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Abstract: Analysing the Output Power of a Solar Photo-
voltaic System at the design stage and at the same time
predicting the performance of solar PV System under dif-
ferent weather condition is a primary work i.e. to be car-
ried out before any installation. Due to large penetration of
solar Photovoltaic system into the traditional grid and in-
crease in the construction of smart grid, now it is required
to inject a very clean and economic power into the grid
so that grid disturbance can be avoided. The level of so-
lar Power that can be generated by a solar photovoltaic
system depends upon the environment in which it is op-
erated and two other important factor like the amount of
solar insolation and temperature. As these two factors are
intermittent in nature hence forecasting the output of solar
photovoltaic system is the most difficult work. In this pa-
per a comparative analysis of different solar photovoltaic
forecasting method were presented. A MATLAB Simulink
model based on Real time data which were collected from
Odisha (20.9517∘N, 85.0985∘E), India. were used in the
model for forecasting performance of solar photovoltaic
system.
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1 Introduction
Power Plant Based on Renewable Energy System have
dragged the attention of Power researchers due to its scat-
tered expression in the last decade. Large scale expansion
of these sources have made it to meet the increase in de-
mand of electrical energy. This expansion is not only for
economic or political reason but also for creating a suit-
able environment for our newgenerationwhere powerwill
be produced from clean sources like solar and wind with
zero environment pollutions. Government is also taking
a lots of efforts such as carbon credit incentives, subsi-
dies for installation of solar photovoltaic system promot-
ing green building concept for educational institute etc.
From a survey it was found that by year 2035, out of the to-
tal Electricity Produced by the country, the Res based elec-
tricity generation will count one third of it.

For large scale interconnection of solar photovoltaic
system it is required to forecast the daily solar insola-
tion availability of the geographical area where the photo-
voltaic system is likely to operate fromoperation andmain-
tenance point of view. It is also required to opine the power
engineers about different power quality issues being to be
faced throughout the day because of intermittent nature of
solar PV output. Unit commitment is another essential pa-
rameter for day type of power generating unit. Day ahead
unit commitment of renewable energy generating system
makes it able to run the reserve power generation system
in a more efficient manner which not only minimizes both
time and cost and at the same time increases grid reliabil-
ity by injecting clean power to the traditional grid.

Forecasting/unit commitment for day ahead system
helps the generating station engineer to properly manage
the power demand and these bymaintaining a balance be-
tween the generation and demand. Again due to involve-
ment of lots of environmental parameters such as temper-
ature, cloud quantity, dust exact prediction of PV power
output become a difficult task. A number of forecasting
method have been introduced by many researcher in last
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decade. All these forecasting are for long term prediction
of solar PV system. From literature it can be found that ba-
sically there are types of power forecasting method and
they are numerical approach, hybrid approach, AI tech-
nique approach, physical approach, numerical approach
is also equivalent to statistical approach which uses some
regression analysis in past historical data to predict the
output of forecasted result. A little bit modification to sta-
tistical approach i.e. Artificial intelligence (AI) uses some
back propagation and forward algorithm to arrive at a par-
ticular result. Apart from all these methods physical pre-
diction of solar PV data from weather condition by using
some numerical method and satellite images have been
used since long time. Combining all these approaches in
a single unit can regenerate the hybrid system which has
the capability of predicting the solar PV output based
on the images taken from the satellite, AI-technique with
some numerical analysis can solve the prediction problem.
Apart from ongoing discussed forecasting methods, some
other statistically used method usually start with mathe-
matical function which describe the linear and nonlinear
relationship between the data sets and their behaviour to
the environmental parameter with an objective to mini-
mize the variation of mathematical function. In this case
the analysis takes a long time to analyse the result and
thereby making convergence of the system optimized pa-
rameters. This paper present a comparative analysis of all
the forecasting method mainly used by researchers over
past decade. Thepaper describes about the artificial intelli-
gence based extremum learning algorithm for forecasting
the solar hidden network such as analysing some kind of
weight to the hidden layer and arbitrary selection of hid-
den bias was selected by applying the genetic algorithm to
the master real time data which are collected from open
source data based on meteorological department. Differ-
ent section of the paper includes the proposed idea is ar-
ranged in the followingmanner.1st sectiondescribes about
brief description of forecasting followed by 2nd section
which mainly deals with the modelling of PV cells along
with different MPPT technique with special focus on incre-
mental conductancemethod.3rd and4th section describes
about result analysis and comparison with new technique.
5th section describes about the conclusion along with fu-
ture development.

