
Regular Article

Mohamed Abdelsabour Fahmy* and Mohammed M. Almehmadi

Boundary element analysis of rotating
functionally graded anisotropic fiber-reinforced
magneto-thermoelastic composites

https://doi.org/10.1515/eng-2022-0036
received February 13, 2022; accepted March 23, 2022

Abstract: The primary goal of this article is to implement
a dual reciprocity boundary element method (DRBEM)
to analyze problems of rotating functionally graded ani-
sotropic fiber-reinforced magneto-thermoelastic compos-
ites. To solve the governing equations in the half-space
deformation model, an implicit–implicit scheme was uti-
lized in conjunction with the DRBEM because of its
advantages, such as dealing with more complex shapes
of fiber-reinforced composites and not requiring the dis-
cretization of the internal domain. So, DRBEM has low
RAM and CPU usage. As a result, it is adaptable and
effective for dealing with complex fiber-reinforced compo-
site problems. For various generalized magneto-thermoe-
lasticity theories, transient temperature, displacements,
and thermal stresses have been computed numerically.
The numerical results are represented graphically to
demonstrate the effects of functionally graded para-
meters and rotation on magnetic thermal stresses in
the fiber direction. To validate the proposed method,
the obtained results were compared to those obtained
using the normal mode method, the finite difference
method, and the finite element method. The outcomes
of these three methods are extremely consistent.

Keywords: boundary element method, rotation, function-
ally graded materials, anisotropic, fiber reinforced, mag-
neto-thermoelasticity

Nomenclature

βab stress–temperature coefficients
δij Kronecker delta i j, 1, 2( )=

μ magnetic permeability
ρ density
σab mechanical stress tensor
τab Maxwell’s stress tensor
τ time
τ τ τ, ,0 1 2 relaxation times
ω uniform angular velocity
Ψf , δ f, ,f h̄ prescribed functions
Å unified parameter
Bi magnetic strength components
c specific heat capacities
Cabfg constant elastic moduli
Hi magnetic field intensity
H0 constant magnetic field
h perturbed magnetic field
kab thermal conductivity coefficients
k0 Seebeck coefficient
m functionally graded parameter
T temperature
T0 reference temperature
t̄a σ nab b= tractions
uk displacement vector

1 Introduction

Biot [1] has developed the classical coupled theory of
thermoelasticity to overcome the first shortcoming in the
classical theory of thermoelasticity proposed by Duhamel
[2] and Neuman and Meyer [3] where it predicts two phe-
nomena that are not consistent with physical observations.
First, the heat conduction equation of this theory does not
consider any elastic deformation. Second, the heat con-
duction equation of this theory is of a parabolic form,
predicting the infinite velocity of heatwaves’ propagation.
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Most of the approaches that have emerged to resolve the
unacceptable prediction of the classical theory are based
on the general notion of heat flux relaxation in the clas-
sical Fourier heat conduction equation, thus generating a
non-Fourier effect. One of the simplest forms of this equa-
tion is due to the extended thermoelasticity theory of Lord
and Shulman [4], which is also known as the theory
of generalized thermoelasticity with one relaxation time.
Another form of this equation is the developed tempera-
ture-rate-dependent thermoelasticity theory of Green and
Lindsay [5], which is often referred to as the theory of
generalized thermoelasticity with two relaxation times.
After that, Green and Naghdi [6,7] developed three models
for generalized thermoelasticity: model I corresponds to
classical heat conduction theory based on Fourier’s law,
model II corresponds to the thermoelasticity without energy
dissipation, and model III corresponds to the thermoelasti-
city with energy dissipation.

In recent years, thermoelastic problems of function-
ally graded anisotropic (FGA) composites have gained
popularity. In general, finding an analytical solution to
a problem is extremely difficult; therefore, several engi-
neering papers devoted to numerical methods have stu-
died such problems in various thermoelasticity topics, for
example, coupled thermoelasticity [8], magneto-thermo-
elasticity [9], couple stress theory [10], nanostructures
[11], micropolar piezothermoelasticity [12], micropolar
magneto-thermoviscoelastic [13], magneto-thermovisco-
elastic [14], transient thermal stresses [15,16], transient
thermoelasticity [17], heat conduction [18], and magneto-
electroelasticity [19]. But generally, the boundary element
method (BEM) has been employed by several papers,
for instance, for solving magneto-thermoviscoelastic pro-
blems [20], micropolar piezothermoelastic problems [21],
bio-heat transfer problems [22], micropolar FGA composite
problems [23], porothermoelastic wave propagation pro-
blems [24], size-dependent thermopiezoelectric problems
[25], and photothermal stress wave propagation problems
[26]. One of the most commonly used methods for con-
verting a domain integral to a boundary integral is the
so-called dual reciprocity BEM (DRBEM). This method
was developed by Nardini and Brebbia [27] for two-dimen-
sional (2D) elastodynamics, but it has since been extended
to a wide range of problems in which the domain integral
can account for linear–nonlinear static–dynamic phenomena.
More historical context and applications of the dual recipro-
city boundary element approach [28] to nonlinear diffusion
problems [29], general field equations [30], and spontaneous
ignition problems [31].

