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Abstract: To enhance the productivity of horizontal wells,
it is of necessity to ensure that they perform optimally.
This requires an understanding of how the reservoir’s
geometry, anisotropy and well design affect the pressure
response. Mathematical formulations can be used to simu-
late pressure response in the wellbore and the data obtained
can be analysed to obtain well and reservoir parameters
that can aid performance and evaluation. In this study, a
mathematical model that can be used to approximate pres-
sure response in a horizontal well is formulated, and a
detailed mathematical analysis that can be used to obtain
well and reservoir parameters are provided. A horizontal
well inside a rectangular drainage volume with sealed
boundaries is considered and the effect of each boundary
on pressure throughout its productive life is studied. In the
analysis, investigations on how the reservoir parameters
can be approximated over a given period of production
are conducted. This is achieved by identification of the
appropriate source and Green’s functions. These source
functions allow us to formulate a mathematical model for
dimensionless pressure. Considering the diagnostic plots for
both dimensionless pressure and dimensionless pressure
derivative, mathematical analysis studies the possible beha-
viour of the plots. Analysis indicates that the reservoir ani-
sotropy can be approximated during the infinite-acting flow
at early times when other parameters are known. Further,
when the first boundary is felt, in this case the vertical
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boundary, the horizontal permeability can be approximated
during the transition flow periods at middle times. Finally,
at late times when all the boundaries have been felt and a
pseudosteady state flow is evident, reservoir dimensions can
be approximated. These results can significantly improve
well test analysis and enhance the performance evaluation
of a horizontal well.
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reservoir geometry, anisotropy, pressure response

1 Introduction

Horizontal wells are replacing vertical wells in modern
exploration of oil due to their improved production over a
given drainage volume. Their ability to reach larger areas
of a drainage volume places them at an advantage com-
pared to vertical wells. With their drilling complexity, this
comes with more cost and thus it is important that proper
evaluation and a good understanding of their perfor-
mance is improved so that they can be more productive.
The length of the well to be drilled in a given drainage volume
so as to maximise the pressure response is of importance
compared to the dimensions of the reservoir. Mathematical
models are used to simulate pressure response and thus can
be used to analyse the data obtained from well tests.

In a monograph [1], the advances in well test analysis
with discussions on the use of diffusivity equation in
solving fluid flows are discussed. The pressure behaviour
during infinite-acting flow is discussed in detail in ref. [2],
in which, the exponential integral is applied in the
approximation of pressure. In a very detailed paper [3],
instantaneous source and Green’s functions are studied
and it is demonstrated that a solution of the diffusivity
equation could be obtained using the product of the
appropriate source and Green’s functions when the New-
man’s product method was used. This provided a way of
solving unsteady flows. In refs [4-8], studies using these
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source and Green’s functions were conducted and math-
ematical models which could simulate pressure response
in reservoirs were developed. In these studies, infinite-
acting models are considered, with some considering cer-
tain boundaries as sealed. Isotropic cases were employed
in most studies to simplify calculations, thus not consid-
ering each directional permeability. These approxima-
tions and assumptions continue to limit the models and
affect the accuracy of the results obtained. In an attempt
to delineate flow periods, authors [9,10] developed stra-
tegies of delineating flow periods and developed equa-
tions that could be used to approximate the time when
flow periods started or ended in a rectangular drainage
system. With more horizontal wells being drilled, it became
even more necessary to account for these flow periods and
how the pressure response during a certain flow period was
affected by the well design and the reservoir geometry. This
has seen development of more models to simulate pressure
response and investigate how well and reservoir parameters
influence the performance of a horizontal well. Source and
Green’s functions have been considered further in the devel-
opment of these models. Authors [11-20] have developed
models and used them to study horizontal well performance.
The consideration of only the infinite-acting flow, sealing of
certain boundaries and isotropic cases to ease the complexity
of anisotropy considerations in three dimensional drainage
volumes continue to limit these models. In this study, the
performance of a horizontal well in an anisotropic reservoir
when all the boundaries are sealed is investigated.

2 Reservoir physical model
description

A completely sealed rectangular drainage volume of dimen-
sionless length, x,p, dimensionless width, y,.p and dimension-
less thickness, hp is considered. A horizontal well of dimen-
sionless length, Ly drilled in the x-direction is considered. For
mathematical analysis, the well is considered to be parallel to
the x-boundary and perpendicular to the y-boundary. The
well is centrally located in the reservoir such that from the
centre of the reservoir located at (x,,p, Yuwp, Zwp), the well
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stretches to a length Lp/2 in both the directions along the
x-axis as shown in Figure 1.

3 Mathematical description

The heterogeneous three dimensional diffusivity equa-
tion accounting for directional permeability as given by
ref. [9] is shown in equation (1),
2 2 2
kx% + kyg% + kngIz = (Dpct?)—lt), 1)
Where k,, k, and k, are the axial permeabilities in x, y and
z directions, @ is porosity, u is reservoir fluid viscosity, c;
is total compressibility and P is pressure.

