring 371.1034 570.1644 15 6 188
Diff percentage 100 100 100 100 97
19 June 2021
Manual 367 550 14 7 184
Server monitoring 366.5338 553.7928 14 6 201
Diff percentage 100 99 100 86 92
20 June 2021
Manual 361 544 14 3 141
Server monitoring 361.4459 547.7883 14 3 141
Diff percentage 100 99 100 100 100

Design and development of the application monitoring the server maintenance  537

5 Conclusion

Web application server monitoring has been made in accor-
dancewith the request and has been done as well as possible.
Web applications are built by prioritizing data accuracy and
ease of use of web applications. The web application server
monitoring can be concluded as follows:
• Web application server monitoring has a simple user
interface, making it easy to use and understand.

• Web application server monitoring can help ease the
work of the production team when they want to do
monthly web server maintenance.

• Web application server monitoring can provide infor-
mation on web server power usage directly with good
accuracy.

This monitoring web server application also has
several shortcomings, namely:

• If the web server client is down or timeout, this will
make accuracy worse because if the web server is
down or got request timeout then the resource data
entered into the database has a value of 0.

• Custom made User Interface (UI).
• There is no login feature so that it can be changed by
anyone who can access the office’s internal server.

For further research and development on the fol-
lowing topics, the authors have got some suggestions
from users who have tried this application, including:
• If the client’s web server is down, the data does not
need to be stored in the database so it will improve
accuracy.

• User Interface (UI) has been improved because cur-
rently on the home page there are only text and shapes.

Acknowledgments: This research is supported by Department
of Information Systems Management, Bina Nusantara University.

Conflict of interest: The authors declare no conflicts of
interest.

References

[1] Argaez Enrique De. World internet usage and population sta-
tistics; 2020. https://www.internetworldstats.com/stats.htm.
(accessed on 29 June 2020).

[2] Asosiasi Penyelengara Jasa Internet Indonesia. Laporan Survei
Internet APJII 2019 – 2020 [Q2]; 2020. https://apjii.or.id/
survei. (accessed on 22 July 2021).

[3] Ray E. Pengembangan Aplikasi Monitoring Server Berbasis
Mobile Web Dengan Sistem Notifikasi Email; 2015. http://
repository.uinjkt.ac.id/dspace/bitstream/123456789/28103/
1/ENDANG%20RAY-FST.pdf. (accessed on 07 March 2021).

[4] Kusuma FI. Perancangan Sistem Monitoring Perangkat
Jaringan Berbasis SNMP; 2015. http://eprints.ums.ac.id/
38600/27/Naskah-Publikasiku.pdf. (accessed on 07
March 2021).

[5] Prabawati A. Analisis Dan Perancangan Pemantau Jaringan
Server Menggunakan PHP, SNMP Dan SMS Gateway Pada PT.
PLN (Persero) Rayon Ponogoro; 2013. http://eprints.umpo.ac.
id/495/2/KusumaHAL%20DEPAN%2C%20BAB%20I%2C%
20DAFPUS%20anggar.pdf. (accessed on 07 March 2021).

[6] Wijayanto D. Aplikasi Monitoring Perangkat Dan Aktivitas
Pengguna Pada Jaringan Menggunakan Protocol SNMP Dan
Squid Proxy; 2016. https://core.ac.uk/download/151235843.
pdf. (accessed on 19 March 2021).

[7] Fanggidae AM, Hermawan H, Pratiwi HI. Sistem Monitoring
Server Dengan Menggunakan SNMP; 2019. http://www.ojs.
upj.ac.id/index.php/journal_widya/article/view/218.
(accessed on 20 July 2021).

[8] Ismaidi MA. Pengembangan Aplikasi monitoring performa
server menggunakan simple network management Protocol;
2013. http://etd.repository.ugm.ac.id/penelitian/detail/
65035. (accessed on 19 July 2021).

[9] Mathapati V. Performance analysis of system resources by
server monitoring; 2013. http://www.ijirset.com/upload/july/
30A_PERFORMANCE.pdf. (accessed on 19 July 2021).

[10] Vusvyta K. Design and implementation fast response system
monitoring server using simple network management protocol
(SNMP); 2017. http://edocs.ilkom.unsri.ac.id/1654/1/TASK2_
Manajemen%20Jaringan_SNMP.pdf. (accessed on 07
March 2021).