The main goal of this article is to propose a DRBEM
for solving problems of rotating FGA fiber-reinforced

magneto-thermoelastic composites. The DRBEM was used
with an implicit–implicit algorithm to obtain the solution
for the considered governing equations. The numerical
results show how functionally graded parameters and rota-
tion affect magnetic thermal stresses in the fiber direction.
The numerical results confirm the validity and accuracy of
our proposed model.

2 Formulation of the problem

Figure 1 depicts a Cartesian coordinate system Ox x x1 2 3. In
the presence of a spatially varying heat source, we will
consider an FGA fiber-reinforced thermoelastic compo-
site in the presence of a primary magnetic field H0 acting
in the fiber-direction x1-axis and rotating about it with a
constant angular velocity. The anisotropic properties of
the structure material have a gradient in the fiber direc-
tion. Because we are only concerned with the generalized
2D deformation problem in the x x2 3-plane only, all vari-
ables are constant along the x1-axis.

The governing equations of generalized magneto-
thermoelastic problems in a rotating FGA fiber-reinforced
structures can be written as [32]:

σ τ ρ ω x ρ ü ,ab b ab b a a, ,
2

+ − ′ = ′   (1)

σ C u β T T τṪ ,ab abfg f g ab, 0 1[ ( )]= ′ − ′ − + (2)

τ μ h H h H δ h H

h u H

˜ ˜ ˜ ,
˜ ,

ab a b b a ba f f

a a

( ( ))

( ( ))

= ′ + −

= ∇ × ×

(3)

Figure 1: Geometry of the considered problem.
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δ k δ k T
δ k T β T δ u τ δ u

ρ c δ T τ δ τ δ T

̇ Å ̇ ̈ ,
̇ ̈ .

j ab j ab ab

j ab ab ab j a b j a b

j j j

1 2
⁎

,

2 , 0 1 , 0 2 ,

1 0 1 2 2

[ ]

[ ( ) ]

[ ( ) ]

′ + ′

= − ′ + ′ + +

+ ′ + + +

(4)

As shown in Figure 1, the boundary C is deformed by
a small circular region with radius ε surrounding the load
point ξ . Therefore, according to Fahmy [33], the initial
and boundary conditions are supposed to be expressed as

u x x u x x x x R C, , 0 ̇ , , 0 0 for , ,f f2 3 2 3 2 3( ) ( ) ( )= =     ∈ ∪ (5)

Cu x x τ x x x x, , Ψ , ,τ for , ,εf f2 3 2 3 2 3( ) ( ) ( )=     ∈ (6)

C C
C C C C C C

t x x τ δ x x τ x x τ
C

¯ , , , , for , , 0,
, ,

ε

ε ε ε ε

a f2 3 2 3 2 3( ) ( ) ( )=     ∈ −   >

= ∪ − ∩ − = ∅

(7)

T x x τ T x x τ x x R C, , ̇ , , 0 for , ,2 3 2 3 2 3( ) ( ) ( )= =     ∈ ∪ (8)

CT x x τ f x x τ x x τ, , , , for , , 0,ε2 3 2 3 2 3( ) ( ) ( )=     ∈   > (9)

C C
C C C C C C

q x x τ h x x τ for x x τ
C

, , ¯ , , , , 0,
, .