Equation (1) finds a lot of applications in solving
unsteady flows and its solution for dimensionless pres-
sure Pp as given by ref. [11] is shown in equation (2), and
the dimensionless pressure derivative P}, is given by
equation (3):

tp
Pp = ZﬂhDIS(XD, ) S(¥p» ) S(2p, Tp)d1p, ()]
0

Ph - tp%’, 3
where tp is dimensionless time and 7p is a dummy vari-
able for time.

In equation (2), s(ip, Tp) is the appropriate instanta-
neous source and Green’s function in the respective axial
direction given by:
¢ An infinite-slab source of thickness L located at x = x,,

in an infinite-slab reservoir given by ref. [3] and sim-
plified by inserting dimensionless variables is approxi-
mated as shown in equation (4) at early time and as
shown in equation (5) for late time.

1[ {\/W +(XD_XWD))

s(xp, tp) = —| er
(xp, tp) 5 2o

+er \/k/kx + (XD - XWD)
2ty ’

(4)

hp

YeD

A
~
o

Figure 1: Horizontal well in a rectangular drainage volume.
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n2m2
2Aep lp
s(xp, tp) = —[ Z ( )
eD
(5)

. Nm___nmx nmx

X sm—cos—WDcos—D],
XeD XeD XeD

¢ An infinite plane-source located at y = y,, in an infinite-

slab reservoir of thickness y, given by ref. [3] and simpli-

fied by inserting dimensionless variables is approximated

as shown in equation (6) at early time and as shown in
wa)

equation (7) for late time.
1 k Op - 2
sy, tp) = —— | — | exp| ————|]|, (6

SO tp) = —| 1+ 2 > exp( ZﬂztD)
o %

m=1 yeD
mmy, my,

% cos—WDcos—D],
YeD Yen

¢ An infinite plane-source at z = z,, in an infinite-slab
reservoir of thickness h given by ref. [3] and simplified
by inserting dimensionless variables is approximated
as shown in equation (8) at early time and as shown
in equation (9) for late time.

(zp — zZwp)?
S(ZD’ tD) 2\/7T_tD \/ZI: ( tD ):I; (8)

2
tD cos TEwD lnz,p
hp hp

s(zp, tp) = hl [1 + ZZexp( i
D

=1 D

Substituting these instantaneous source and Green’s functions
in equation (2), solving for equation (3) and simplifying, we
obtain the following mathematical models to simulate dimen-
sionless pressure response at early time as reported in ref. [21];
(i) During infinite-acting flow when no boundary has
been felt, the dimensionless pressure is given by
equation (10) and the dimensionless pressure deri-
vative by equation (11).

2
py= - POk gif T | (10)
4.k k, 4tpe
2
py= Pkl T | (11)
4 kykz 4tDe
where r,,p is defined by equation (12).
rep = Op = Yup)? + (20 — zup)%. (12)
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The exponential integral Ei(—x) in equation (10)
is defined as
—U
Ei(-x) = —Ie—du,
u

X

(13)

(ii) When the vertical boundary is felt, the dimension-
less pressure is given by equation (14) and the
dimensionless pressure derivative by equation (15).

kik + (o —an)”

- T
N
+ erfl[\/k/kx - (XD - XwD)]| % [exp(_ (,VD - wa)Z):I
2 41p
- Pt Inz,p Inzp || dop
1+2 - ——=wz it A | St
x [ + Eexp( 2 )cos T cos T ]} N

(14)
T orf v/l + (xp = xup)
2 ky 2Jtp

+ el’fl‘(’\ k/kx - (XD - XwD)]:| % [exp(_ (YD ;wa)Z)]

Ph=

2Jty tp

2ty lnzup lnzp
1+2)exp cos Ccos —— tp,
[ lzl ( hj ) hp hp v

(15)
When the horizontal boundary parallel to the well is
felt before the horizontal perpendicular boundary,
the dimensionless pressure is given by equation
(16) and the dimensionless pressure derivative by
equation (17).

Py = itj‘z er‘_(,/k/kx + (xp - wa))
YeD . PN

. er{ KTk + 0 - xwp))]

(iii)

2%

oo 252 m m
.[1 +2) exp(—m 7; TD]COS "D o WD]
m=1

eD YeD YeD

22
[1 +2) exp( ! :TD)COS Iﬂ}j—[")VD cos %]}dm,

=1 D
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2Jtp
\/k/kx + (XD - XWD)
+ er{ 2\/6

o 252 m m
J1+2) exp _m;;tD cos 7D s 0D
m=1 Yen YeD YeD

J1+ ZZexp Pty cos—D Inzp Coslﬂﬁ tp,
h3 hp hp

I=1 D

g {[er{ Kk + (o - xwp)]

(17)

(iv) In case the horizontal boundary perpendicular to the
well is felt before the horizontal parallel boundary,
dimensionless pressure is given by equation (18) and
the dimensionless pressure derivative by equation (19).