[11] Susilawati S, Fitzgerald J, Renaldy C. Analisis dan Perancangan
Aplikasi Traffic Monitoring Server Menggunakan SMS Pada PT.
Anugrah Catur Abadi; 2008. http://eprints.binus.ac.id/2665/
1/2008-2-00210-IF%20Abstrak.pdf. (accessed on 19
July 2021).

[12] Luan N. Aplikasi Monitoring Jaringan Berbasis Web Dengan
Notifikasi Email; 2019. http://eprints.mercubuana-yogya.ac.
id/5356/. (accessed on 19 July 2021).

[13] Ku P. 14 Reasons to Choose Kanban for Software Development;
2018. https://medium.com/hygger-io/14-reasons-to-choose-
kanban-for-software-development-d3ddb420d273. (accessed
on 28 March 2021).

[14] JavaMelody. JavaMelody: monitoring of JavaEE applications;
2019. https://github.com/javamelody/javamelody/wiki.
(accessed on 09 August 2020).

[15] Grafana. What is Grafana. https://grafana.com/docs/grafana/
latest/getting-started/what-is-grafana/. (accessed on 09
August 2020).

538  Ford Lumban Gaol et al.

https://www.internetworldstats.com/stats.htm
https://apjii.or.id/survei
https://apjii.or.id/survei
http://repository.uinjkt.ac.id/dspace/bitstream/123456789/28103/1/ENDANG%20RAY-FST.pdf
http://repository.uinjkt.ac.id/dspace/bitstream/123456789/28103/1/ENDANG%20RAY-FST.pdf
http://repository.uinjkt.ac.id/dspace/bitstream/123456789/28103/1/ENDANG%20RAY-FST.pdf
http://eprints.ums.ac.id/38600/27/Naskah-Publikasiku.pdf
http://eprints.ums.ac.id/38600/27/Naskah-Publikasiku.pdf
http://eprints.umpo.ac.id/495/2/KusumaHAL%20DEPAN%2C%20BAB%20I%2C%20DAFPUS%20anggar.pdf
http://eprints.umpo.ac.id/495/2/KusumaHAL%20DEPAN%2C%20BAB%20I%2C%20DAFPUS%20anggar.pdf
http://eprints.umpo.ac.id/495/2/KusumaHAL%20DEPAN%2C%20BAB%20I%2C%20DAFPUS%20anggar.pdf
https://core.ac.uk/download/151235843.pdf
https://core.ac.uk/download/151235843.pdf
http://www.ojs.upj.ac.id/index.php/journal_widya/article/view/218
http://www.ojs.upj.ac.id/index.php/journal_widya/article/view/218
http://etd.repository.ugm.ac.id/penelitian/detail/65035
http://etd.repository.ugm.ac.id/penelitian/detail/65035
http://www.ijirset.com/upload/july/30A_PERFORMANCE.pdf
http://www.ijirset.com/upload/july/30A_PERFORMANCE.pdf
http://edocs.ilkom.unsri.ac.id/1654/1/TASK2_Manajemen%20Jaringan_SNMP.pdf
http://edocs.ilkom.unsri.ac.id/1654/1/TASK2_Manajemen%20Jaringan_SNMP.pdf
http://eprints.binus.ac.id/2665/1/2008-2-00210-IF%20Abstrak.pdf
http://eprints.binus.ac.id/2665/1/2008-2-00210-IF%20Abstrak.pdf
http://eprints.mercubuana-yogya.ac.id/5356/
http://eprints.mercubuana-yogya.ac.id/5356/
https://medium.com/hygger-io/14-reasons-to-choose-kanban-for-software-development-d3ddb420d273
https://medium.com/hygger-io/14-reasons-to-choose-kanban-for-software-development-d3ddb420d273
https://github.com/javamelody/javamelody/wiki
https://grafana.com/docs/grafana/latest/getting-started/what-is-grafana/
https://grafana.com/docs/grafana/latest/getting-started/what-is-grafana/

	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 Data collection
	3.2 Data analysis
	3.3 Present condition
	3.4 Application design
	3.5 Application development using Kanban method
	3.6 Submission and development

	4 Results
	4.1 Application implementation
	4.2 Application guidelines
	4.3 Metrics page (API)
	4.4 Email alert
	4.5 Database
	4.6 Comparison evaluation between JavaMelody and webapp server monitoring

	5 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