ε

ε ε ε ε

2 3 2 3 2 3( ) ( ) ( )=     ∈ −   >

= ∪ − ∩ − = ∅

(10)

For functionally graded materials, the parameters
Cabfg′ (C C Cabfg fgab bafg′ = ′ = ′ ), βab′ (β βab ba′ = ′ ), μ′, ρ′, and

k k k k 0ab 23
2

22 33( ) )′ ′ − ′ ′ < are space dependent. We focused
our attention in this article on the effect of inhomogeneity
along the x0 direction. As a result, we replace these quan-
tities by C f xabfg ( ), β f xab ( ), μf x( ), ρf x( ), and k f xab ( ),
whereCabfg, βab, μ, ρ, and kab are assumed to be constants
and f x( ) is a given nondimensional function of space
variable x. We use the formula f x x 1 m( ) ( )= + , where
m is a dimensionless constant.

Thus, the governing equations (1)–(4) can be written as

σ τ ρ x ω x ρ x u1 1 ̈ ,ab b ab b
m

a
m

a, ,
2( ) ( )+ − + = + (11)

σ x C u β T T τT1 ̇ ,ab
m

abfg f g ab, 0 1( ) [ ( )]= + − − + (12)

τ μ x h H h H δ h H1 ˜ ˜ ˜ ,ab
m

a b b a ba f f( ) ( ( ))= + + − (13)

δ k δ k T

δ k T β T δ u τ δ u
ρc δ T τ δ τ δ T

̇ Å ̇ ̈
̇ ̈ .

j ab j ab ab

j ab ab ab j a b j a b

j j j

1 2
⁎

,

2 , 0 1 , 0 2 ,

1 0 1 2 2

[ ]

[ ( ) ]

[ ( ) ]

+

= − + + +

+ + + +

(14)

To study the pure anisotropic fiber-reinforced effect,
we considered that

C u λe δ μ e α a a e δ a a e

μ μ a a e a a e

βa a e a a

¯ 2

2

,

abfg f g kk ab T ab k m km ab a b kk

L T a k kb b k ka

k m km a b

, [ ( )

( )( )

]

= + + +

+ − +

+

where the reinforcement parameters α, β, and μ μL T( )−

introduce strongly anisotropic behavior in the considered
structure, and isotropic behavior can be achieved consid-
ering the following condition α β μ μ 0L T( )= = − = .

3 Numerical implementation

We can write equation (11) using equations (12) and (13)
as follows

L u ρu D T ρω x f̈ ,gb f a a a gb
2( )= − − = (15)

where

L D
x

D D D C ε ε
x

D μH
x x

Λ , , ,

δ Λ ,

gb abf
b

af a f abf abfg
g

af
a

a
f

1

0
2

1⎜ ⎟
⎛

⎝

⎞

⎠

=

∂

∂

+ + = ℵ   =

∂

∂

=

∂

∂

+

∂

∂

D β
x

τ
x τ

m
x

f ρu D T ρω x

δ Λ Λ , Λ
1

,

̈ .

a ab
b b

gb a a a

b1 1

2

⎜ ⎟⎜ ⎟
⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠

( )

= −

∂

∂

+ +

∂

∂

+

∂

∂

  =

+

  = − −

The field equations can now be expressed as

L u f ,gb f gb= (16)

L T f ,ab ab= (17)

where the operators Lgb and fgb have already been
defined and the operators Lab and fab have been defined
as:

L δ k δ k
x x

,ab j ab j ab
a b

1 2
⁎[ ]= +

∂

∂

∂

∂

(18)

f δ k T ρc x δ T

τ δ τ δ T T β δ u

τ δ u

̇ 1 ̇

̈ Å ̇

̈ .

ab j ab ab
m

j

j j ab j a b

j a b

2 , 1

0 1 2 2 0 1 ,

0 2 ,

( ) [

( ) ] (

( ) )

= − + +

+ + + +

+ +

(19)

By applying the weighted residual technique to equa-
tion (16), we obtain

L u f u Rd 0.
R

gb f gb da
⁎( )∫ − = (20)

The fundamental solution udf
⁎ is now taken as the

weighting function as

L u δ δ x ξ, .gb df ad
⁎ ( )= − (21)

Also, the fundamental solution of traction can be
expressed as

t C u n ,da abfg df g b
⁎

,
⁎

= ℵ (22)

where the traction can be expressed as

t t
x

C u β T τT n
¯

1
̇ .a

a
m abfg f g ab b, 1

( )
( ( ))=

+

= ℵ − + (23)

Using Dirac’s sifting property and integration by
parts on equation (20), we obtain
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u ξ u t t u u β Tn C

f u R

d

d .

d

C

da a da a da ab b

R

gb da

⁎ ⁎ ⁎

⁎

( ) ( )∫

∫

= − +

−

(24)