\/_ k I Uep z _n’r’
ky xeD
x sin L cos MWD g @]

XeD XeD XeD

O — Yun)? - P2ty
X [exp(—% 1+ 2; exp| - 7

X COS IHZWD cos Iﬂﬁ]}—dTD ,

) hp 1) Vo

[ et )

nmxp ]
XeD

(18)

N

PD—

nrmx
x sinT cos WD g

XeD XeD

22

x [exp( Ob = Yun)” wa) ][1 + 2Zexp( InztD)
hp,

X cos—= Inzp coslﬂﬁ]}x/g,

(19)

hp hp

When all the boundaries have been felt and a pseudosteady
state behaviour is evident, the dimensionless pressure is
given by equation (20) and the dimensionless pressure deri-
vative by equation (21) as reported in ref. [22].

DE GRUYTER

tp
oo 242
Py = 2 J‘ 14 2Xep Zlexp(—n T sp)
XE‘DyeD h n n XeD
D2

n=1
X sinﬂcosmcos@]
X X X
eD eD eD (20)
v m’m’tp Mywp . MDD
|1+2) exp| -———= [cos—Lcos
m=1 Yen YeD Yen
oo 22
g1+ ZZexp(—l T ZtD )cos Inzyp cos Inzp drp,
et hp ho o hp
n2m2
PD; _ 2 eD Z ( 7T tD)
XeDYep X2
X sinﬂcosmcos@]
XeD XeD XeD
Jr+2) exp(— m nzD)cos "ub (. 0
m=1 YeD YeD Yen

S 12ty lnzyp  lnzp
.[1 + ZZexp(— > )cos w cos—]}tD.
pet hp hp hp

In this study, the performance of the well from incep-
tion to date is considered. To determine the dimension-
less pressure response from inception to date, the pressure
response models from the infinite-acting flow when no
boundary has been felt, through the transition flows as
specific boundaries are felt up to the point when all the
boundaries are felt and a pseudosteady state flow is evi-
dent are superposed. Since the formation thickness is con-
sidered far much smaller compared to the length and
width of the reservoir, it is expected that the vertical
boundary will be felt earlier than the horizontal bound-
aries. Depending on which of the two horizontal bound-
aries is felt earlier after the vertical boundary has been felt,
the mathematical model for computing dimensionless
pressure and its dimensionless pressure derivative starting
from inception to date will have two cases. First, for a case
where the horizontal boundary parallel to the well (y-
boundary) is felt first, dimensionless pressure is given by
equation (22) and the dimensionless pressure derivative by
equation (23).
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Py= - Bhpk Ei(—r‘f’—D) VA [k j’l Jk/ke + (xp = Xup)
sk \ ae) 2 \K N
+ orf Vk/k = (xp = xwp) exp(— Ob = Yup)’ ) 1+ Ziexp(— Pty )cos nzu 2 || d1p
2\/5 41p =1 th hD hD \/ﬁ
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tp
2
L j 2Xen Z ( ey )smﬂcos MWD .05 TTXD
XeDYep Xen? XeD XeD XeD
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m=1 YeD Yep Yen et hp hp hp
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XeDyeD XeD XeD
5] 242 2 2
J1+2) expf- MATD | oM 5 ™ 1+ ZZexp P ) o5 T2uD. o5 120 tp.
2 hp? h h
m=1 YeD D D

Second, the horizontal boundary perpendicular to the well (x-boundary) is felt first. In this case, the dimension-
less pressure is given by equation (24) and dimensionless pressure derivative given by equation (25).

p - B[R E1 er f\rj{ [( Kik, +(XD_XWD)H
4 kykz 4tDe \/E
+ erfl [ YK/l = (0 — xu0) exp(_ Op — Yup)? ) - 2§exp(— 122, )COS 2w 2 || do
2\/5 4TD =1 hD2 hD hD \/E

22 _ 2
\/_ j [ eD Z ox ( nmeTp )SIHECOS N7Xy,p cos nrixp :| [exp(_ (yD wa) )]
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< 2t Inz,p  lnzp
x |1+ 2) exp|- COS————CO0S—— t
[ 1; p( hp? ) hp hp Vo
2 2
N 2n eD z ( T tp)s1 nmn cosnnXWDcosnnXD
XeDYep XeD XeD

o 22 m
.[1+22exp(—mn2t[’)cos T
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In these models, the integral limits are calculated
using the strategies developed in ref. [9], such that tp,
is the dimensionless time when the first boundary is felt
indicating an end to the infinite-acting flow given by

1.9008 k
2k =
The integral limit, tp;, is the dimensionless time
when the first horizontal boundary is felt given by the
minimum value from the computed values in equations
(27) and (28) given by