2 PV Model
The main aim of solar PV forecasting is to forecast the
weather condition such as temperature, solar radiation

and to that of PVoutput for aparticular system.A standard-
isedmodel is always helpful in predicting the performance
of solar PV of different capacity under any environmental
condition.

2.1 Solar PV plant

Different method of PVmodelling were described in the lit-
erature like one diodemodelling and two diodemodelling.
Actually by increasing the diode in the modelling one can
calculate the exact losss occurring in the system. However
wolf has proposed a method for describing the mathemat-
ical of solar cell with a current source, a diode connected
in anti-parallel and two resistor such as series and parallel
resistor. According to Wolf

Iph =
(︂

G
Gstc

)︂{︀
Iph,stc + Ki (T − Tstc)

}︀
(1)

Where G represents the solar radiation, Gstc repre-
sents the standard solar radiation, Iph,stc represents photo
generated current during standard temperature condition
(STC), T and Tstc temperature and temperature at STC re-
spectively. Similarly themaximumpower generated by the
solar PV module can be written as

Pv = ηA [I − 0.05 (t − 25)] (2)

Where total conversion efficiency is represented by ‘η’.
This ‘η’ is for the entire solar PV array, total area covered
by the solar PV array represented by A(m2). Solar inso-
lence falling on the array is represented by I (kw/m2) and
‘t’ represents the total ambient temperature of PV array in
(∘C). The real timemodelwhichwas developed inMATLAB
simulink model consist of 72 no of cells having total max-
imum output power of 300 Wp(pmax). Maximum short cir-
cuit current is 5.&@ A and a open circuit voltage of 23.4V.
The shunt and series resistance representing the lid con-
nection resistance is of 1200 ohm and o.1 miliohm respec-
tively.

3 Aspect of PV power Forecasting
Short listing the input variable and effect of environmental
aspect affect the accuracy of developed model. Prediction
of PV generation operating in an environment depends in
the following mentioned factor.

a) Historical or past decade data of PV generating sys-
tem.

b) Meteorological variable such as environmental tem-
perature, cloud coverage, wind speed,shading due
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to dust, irradiance and global solar insolation etc.
Generally four kinds of forecasting are there and
they are as follows.

(1) Intraday Forecasting
In the competitive energy market availability of electrical
energy at the point of demand is the most challenging job.
Intraday forecasting which is usually from some few sec
to minute could able to ensure the availability of storage
device connected with solar PV system on the PV system
as a whole. This increases the efficiency and reliability of
grid connected PV system.

(2) Short term forecasting
Economic load dispatch and there by easy distribution of
power is an essential part of any power distribution net-
work. Short term forecasting is actually carried out for 2-3
days. Day ahead forecasting enable the power purchaser
and also distribution company people to allocate the load
according to availability of power or energy.

(3) Medium term Forecasting
Power system network always forces some kind of break-
downwhich requires periodicmaintenance of the network.
Medium term forecasting usually varies from 3 to 7 days.
This enable the operation and maintenance people to con-
nect the system and bring back them to the level for power
transmission and distribution.

(4) Long term forecasting
Long term forecasting usually varies from week to month
on to a year also. It involves a lots of parameter and huge
rigorous calculation is usually carried out to forecast the
power in terms of watt.

So from the above discussion it can be found that fore-
casting of the solar PV power helps in deciding the gener-
ating commitment of generating unit, economic load dis-
patch of power, real time unit commitment, and storage
system selection for the electricity market. From the four
no of forecasting method short term forecasting is usually
carried out by the power researcher for solar PV system.