The fundamental solution T ⁎ of the heat operator Lab
can be expressed as

L T δ x ξ, .ab
⁎ ( )= − (25)

By using the weighted residual technique and applying
integration by parts to equation (17), we obtain

L TT L T T R q T qT Cd d ,
R

ab ab

C

⁎ ⁎ ⁎ ⁎( ) ( )∫ ∫− = −   (26)

in which the heat fluxes are

q k T n ,ab b a,= − (27)

q k T n .ab b a
⁎

,
⁎

= − (28)

Using Dirac’s sifting property and integration by
parts on equation (26), we obtain

T ξ q T qT dC f T dR.
C R

ab
⁎ ⁎ ⁎( ) ( )∫ ∫= − − (29)

The coupled thermoelastic integral formulae of equa-
tions (24) and (29) are

u ξ
T ξ

t u β n
q

u
T

u
T

t
q C

u
T

f
f

R

0

0
0

d

0
0

d .

d

C

da da ab b a

da a

R

da gb

ab

⁎ ⁎

⁎

⁎

⁎

⁎

⁎

⎡

⎣
⎢

( )

( )
⎤

⎦
⎥

⎧

⎨
⎩

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣

⎤
⎦

⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

⎫

⎬
⎭

⎡

⎣⎢
⎤

⎦⎥
⎡

⎣
⎢

⎤

⎦
⎥

∫

∫

= −

−

−

+

−

 

−

− −

 

(30)

In contract notation, we can write the following
elastic and thermal variables:

U u a A
T A

1, 2, 3
4A

a⎧
⎨⎩

=

= =      

=

(31)

t a A
q AΤ 1, 2, 3

4A
a⎧

⎨⎩
=

= =      

=

(32)

U

u d D a A
d D A
D a A

T D A

1, 2, 3; 1, 2, 3
0 1, 2, 3; 4
0 4; 1, 2, 3

4; 4

DA

da

⁎

⁎

⁎

⎧

⎨

⎪

⎩
⎪

=

= =     = =    

= =     =

= = =    

− = =

(33)

T

t d D a A
u d D A

D a A
q D A

˜

1, 2, 3; 1, 2, 3
˜ 1, 2, 3; 4

0 4; 1, 2, 3
4; 4

DA

da

d⁎

⁎

⁎

⁎

⎧

⎨

⎪

⎩
⎪

=

= =     = =    

− = =     =

= = =    

− = =

(34)

u u β n˜ .d da af f
⁎ ⁎

= (35)

The thermoelastic representation formula (30) in terms
of contracted notation can be expressed as:

U ξ U T U C U S RΤ ˜ d d ,D

C

DA A DA A

R

DA A
⁎ ⁎( ) ( )∫ ∫= − − (36)

where

S S S S S S SA A A
T

A
T

A
T

A
u

A
u0 ̇ ̈ ̇ ̈

= + + + + +  
(37)

in which

S ρω x A
A

1, 2, 3
0 4,A

a0
2

⎧
⎨⎩

=

=    

=

  (38)

S U
D A F

ω with ω
1, 2, 3; 4

0 otherwise,

A
T

AF F AF

a⎧
⎨⎩

=  

=

− = =
(39)

S δ k
x x

ρc x δ δ U

δ A F

1 ̇ with

1 4; 4
0 otherwise,

A
T

j ab
a b

m
j AF F

AF

̇
2 1⎜ ⎟

⎛

⎝
( ) ⎞

⎠

⎧
⎨⎩

=

∂

∂

∂

∂

− +

=

= =

(40)

S ρc x τ δ τ δ δ U1 ̈ ,A
T m

j j AF F
̈

0 1 2 2( ) ( )= − + + + (41)

S T δ β εUÅ ̇ ,A
u

j fg F
̇

0 1= − (42)

S U
ρ A F

T β τ δ ε A f F

̈ with
1, 2, 3; 1, 2, 3,
4; 4

A
u

F

fg j

̈

0 0 2
⎧

⎨
⎩

( )

= Ⅎ Ⅎ

=

= =

− + = = =

(43)

In matrix form, the coupled thermoelastic integral
formulae (30) can be written as

S ρω x D T δ k
x x

ρc x δ
T

ρc x τ δ τ

δ
T

T δ β u

ρu
T β τ δ u

0 0

1 0
̇ 1

0
̈

0
̇

̈
̈ ,

A
a a

j ab
a b

m
j

m
j

j j
fg f g

a

fg j f g

2
2

1 0 1 2

2 0 1 ,

0 0 2 ,

⎜

⎟

[ ] ⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

⎛

⎝

( ) ⎞

⎠

⎡
⎣

⎤
⎦

( ) (

)⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢ ( )