(26)

De =

1.7424 k

= =7 K —dy, 7)
5.0688 k

=" e (28)
X

The next integral limit, tp, is the dimensionless time
when all the boundaries of the reservoir have been felt
given by the maximum value from the computed values
of equations (27) and (28) indicating the start of the full
pseudosteady behaviour and finally, ¢, is the dimension-
less time considered to date. Authors of [9] also noted
that the early radial flow period can end when the well-
bore end effects start affecting the flow at a time
expressed in dimensionless form as;

k
tp = 0.132—<.
b k

X

(29)

The early linear flow period ends when the flow starts
moving beyond the ends of the wellbore at a time
expressed in dimensionless form as

bp= 0.16896k£.

X

(30)

2,2
] [1 + ZZexp I;;;‘D)cosln:;mc s% }tD

The late pseudoradial flow starts at a time when the
flow starts coming from beyond the ends of the wellbore
at a time expressed in dimensionless form as

k
tp = 1.56288k—.

X

€3]

And can end at a time when the boundary perpendi-
cular to the well starts affecting the flow at a time
expressed in dimensionless form as

2112 k LY
th="22(do+ =) .
TR kx(" 4)

These strategies might not account for all the transi-
tion flows from inception to date.

(32

4 Discussion

Considering a single layer for a centrally located well, the
models described in cases one and two are used with
Odeh and Babu strategies to identify the approximate
integration limits. The possible results are analysed using
diagnostic plots from a theoretical mathematical perspec-
tive from inception to date.

4.1 Infinite-acting flow

The infinite-acting flow period starts shortly after the well
is put into production. Considering the model equation
for dimensionless pressure derivative during infinite-
acting flow given by equation (11), the exponential part,
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exp( “;ﬁ) approximates to 1 as tp increases for the given

time and relatively small wellbore radius, thus equation
(11) reduces to equation (33).

Bhpk
4 [k,

D (33)

Taking logarithms on both sides of equation (33),
equation (34) is obtained.

(34)

log(P}) = 1og[ Pk )

4 ki, |

The term on the right hand side of equation (34) is a
constant and thus on log-log axes, for a plot of P},
against tp, equation (34) will produce a flat horizontal
line such that the flat point can be described by a con-
stant given by expression (35).

Bhok

4 fkk,

This flow is radial in the y—z plane and can be con-
sidered as the early radial flow period. Considering the
equation for dimensionless pressure during infinite-acting
flow given by equation (10), and using the approximation

35

of the exponential integral given by [2], for 2“% < 0.02, the

exponential integral can be approximated as shown in
equation (36).

r2 r2
Eil -2 | = In| 1.781*2 |.
4ty 4ty

Substituting equation (36) in equation (10), equation

(37) is obtained.
2
In| 1.781+2 |.
4tp

Equation (37) can also be expressed as shown by
equation (38).

(36)

_ ﬁh Dk
4/ kk,

37

Bhpk Bhpk 2
= ———log(tp) - ———log(r;;
4,/k/k;log(e) 8(to) 4,/k/k;log(e) 8(p) 38)
+ 0,203 Phwk

Jokz

From equation (38), a plot of Pp against log(tp) will
be a straight line having a slope given by expression (39).

Bhpk

4./l k;log(e) '

This slope can be used to evaluate the anisotropy
ratio in the vertical plane for a given formation thickness.

39)
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4.2 When the vertical boundary has an effect
on the flow

The model equation for dimensionless pressure deriva-
tive when the vertical boundary has been felt is con-
sidered. Taking logarithms on both sides of the model
equation as given by equation (15) and simplifying, equa-
tion (40) is obtained.

N
log(Pl) = %log(tp) + log[ﬁ /kﬁerf( ; \//t— )l (40)
y D

Considering the limits that this flow period occurs,

\/ / X
2ty
this time and thus equation (40) can be reduced to equa-
tion (41).

log(Py) = %log(tp) + log[ﬁ \/kz ]
Y

This shows that a log—log plot of P}, against tp, will be
an upward straight line having a half slope. Considering
the model equation for dimensionless pressure given by
equation (14), its indefinite integral solution is given by
equation (42).

k k/k k .
ez iy ) (-

At the time this flow period occurs, erf( L kx)
2Vt

approximates to 1 and El( k/q,;) approximates to 0

the error function, erf( ) approximates to 1 during

(41)

k/k,
™ ) (42)

and thus equation (42) can be reduced to equation (43).

PD-zf\FJE

This implies that a graph of P, against \/t; will be a
straight line having a slope given by expression (44).