(5) Data Synthesis
Processing and synthesizing a large size of data always
a challenge.In our simulation and analysis work priority
was given to minimize the error between two search algo-

rithms. The function describing the objective can be writ-
ten as follows

Xi=mi=0 f (x) =
{︁
Xmin−Xnew
Xmax−Xmin

V , u

Where Xmin,Xmax represent min and maximum value of
temperature, windspeed between two data sets. This pro-
cess will be followed in the subsequent iteration till it con-
verge to themaximumon best possible year series. X repre-
sent each month of that corresponding for which analysis
is being carried out.

(6) Data Analysis
In this research paper different statistical analysis tool
were used to analyze the predicted result. in order to ana-
lyze how far the predicted data is from the fittest line, root
mean square error(RMSE) method is usually used to pre-
dict the data set originality and its closeness with respect
to fittest line. This analysis is generally used to predict the
climate condition and regression analysis in order to ver-
ify experimental result. RMSE can be found out by using
equation 3.

RMSE =
√︁
(f − δ)2 (3)

Where f represents the forecasted value onpredicted value
and δrepresents the observed value on base value for
which forecasted was conducted. Here bar represents the
mean of that quantity. Equation 3 can be remodelled as

RMSE =
[︃ N∑︁
i=1

(︀
Zfi − Zoi

)︀2
N

]︃2
(4)

Where Zfi−Zoi represents the difference between twoquan-
tity and N represent the sample size of observed quantity.

Again difference between two continuous variable can
be represented bymean absolute error. MAE generally rep-
resents the vertical distance present between thepredicted
result and identity line. Equation 5 canbeused to calculate
MAE,

MAE =
n∑︁
i=1

|yi − xi|
n =

n∑︁
i=1

|ei|
n (5)

Where ei represents the error present between the time
varying quantity and n represent the sample quantity.

Mean absolute percentage error (MAPE) or mean ab-
solute differentiate error(MADE) is generally used in the
statistics to predict the accuracy of the prediction variable.
It is usually represented as

M = 1
n

n∑︁
i=1

⃒⃒⃒⃒
At − Ft
At

⃒⃒⃒⃒
(6)
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At represents the actual value and Ft represents the
forecasted value.”n" represents sampling quantity of the
variables. Combination of these three technique can be
utilised to predict on forecasting the performance of solar
PV system under different weather condition.

Introduction
Loni j. et al. [69] in their paper cloud advection forecast-
ing has demonstrated about the method of forecasting us-
ing estimated cloudmotion vector. They have collected the
data from roof top PV system. Target location are then cal-
culated based on the median of transposed measurement.
A correlating approachwas carried out to test the accuracy
of forecasting. Yarg et al. [71] analyse the solution of fore-
casting using “Lasso” parameter shrinkage method. The
method applied here is based on training on the recent
measurement history andmotion on “upwind” and “down
wind” is assumed static. Achleitner et al. [76] has intro-
duced peak matching algorithm which matches the peak
value of data to be measured and PV farm in order to es-
tablish the momentary time lag in between the clouds.

4 Problem Definition
Forecasting method based on NWP/satellite resolution,
statistical method, and black box method of comparison
is not time dependent. The regression analysis generally
uses no of historical data to predict on forecast the solar
PV output. However approach based on historical mingle
may not be applicable to first changing environment on
sometimes not suitable for dynamic analysis. Therefore in
this paper AI- based fractional order derivative (AI-FOD)
has been introduced to measure the observed values and
process them with dynamic change in environmental con-
dition before casting.

(7) Pearson’s Correlation coeflcient
It measures the correlation between two variables. The
ρrepresents the Pearson correlation coefficient can be eval-
uated through equation (7)

ρ = cov(P, P̂)σpσP̂
(7)

Where the numerator represents the covariance of actual
power and the forecasted P̂ and the denominator repre-
sents the standard deviation of the quantities respectively.
from the above equation (7) it can be concluded that larger

the value of Pearson’s constant, lesser the error between
forecasted value and data.