⎤

⎦
⎥

= +

−

+

∂

∂

∂

∂

− + − + +

+ −

+

− +

 

(44)

where
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S f α .A
q

N

AN
q

N
q

1
∑≈

=

(45)

Now, equation (36) may be expressed as

U ξ U T T U C U f Rα˜ d d .D

C

DA A DA A
q

N

R

DA AN
q

N
q⁎ ⁎

1

⁎( ) ( )∫ ∫∑= − −

=

(46)

Now, we may solve the following equations:

L u f ,gb fn
q

an
q

= (47)

L T f .ab
q

pj
q

= (48)

According to Fahmy [34], we can write

u ξ u t t u C u f Rd d ,dn
q

C

da an
q

da an
q

R

da an
q⁎ ⁎ ⁎( ) ( )∫ ∫= − − (49)

T ξ q T q T C f T Rd d .q

C

q q

R

q⁎ ⁎ ⁎( ) ( )∫ ∫= − − (50)

The coupled thermoelastic representation formulae
can be written as

U ξ U T T U U f RdC d .DN
q

C

DA AN
q

DA AN
q

R

DA AN
q⁎ ⁎ ⁎( ) ( )∫ ∫= − − (51)

By using equation (51), we can write the representa-
tion formula (46) as

U ξ U T T U

U ξ T U U T C α

ˇ dC

d .

D

C

DA A DA A

q

N

DN
q

C

DA AN
q

DA AN
q

N
q

⁎ ⁎

1

⁎ ⁎

( ) ( )

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

∫

∫∑

= −

+ + −  

=

(52)

Now, to calculate interior stresses, we differentiate
equation (52) with respect to ξl as follows:

U ξ
ξ

U T T U

U ξ
ξ

T U U T C α

ˇ dC

d .

D

l C

DA l A DA l A

q

N
DN
q

l C

DA l AN
q

DA l AN
q

N
q

,
⁎

,
⁎

1
,

⁎
,

⁎

( )
( )

⎛

⎝

⎜⎜

( )
( )

⎞

⎠

⎟⎟

∫

∫∑

∂

∂

= − −

+

∂

∂

− −

=

(53)

Now, the representation formula (52)may be expressed
as [34]

ζ U ηT ζ U η α˜ ˇ ˇ .( )− = − ℘ (54)

According to Gaul et al. [35], we can write

U f x γ ,F
q

N

FD
q

D
q

1
( )∑≈

=

(55)

U f x γ̇ ˜ ,F
q

N

FD
q

D
q

1
( )∑≈

=

(56)

where fFD
q are tensor functions and γD

q and γ̃D
q are

unknown coefficients.
Also, the corresponding gradients are approximated

as

U f x γ ,F g
q

N

FD g
q

K
q

,
1

, ( )∑≈

=

(57)

U f x γ̇ ˜ ,F g
q

N

FD g
q

D
q

,
1

, ( )∑≈

=

(58)

where

S S γ ,A
T

q

N

AD
T

D
q

1

q,
∑=  

=

(59)

S T δ β ε S γÅ ˜ ,A
u

j fg
q

N

AD
u

D
q̇

0 1
1

̇ q,
∑= −

=

(60)

in which

S S f ,AD
T

AF FD g
q

,
q,

= (61)

S S f .AD
u

FA FD g
q̇

,
q,

= (62)

According to the point collocation technique of Gaul
et al. [35], we can write equations (45), (55), and (56) as

S Jα U J γ U J γˇ , , ̇ ˜.=   = ′   = ′
(63)

Also, equations (40), (41), (43), (59), and (60) can be
written as [35]

S δ k
x x

ρc x δ δ Uˇ 1 ̇ ,T
j ab

a b

m
j AF

̇
2 1⎜ ⎟

⎛

⎝
( ) ⎞

⎠
=

∂

∂

∂

∂

− + (64)

S cρ x τ δ τ δ δ Uˇ 1 ̈ ,T m
j j AF

̈
0 1 2 2( ) ( )= − + + +

(65)

S AUˇ ˜ ̈ ,ü
=

(66)

S γˇ ,T T�=
(67)

S T δ β ε γˇ Å ˜.u
j fg

u̇
0 1

̇�= − (68)

The solution of the system (63) for α, γ, and γ̃ yields

α J S γ J U γ J Uˇ ˜ ̇ ,1 1 1
=   = ′   = ′

− − − (69)

where

α J S J U δ k
x x

ρc x δ δ

T δ β ε J U A cρ x τ δ τ δ δ U

ˇ 1

Å ̇ . ˜ 1 ̈ .