(43)

(44)

This slope can be used to approximate the anisotropic
ratio in the horizontal direction perpendicular to the well.
The next transition flow suggests a radial flow with the
graph of dimensionless pressure derivative expected to
flatten. This flow period starts after the flow has started
coming from beyond the ends of the wellbore. Considering
dimensionless pressure derivative as given by equation

(15), during the time that the flow period occurs,
Jto erf( Jk/ *) approximates to le % | and thus equation

(15) approximates to equation (45).
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PL = L
N

Taking logarithms on both sides of equation (45),
equation (46) is obtained.

(45)

log(Pp) = log( (46)

k
Tk |
Thus, considering a graph of P}, against tp, the graph
is expected to flatten with a constant value. Adding the
other constant value when the graph is flattened given by
equation (35), the constant value at this point of flat-
tening is given by the expression (47).

ok k i
4 ik, Jkk, (47)

Considering the dimensionless pressure as given by
equation (14), during the time that this flow period

occurs, \/tp erf( Vk\//_k ) approximates to Vk/_"* and using

the exponential integral equation for k/ kx

< 0.02 is given
by equation (48),

Ei —% =1n|1.781—= k/k (48)
4tp 4tp
Equation (14) approximates to equation (49).
2k k k/ky
Pp=—— - ——1n 4
P Tkl ki, ( 4ty ) (49)
This simplifies to equation (50).
= K ogy) + 2
Jkdo log(e) ke,
k k k (50)
Sk (%mw
ki, log(e) kx \ /kxky

From this equation it implies that a plot of P, against
log(tp) will give a straight line having a slope given by
expression (51).

(5D

Kk
Jkd log(e)

This slope can be used to approximate the aniso-
tropic ratio in the horizontal plane. This transition flow
period will end if any of the horizontal boundaries is felt.

4.3 When the horizontal boundary has an
effect on the flow

Considering the dimensionless pressure derivative where
the y-boundary is felt first, with the geometry considered
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and the time that this flow period occurs, equation (17)
approximates to equation (52).

py= 7 K &

(52)
ZyeD kx

Taking logarithms on both sides of equation (52) and
simplifying, equation (53) is obtained.
k. )

JT
2yeD

This indicates that a plot of Pj, against t; will be a
straight line on log-log axes with a half slope. Considering
the dimensionless pressure, equation (16), with the geometry
considered and the time that this transition flow period
occurs, the indefinite integral for equation (16) is given by
equation (54).

P, _ nk/kxer[(\/k/kx]

log(Pp) = log(tu) + log( (53)

4yeD 2\/6
N LtD VK ke (54)
eD 2\/5
k/ky
& Ve -4k,
ZyeD Ky
This can be approximated to equation (55).
N \/?
=— |—tp. (55)
YeD kX \/—D

Equation (55) indicates that a graph of Pp against \/E
will be a straight line with a slope given by expression (56).
Jm |k . (56)
ky

This slope can be applied in determining the aniso-
tropic ratio in the direction parallel to the well and the
dimensionless reservoir width if the anisotropic ratio is
already known from previous calculations. On the other
hand, if the horizontal boundary perpendicular to the
well is felt first, considering dimensionless pressure deriva-
tive, from the considered geometry, equation (19) reduces to

equation (57).
R L LN
XeD ky

Taking logarithms on both sides of equation (57) and
simplifying, we obtain equation (58).

(57)

log(P}) = %log(tp) + log(;/ﬁD kﬁ] (58)
e y
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This indicates a straight line with a half slope on
log-log axes for dimensionless pressure derivative against
dimensionless time. Considering the dimensionless pres-
sure as given by equation (18), the indefinite integral is
given by equation (59).

2Jm |k
Py = — Jtp.
XeD ky \/—
This indicates that a plot of Pp against \/tp will give a
straight line whose slope is given by expression (60).

207 [k
XeD ky )

This slope can be used to estimate the anisotropic ratio
in the direction perpendicular to the well and if this is
determined from previous calculation, then the slope can
be applied to estimate the dimensionless reservoir length.

(59)

(60)

4.4 When all the boundaries have an effect
on the flow

At that point when all the boundaries of the reservoir have
been felt, a pseudosteady state flow starts. Considering
dimensionless pressure derivative, from the geometry con-
sidered and the time that this flow occurs, equation (21)
reduces to equation (61).

2n

P = tp. (61)

XeDYep

Taking logarithms on both sides of equation (61),
equation (62) is obtained.

log(Pp) = log( ) + log(tp). (62)

eDYeD

This indicates that a plot of P}, against tp will be a
straight line on log-log axes with a unit slope. Considering
the dimensionless pressure, the indefinite integral of equa-
tion (21) gives equation (63).

2
PD = tD.

XeDYep

(63)

This implies that a plot of Pp against tp gives a
straight line whose slope is given by expression (64).