(8) Skewness and Kurtosis
Skewness represent the asymmetry present in the system
probability distribution function. Skewness index is repre-
sented by

𝛾 = E
[︂(︁ e − µe

σe

)︁2]︂
(8)

where 𝛾 represent the skewness index, e represents the er-
ror present in actual and forecasted result. µe and σe repre-
sents the mean and standard deviation present in the fore-
casted value respectively. SimilarlyKurtosis as represented
by K means the magnitude of the peak of the distribution.
K can be calculated as

K = µ4
σ4e

− 3 (9)

Where µ4 represents the 4th moment of mean and σ rep-
resents the standard the standard deviation of forecasted
error.

5 Application Of Genetic Algorithm
To Forecasting

Optimizing the data set in order to calculate a particu-
lar data. Usually involves a long iterative calculation and
initial guess to predict the data set. Basically the tradi-
tional optimization is of two types and they are conti-
nuity assumption and convergence to a particular value
based upon initial assumption. In contradiction to the tra-
ditional optimization technique, GA algorithm based op-
timization technique, GA algorithm based optimization
technique works only on objective function and its bound-
ary value to find the best possible solution. Some of the
distinguished characteristics of GA are as follows.

i) GA works on binary data rather than on the original
data.

ii) GA usually works on population of data rather than
a single point of data,which enable it to find the best
possible result on fittest value.

iii) GA uses some probabilistic logic and thereby works
on objective function hence requirement of extra pa-
rameter for evaluation of objective function may be
eliminated.
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x =
(︁
xT1 , xT2 , xTj . . . xTJ

)︁
; j1, 2, ∀j

xp,q ∈ Dj
and

(︀
Dj1, Dj2, Dj3 . . . Dj,λ

)︀
⎫⎪⎪⎬⎪⎪⎭ (10)

Again for finding out the best fitness function of individual
data.

f (x)ind =
objind − objind(min)
objind(max)−objind(min)

(11)

f (x)ind is fitness of each pareto involved.
objind is objective of each individual chromosome.
objind(min) is objective of smallest individual chromosome.
objind(max) is objective of maximum individual chromo-
some

The objective function as shown in (3) must be satis-
fied with the constraint as

Gs (x)
Gs(x)

≤ 1, s = 1, 2, ∀ss (12)

Where Gs (x) and Gs(x) represent the calculated and lim-
ited value constraints and ss represents the inequality con-
straints.

Elite individual which are inherent in GA usually dou-
ble as compared to individual selection. Hence the popu-
lation of GA must generate sufficient amount of elite indi-
viduals, which ultimately aims in preventing their penetra-
tion in to the next level of generation. Hence the fitness
function as described in (3) can be re modified to

f (x)ind =

⎧⎨⎩f (x−1)ind − f (x)ind , f (x)ind > f ;
0, f (x)ind < f ;

(13)

Where f (x−1)ind = fitness function at (x-1)
and f (u) = 1

population size
∑︀pop.size

∅=1 f (x)ind
Eq. (5) tells that the objective function can remove the

too much presence on each individual elite member and
there by restricts its entry into next generation level. Du-
plicated individuals are redundant to the population size.
Therefore their fitness function is usually set to zero. This
is to avoid duplicity.

The selection operator will find out best chromosome
i.e. to be transferred to the next stage based on fitness
value. Chances of selection of chromosome for lower fit-
ness valued individual is very less as compared to chromo-
some having larger fitness value. Chances of selection of
chromosome having larger fitness value.

6 Experimental Setup & Result
Analysis

Forecasting or unit commitment for solar photovoltaic sys-
tem, strongly depends upon the solar radiation and tem-
perature, apart from these parameter some other parame-
ter such as humidity and shading is also affect the perfor-
mance of unit commitment. In this experiment data base
has been collected fromOdisha (20.9517∘N, 85.0985∘E), In-
dia. Based on the historical data, the data validation was
carried out through ANN based on MATLAB. A novel crite-
ria is used a twopoint stopmethodwas adopted for validat-
ing the data, the algorithm is shown in Figure 1. All compu-
tation were carried out on a PC having 2.4 :GHz processor
having 1 GB RAM Linux system. Data such as solar inso-
lation and temperature were validated with artificial neu-
ral network based on python language. Data from 2000 to
2017 was collected and were processed with ANN and the
best result from each and every month were collected in
an excel sheet format. It was found that after applying the
Regression and Root Mean Square error function for eval-
uating the function that all the approximate results are up
to the mark and the error present between them is under
the tolerance limit .It is worthwhile to mention here that
the error calculated using RMSE and MAE has a little devi-
ation to that of the ANN based approximated result.