T
j ab

a b

m
j AF

j fg
u m

j j AF

1 0 1
2 1

0 1
̇ 1

0 1 2 2
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∂
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(70)
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Substituting equation (70) into equation (54), we
obtain [36]:

�⏞ ⏞ ⏞⏞
+ + =  M U U K Ü Γ ̇ , (71)

� �⏞⏞ ⏞⏞ ⏞
+ + = +X T A T B T U Ü ̇ ̈ ̇ , (72)

where ( )= ℘ −

−V η ζU Jˇ ˇ ,1 ⏞ =M VÃ, ⏞ ( ) ( )= − + + +X ρc x τ δ τ δ1 ,m
j j0 1 2 2

�⏞
= + ′

−K ζ V J˜ ,T 1 � = +ηT VŠ ,0 ⏞
= +B δ k δ k ,j ab j ab1 2

⁎

�⏞ ⎡
⎣

⎤
⎦

( )
= − − ′

∂

∂

∂

∂

−V k cρδ δ T β ε JΓ Åab xa xb
j AF j fg

u
1 0 1

̇ 1 , �⏞ = T β δÅ ,ab j0 1

�⏞ ( )= +T β τ δ ,ab j0 0 2 ⏞ ( )
( )

= − +

∂

∂

∂

∂

A δ k ρc x δ δ1 ,j ab xa xb
m

j AF2 1

where the vectors Ü , U̇ , U , T , and �⏞ are acceleration,
velocity, displacement, temperature, and external force,

respectively, the matrices V , ⏞M , ⏞Γ , ⏞A , ⏞B , and ⏞K are
volume, mass, damping, capacity, conductivity, and stiff-
ness, respectively, �⏞ and �⏞ are coupling matrices, and
⏞X is a vector suggested by Green and Lindsay [5].

Thus, the governing equations can be expressed
as [36]:

�⏞ ⏞ ⏞⏞
+ + =

+ + + +

M U U K Ü Γ ̇ ,n n n n
p

1 1 1 1 (73)

� �⏞⏞ ⏞⏞ ⏞
+ + = +  

+ + + + +
X T A T B T U Ü ̇ ̈ ̇ ,n n n n n1 1 1 1 1 (74)

where �⏞ = +
+ +

ηT VŠn
p

n
p

1 1
0

and
+

Tn
p

1 is the predicted
temperature.

By applying the trapezoidal rule and integrating
equation (71), we obtain
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From equation (75) we have
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where ⏞ ⏞
( )

= +

−

I MY Γ .τΔ
2

1

Substituting equation (77) into equation (76), we have
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(78)

Substituting
+

U̇n 1 from equation (77) into equation
(73) yields
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Through the integration of equation (72) with the
trapezoidal rule, we obtain
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Now, we can write equation (80) as
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(82)
where ⏞ ⏞
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= +
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1

Substituting equation (82) into equation (81), we obtain
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Substituting equation (82) into equation (74) we obtain
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We use the predictor-corrector approach to solve
equations (78) and (83), as follows:

Step 1. Predict the displacement field: =
+

U Un
p

n1

Step 2. Substitute for
+

U̇n 1 and
+

Ün 1 from equations
(75) and (73), respectively, in equation (83) and solve
the temperature field equation that results.

Step 3. The predicted displacement and computed
temperature are used to correct the displacement field.

Step 4. Equations (77), (79), (82), and (84) are used to

calculate
+

U̇n 1, +
Ün 1, +

Ṫn 1, and +
Tn̈ 1, respectively.
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4 Numerical results and discussion

The findings of this work can be used in a wide range
of rotating FGA fiber-reinforced magneto-thermoelastic
composites. This work also improved the technique of
Fahmy [33] by implementing the procedure of Farhat
et al. [36] into the current study’s DRBEM code.