2

XeDYeD

(64)

With any of the two parameters identified in previous
calculations, this slope can be used to estimate the other
parameters. This flow period will prevail to date.
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5 Conclusion

During any flow period from inception to date, any well
test procedure can apply the diagnostic plots as dis-
cussed in this study to determine the reservoir para-
meters. In this study the approximate forms of estimating
the required parameters in a well test have been derived
and presented. The study provides a method to estimate
the reservoir and well parameters. The identifications of
specific flow periods, particularly the transition flows,
require further analysis since this study considers effects
of boundaries. For data that is obtained in a well test, a
diagnostic plot can be used together with the analysis of
this study to estimate reservoir properties that can improve
well design and enhance productivity. Since this study
considers anisotropy in all directions, it improves the
accuracy of the parameters estimated considering that
most studies consider isotropic cases.

Dimensionless parameters

. . _ knap
Dimensionless pressure Pp = Ta12g08

Dimensionless reservoir lengths i, = % /kﬁ_ ,iwp = Z’TW \/g

. i,
and ip = % kk,

. . . _ 0.001056kt

Dimensionless time tp = ~opel?

Dimensionless well length Ly = % ki
Nomenclature
B formation volume factor, rbbl/sth
Ct total compressibility, 1/psi
h reservoir thickness, ft
hp dimensionless reservoir thickness
i axial flow direction; x, y and z
k reservoir permeability, md
Ky directional permeability in the x-direction, md
k, directional permeability in the y-direction, md
k, directional permeability in the z-direction, md
L well length, ft
Pp dimensionless pressure
P} dimensionless pressure derivative
q flow rate, bbl/day
s source

time, hours
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tp

Xp
XE

Xw

XwD

Vb
Ve
YeD
yW
Ywp

Zp
Zw

ZwD

i

Tp
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dimensionless time

length in x-direction, ft

dimensionless reservoir length in the x-direction
reservoir length, ft

dimensionless reservoir length

source coordinate in the x-direction, ft
dimensionless source coordinate in the x-
direction

width in y-direction, ft

dimensionless reservoir width in the y-direction
reservoir width, ft

dimensionless reservoir width

source coordinate in the y-direction, ft.
dimensionless source coordinate in the y-
direction

thickness in z-direction, ft

dimensionless reservoir thickness

source coordinate in the z-direction, ft
dimensionless source coordinate in the z-
direction

diffusivity constant in the i axial flow direction,
md-psi/cp

porosity, fraction

reservoir fluid viscosity, cp

dimensionless dummy variable for time

Conflict of interest: Authors state no conflict of interest.

References

(1]

(2]

(6]

(7]

Mathews CS, Russell DG. Pressure buildup and flow tests in
wells. Monograph. Vol. I. Dallas, TX: Society of Petroleum
Engineers of AIME; 1967.

Lee W). Well testing. New York: Society of Petroleum Engineers
of AIME; 1982. p. 1-4

Gringarten AC, Ramey HJ. The use of source and Green’s
functions in solving unsteady - flow problems in reservoirs.
Soc Pet Eng ). 1973;13(5):285-96. doi: 10.2118/3818-PA.
Carvalho RS, Rosa AJ. A mathematical model for pressure
evaluation in an infinite-conductivity horizontal well. SPE Form
Eval. 1989;4(4):559-66. SPE 15967. doi: 10.2118/15967-PA.
Clonts MD, Ramey H) Jr. Pressure transient analysis for wells
with horizontal drain holes; 1986, April 2-4. Conference Paper
Presented at the SPE California Regional Meeting, Oakland,
California. doi: 10.2118/15116-MS.

Daviau F, Mouronval G, Bourdarot G, Curutchet P. Pressure
analysis for horizontal wells. SPE Form Eval, SPE.
1988;3(4):716-24. doi: 10.2118/14251-PA.

Goode PA, Thambynayagam RKM. Pressure drawdown and
buildup analysis of horizontal wells in anisotropic media.
Soc Pet Eng ). 1987;2(4):683-97. doi: 10.2118/14250-PA.

(10]

(11]

(12]

(13]

(15]

(16]

(18]

(19]

(20]

(21]

(22]

DE GRUYTER

Ozkan E, Raghavan R, Joshi S. Horizontal well pressure ana-
lysis; 1987, April 8-10. Conference paper presented at the SPE
California Regional Meeting, Ventura, California. doi: 10.2118/
16378-PA.

Odeh AS, Babu DK. Transient flow behaviour of horizontal
wells, pressure drawdown, and buildup analysis; 1989, April
5-7. Conference Paper Presented at the SPE California
Regional Meeting, Bakersfield, California. doi: 10.2118/
18802-MS.

Kuchuk FJ, Goode PA, Wilkinson DJ, Thambynayagam RK.
Pressure-transient behavior of horizontal wells with and
without gas cap or aquifer. Soc Pet Eng. 1991;6(1):86-94.
doi: 10.2118/17413-PA.