Table 1 shows the Observed and Calculated value of
AC SystemOutput alongwith the calculated systemACout-
put Energy. Column 5 and 6 represents the Observed and
calculated temperature using ANN of the Environment. In
the present research Environmental temperature is consid-
ered to be the variable quantity which ultimately affects
the performance of solar Photovoltaic system. Solar Irradi-
ance for each month is assumed to be constant. The MSE
and the Hidden layer details involved in the ANNmodel is
shown in Table 2.

From Table 2 it can be concluded that the for valida-
tion of 0.0131 the no. of hidden layer in the First part and
Second part becomes 20 and 10 respectively. This confirms
that for a test result of 0.0131, train was just only 0.0023.
Hence the temperature corresponding to it was taken as
the final calculated value or best value having the Error be-
tween the observed and forecasted value to be minimal.

Table 3 & 4 shows the Statistical Analysis such as Re-
gression and Probability Analysis. From the Table 4 it can
be found that the probability of prediction lies in the range
of 12.5 to 95.833 percentile. The normal error present in the
statistical analysis is of 1123.718. Now in order to validate
the forecasting GA is applied for each month on the objec-
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Figure 1: Algorithm of the Proposed GA Technique for Forecasting of Solar PV AC output

Figure 2: Polynomialisation of Temperature vs. AC Output Curve

tive function as shown below

y = 3.6169x2 + 4077.3x − 25301 (14)

The objective function as shown in equation 14 was de-
rived from the Polynomialisation of Temperature and AC
out put (kWh), which is shown in Figure 2
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Table 1: Observed & Calculated value of Environmental Temperature and Solar PV Output

Month Month AC System Output(kWh) AC System
Output(kWh)-Calculated

Observed
Temp.

Forecasted
Temperature

Solar Radiation
(kWh/m^2/day)

1 Jan 82257.875 81609.98438 26.53 26.77 4.2925396
2 Feb 100442.0313 99655.03125 30.97 30.91 5.67678547
3 Mar 135883.5938 134822.3594 34.81 37.95 6.68656969
4 Apr 142563.4375 141450.9688 39.92 40.28 6.84843159
5 May 145573.6094 144436.5625 39 40.23 6.48288298
6 Jun 125976.9844 124990.3047 32.34 37.9 5.53810167
7 Jul 119612.6172 118674.0938 31.28 32.85 4.99226809
8 Aug 114054.0469 113159.0781 32.68 35.56 4.94502401
9 Sep 113528.625 112638.5859 35.76 34.24 5.49704838
10 Oct 110454.2891 109588.3906 31.37 33.34 5.54661322
11 Nov 90045.02344 89337.64844 28.1 29.08 4.85409641
12 Dec 80529.05469 79894.44531 33.71 35.03 4.25716782

Table 2:MSE and the Hidden layer details

Number of Neurons Mean Square Error
First Hidden Layer Second Hidden Layer Train Validation Test

10 10 0.0071 0.0198 0.0189
10 15 0.0082 0.0174 0.0192
10 20 0.0001 0.0146 0.0120
10 25 0.0009 0.0180 0.0173
10 30 0.0089 0.0191 0.0175
20 10 0.0023 0.0131 0.0117
20 15 0.0072 0.0171 0.0145
20 20 0.0018 0.0176 0.0169
20 25 0.0010 0.0195 0.0202
20 30 0.0017 0.0216 0.0185

Table 3: Regression Statistics using ANOVA

ANOVA
df SS MS F Significance F

Regression 1 3198110075 3198110075 14.78798 0.003236
Residual 10 2162641479 216264147.9
Total 11 5360751554

Coeflcients Standard Error t Stat P-value Lower 95.0% Upper 95.0%
Intercept −29300.6 37352.97934 −0.784425135 0.450973 −112528 53927.01
X Variable 1 4319.441 1123.241284 3.845514379 0.003236 1816.703 6822.178

Figure 3 shows the Simulation and data validation of
Forecasted value with Genetic Algorithm. It is found that
the Forecasted result as shown in the Table 1 is under the
Normalcy. Similar to the AC Output Forecast, statistical
analysis of Temperature is shown in the −5.