In this article, we considered the following properties
of pure copper: λ 5.65 10 N m0

10 2
= ×

− , μ 2.46T = ×

10 N m10 2− , μ 5.66 10 N mL
10 2

= ×

− , β 220.9 10 Nm10 2
= ×

− ,

ρ 2,660 kg m 3
=

− , τ τ0.2 s, and 0.2 s1 2= = , where the
reinforcement parameters α, β, and μ μL T( )− introduce
anisotropic behavior in the considered structure.

The domain boundary of the considered problem
has been discretized into 42 boundary elements and 68
internal points, as illustrated in Figure 2.

Figures 3–5 display the thermal stresses σ22, σ23, and
σ33 variations along x1-axis for various functionally
graded parameter values. These figures show that the
functionally graded parameter has a significant effect
on thermal stresses.

Figures 6–8 display the thermal stresses σ22, σ23, and
σ33 variations along x1-axis for various uniform angular
velocity values. These figures demonstrate that rotation
has a significant effect on thermal stresses.

Figure 2: Boundary element model of the considered problem.

Figure 3: Variation of the thermal stress σ22 along x1-axis for dif-
ferent values of the functionally graded parameter.

Figure 4: Variation of the thermal stress σ23 along x1-axis for dif-
ferent values of the functionally graded parameter.

Figure 5: Variation of the thermal stress σ33 along x1-axis for dif-
ferent values of the functionally graded parameter.
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Table 1 shows a comparison of required computer
resources for the current dual reciprocity BEM results,
FDM results of Pazera and Jędrysiak [37], and FEM results
of Xiong and Tian [38] of modeling of rotating FGA fiber-
reinforced magneto-thermoelastic composites.

For comparison, only one-dimensional results with
ones previously known from the literature were chosen.
Figure 9 depicts the evolution of the one-dimensional
thermal stress σ22 with time for various techniques in
the special example under consideration. We were able
to demonstrate the validity, accuracy, and efficiency of
the proposed technique by comparing our one-dimen-
sional dual reciprocity BEM results to those obtained

Figure 6: Variation of the thermal stress σ22 along x1-axis for dif-
ferent values of rotation parameter.

Figure 7: Variation of the thermal stress σ23 along x1-axis for dif-
ferent values of rotation parameter.

Figure 8: Variation of the thermal stress σ33 along x1-axis for dif-
ferent values of rotation parameter.

Table 1: A comparison of the required computer resources for
modeling of rotating functionally graded anisotropic fiber-rein-
forced magnetothermoelastic composites

BEM FDM FEM

Number of nodes 68 54,000 50,000
Number of elements 42 24,000 20,000
CPU time 2 220 200
Memory 1 200 180
Disk space 0 260 240
Accuracy of results 1 2.2 2.0

Figure 9: Variation of the thermal stress σ22 with time τ for different
methods NMM, BEM, FDM, and FEM.
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using the analytical normal mode method (NMM) [39],
numerical finite differencemethod (FDM) [37], and numer-
ical finite element method (FEM) [38]. According to these
studies, the BEM results agree very well with the analytical
NMM and numerical methods FDM and FEM used in the
literature.

5 Conclusion

The primary goal of this article is to propose an implicit–
implicit predictor–corrector DRBEM scheme for solving
problems with rotating FGA fiber-reinforced magneto-
thermoelastic composites. To steer the current research
field toward the development of new functionally graded
fiber-reinforced composites, we must successfully imple-
ment computerized numerical methods for solving and
simulating complex nonlinear FGM problems. It is quite
difficult to find analytical solutions to the governing
equations. New numerical approaches to solving such
equations must be developed to address this issue. To
solve the theory’s governing equations, we propose a
new formulation of the DRBEM. Because of the benefits
of the DRBEM approach, such as the ability to deal with
issues involving complicated shapes that are difficult to
deal with using standard methods, and the absence of the
need for internal domain discretization. Low CPU utiliza-
tion and memory storage are also required. As a result,
the DRBEM is suitable for a wide range of advanced func-
tionally graded fiber-reinforced composites. The numer-
ical results are discussed in detail, with a focus on the
effects of functionally graded parameters and rotation on
the magneto-thermoelastic stresses of anisotropic fiber-
reinforced composites in the fiber direction. To validate
the proposed technique, the results were compared to
those obtained using the analytical NMM, numerical
FDM, and numerical FEM. According to the obtained
results, the proposed DRBEM technique is more effective,
precise, and stable than FDM or FEM. Computer scientists,
material science researchers, engineers, and designers and
developers of functionally graded fiber-reinforced compos-
ites may be interested in the current numerical results for
our problem.
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