Adewole ES. The use of source and Green’s functions to derive
dimensionless pressure and dimensionless pressure deriva-
tive distribution of a two-layered reservoir, part |: a-shaped
architecture. ) Math Technol. 2010;16:92-101.

Al Rbeawi S, Tiab D. Transient pressure analysis of horizontal
wells in a multi-boundary system. Am ) Eng Res.
2013;2(4):44-66. doi: 10.2118/142316-MS.

Eiroboyi I, Wilkie SI. Comparative evaluation of pressure dis-
tribution between horizontal and vertical wells in a reservoir
(Edge water drive). Nigerian | Technol. 2017;36(2):457-60.
doi: 10.4314/njt.v36i2.19.

Erhunmwun ID, Akpobi JA. Analysis of pressure variation

of fluid in bounded circular reservoirs under the constant
pressure outer boundary condition. Nigerian | Technol.
2017;36(1):461-8. doi: 10.4314/njt.v36i1.20.

Idudje EH, Adewole ES. A new test analysis procedure for
pressure drawdown test of a horizontal well in an infinite-
acting reservoir. Nigerian | Technol. 2020;39(3):816-20.

doi: 10.4314/njt.v39i3.22.

Ogbamikhumi AV, Adewole ES. Pressure behaviour of a hori-
zontal well sandwiched between two parallel sealing faults.
Nigerian ) Technol. 2020;39(1):148-53. doi: 10.4314/
njt.v39i1.16.

Oloro JO, Adewole ES, Olafuyi OA. Pressure distribution

of horizontal wells in a layered reservoir with simultaneous
gas cap and bottom water drive. Am ) Eng Res.
2014;3(12):41-53.

Oloro JO, Adewole ES. Derivation of pressure distribution
models for horizontal well using source function. ) Appl Sci
Environ Manag. 2019;23(4):575-83. https://www.ajol.info/
index.php/jasem.

Orene JJ, Adewole ES. Pressure distribution of horizontal well
in a bounded reservoir with constant pressure top and bottom.
Nigerian ) Technol. 2020;39(1):154-60. doi: 10.4314/
njt.v39i1.17.

Owolabi AF, Olafuyi OA, Adewole ES. Pressure distribution in a
layered reservoir with gas-cap and bottom water. Nigerian |
Technol. 2012;31(2):189-98.

Nzomo TK, Adewole SE, Awuor KO, Oyoo DO. Mathematical
description of a bounded oil reservoir with a horizontal well:
early time flow period. Afr J Pure Appl Sci. 2021;2(1):67-76.
doi: 10.33886/ajpas.v2i1.190.

Nzomo TK, Adewole SE, Awuor KO, Oyoo DO. Mathematical
description of a bounded oil reservoir with a horizontal well:
late time flow period. Afr ] Pure Appl Sci. 2021;2(1):61-6.
doi: 10.33886/ajpas.v2i1.188.


https://www.ajol.info/index.php/jasem
https://www.ajol.info/index.php/jasem

DE GRUYTER
Appendix

Case example on computing (effect of
dimensionless horizontal well length, Lp)

To study how the dimensionless horizontal well length
affects the flow periods and dimensionless pressure, using
the models derived, dimensionless horizontal well length
is varied keeping the other parameters constant. Table Al

Table A1: Dimensional and dimensionless parameters for varying Lp
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_— 27

shows the theoretical dimensional values considered and
the computed dimensionless variables.

Table A2 shows the dimensionless flow period time
computed using Odeh and Babu strategies as described
from equations (23-32). From Table A2, it is observed that
the y-boundary is felt first. Using equation (22) dimen-
sionless pressure is computed and dimensional pressure
derivative is computed using equation (23).

The dimensionless pressure and dimensionless pres-
sure derivative values computed are shown in Table A3.

L(ft) ky = 200 md, k, = 150 md, k, = 10 md, h = 150 ft, x.= 30,000 ft, y. = 20,000 ft

Lp Xwp Xep r'wp Ywp Yep Zp Zwp hp
500 0.9642 34.713 69.426 0.0031 26.722 53.444 0.7793 0.7762 1.5524
1,000 1.9285 17.356 34.713 0.0016 13.361 26.722 0.3897 0.3881 0.7762
1,500 2.8927 11.571 23.142 0.0010 8.9073 17.815 0.2598 0.2587 0.5175
2,000 3.8570 8.6782 17.356 0.0008 6.6805 13.361 0.1948 0.1941 0.3881
2,500 4.8212 6.9426 13.885 0.0006 5.3444 10.689 0.1559 0.1552 0.3105
Table A2: Dimensionless flow period time for varying Lp
L(ft) Early radial Early linear Late pseudoradial Late linear

tpe tpe tp(start) tp(end) tp(start) tp(end) tp(end) tp(start) tp(start) tp(end)
500 0.2863 0.0442 0.2863 0.0566 0.5231 625.67 311.05 1476.5 0.2863 311.05
1,000 0.0716 0.0442 0.0716 0.0566 0.5231 153.80 77.761 356.71 0.0716 77.761
1,500 0.0318 0.0442 0.0318 0.0566 0.5231 67.202 34.561 153.12 0.0318 34.561
2,000 0.0179 0.0442 0.0179 0.0566 0.5231 37.158 19.440 83.134 0.0179 19.440
2,500 0.0115 0.0442 0.0115 0.0566 0.5231 23.373 12.442 51.323 0.0115 12.442
Table A3: Dimensionless pressure and dimensionless pressure derivative for varying Lp
tp L =500 ft L = 1,000 ft L =1,500 ft L =2,000 ft L =2,500 ft

Pp Py Pp Py Pp Py Pp Py Pp Py

1.0 x 10°¢ 0.0380 0.1214 0.2815 0.3537 0.4670 0.3483 0.4726 0.2858 0.5148 0.2452
1.0 x107° 1.4428 1.0550 1.4990 0.6292 1.4027 0.4362 1.1987 0.3301 1.1114 0.2659
1.0 x 107# 4.2597 1.3097 3.0056 0.6665 2.4224 0.4461 1.9662 0.3349 1.7270 0.2681
1.0 x 1073 7.3198 1.3383 4.5463 0.6704 3.4511 0.4471 2.7380 0.3353 2.3446 0.2683
1.0 x 1072 10.406 1.3412 6.0905 0.6708 4.4807 0.4472 3.5102 0.3354 2.9623 0.2683
1.0x 107! 13.494 1.3415 7.5076 0.9719 5.2914 0.7483 4.1033 0.6365 3.4605 0.5694
1.0 x 10%° 15.364 1.7175 8.3124 1.0468 6.0961 0.8232 4.9081 0.7114 4.2652 0.6443
1.0 x 10* 16.244 1.7269 9.1928 1.0562 6.9765 0.8326 5.7885 0.7208 5.1456 0.6537
1.0 x 102 17.133 1.7279 10.166 1.8244 8.4036 1.9846 7.9464 4.9666 8.6829 6.8033
1.0 x 103 18.645 2.9414 15.934 10.284 21.823 19.675 32.336 32.677 46.753 49.024
1.0 x 10% 33.658 22.567 77.104 76.732 158.62 164.35 276.24 287.07 427.45 442.85
1.0 x 10° 186.66 183.87 689.10 705.33 1526.6 1557.2 2715.2 2759.3 4234.5 4291.3
1.0 x 108 1716.7 1740.1 6809.1 6877.8 15,207 15,316 27,105 27,254 42,304 42,493
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Figure A1: Variation in dimensionless pressure and dimensionless
pressure derivative with Lp.

Figure Al shows the plot of Py and P}, against t; on
log—log axes where the solid lines represent Pp against
tp, while the dashed lines represent P}, against tp. From
Figure Al, the infinite-acting flow is identified as the first
flow period. This flow period starts shortly after the well
is put into production. This flow period is evident with
the flattening of the dimensionless pressure derivative
plot at early times. This flow period is radial in the y-z
plane and can be considered as the early radial flow
period. It should be noted that this flow period might
end even before the vertical boundary is felt for the cases
where the flow coming from the ends of the well starts
influencing the pressure response. In such a case, a very
short transition flow which is still radial continues until
the flow reaches the vertical boundary. When the vertical

DE GRUYTER

boundary is felt, it is noted that as the dimensionless hor-
izontal well length increases, an early linear flow period
occurs in the y-z plane. This flow period is observed to
prevail for a very short time and is evident when the
dimensionless pressure derivative plot stops flattening
and shows an upward trend. Where the early linear flow
period does not occur, a transition flow occurs from the
time the vertical boundary is felt until the time the flow
starts coming from beyond the ends of the wellbore. This is
evident for the first two cases where dimensionless hori-
zontal well length was considered. Where the early linear
flow occurs as shown in the last three cases of the dimen-
sionless horizontal well length considered, this flow will
end when the flow moves beyond the ends of the wellbore.
At this point a transition flow occurs until the flow starts
coming from beyond the ends of the wellbore. When the
transition flow ends, we identify a second radial flow with
the flattening of the graph of dimensionless pressure deri-
vative. This flow period starts after the flow has started
coming from beyond the ends of the wellbore and can be
considered to be the late pseudoradial flow period with
one boundary having been felt. This flow period will end
when the y-boundary is felt which is followed by a transi-
tion flow.

The transition flow will prevail until the x-boundary is
felt at a point where it can be considered that all bound-
aries to have been felt and a pseudosteady state flow has
begun. On the plot, this is identified with the straight
upward line at late time. This flow period will prevail to
date. For the parameters considered, it is noted that as the
dimensionless horizontal well length increases, the pres-
sure response decreases during early time but increases
during late time when a pseudosteady state behaviour is
observed.
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