Table 5 and 6 shows the Statistical analysis of Tem-
perature Histogram over 18 years and Regression analysis
using ANOVA for Temperature respectively. The one-way
analysis of variance (ANOVA) is used to determinewhether
there are any statistically significant differences between
themeans of two ormore independent groups. Here df rep-

resents the degree of freedomwhich is 1 for Regression and
16 for Residual in this present study. Significance F repre-
sents the ratio of Mean Square Error to Sum Square Error,
which is unity in the present case. This signifies that the
forecasted result for solar PV is the best accurate one with
respect to temperature. The F-test is used for comparing
the factors of the total deviation. In the present analysis
of ANOVA F is found to be 22.1812 which is inside the pre-
scribed limit of F.
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Table 4: Probability Output Vs. Predicted Output

RESIDUAL OUTPUT PROBABILITY OUTPUT
Observation Predicted Y Residuals Percentile Y

1 85294.14 −3036.265792 4.166667 80529.05
2 104472.5 −4030.425393 12.5 82257.88
3 121059.1 14824.48556 20.83333 90045.02
4 143131.4 −568.0116801 29.16667 100442
5 139157.6 6416.045461 37.5 110454.3
6 110390.1 15586.89424 45.83333 113528.6
7 105811.5 13801.13399 54.16667 114054
8 111858.7 2195.346965 62.5 119612.6
9 125162.6 −11633.95167 70.83333 125977
10 106200.2 4254.056217 79.16667 135883.6
11 92075.66 −2030.63895 87.5 142563.4
12 116307.7 −35778.66894 95.83333 145573.6

Table 5: Statistical Analysis of Temperature Histogram over 18 Years.

Sl.
No.

Year Average RMSE MAE/MAD MAPE

1 2000 34.86091 1.977964 1.743796296 5%
2 2001 34.43364 1.606435 1.346018519 4%
3 2002 35.45273 2.282671 1.829259259 5%
4 2003 33.81273 0.583844 0.428703704 1%
5 2004 34.46455 1.285657 1.034259259 3%
6 2005 33.90273 0.986355 0.814259259 2%
7 2006 33.39909 1.636352 1.223425926 4%
8 2007 34.19818 1.124786 0.981666667 3%
9 2008 33.57364 1.361213 1.164351852 3%
10 2009 34.62818 1.244886 0.93537037 3%
11 2010 33.33455 1.791018 1.555277778 5%
12 2011 33.06 1.442175 0.97962963 3%
13 2012 32.68273 1.745693 1.461481481 4%
14 2013 32.63 1.279996 1.166944444 4%
15 2014 33.38091 1.11952 0.978518519 3%
16 2015 33.47727 0.854177 0.668333333 2%
17 2016 33.19364 1.66902 1.380092593 4%
18 2017 32.97818 1.398536 1.025925926 3%

Table 6: Regression Statistics using ANOVA for Temperature Analysis

ANOVA
df SS MS F Significance F

Regression 1 6.166595666 6.166595666 23.18126642 1
Residual 16 4.256261451 0.266016341
Total 17 10.42285712
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(a) Best Fitness Value or Forecasted Solar PV
System for the Month of Januarry

(b) Best Fitness Value or Forecasted Solar PV
System for the Month of February

(c) Best Fitness Value or Forecasted Solar PV
System for the Month of March

(d) Best Fitness Value or Forecasted Solar PV
System for the Month of April

(e) Best Fitness Value or Forecasted Solar
PV System for the Month of May

(f) Best Fitness Value or Forecasted Solar PV
System for the Month of June

(g) Best Fitness Value or Forecasted Solar PV
System for the Month of July

(h) Best Fitness Value or Forecasted Solar PV
System for the Month of August

(i) Best Fitness Value or Forecasted Solar PV
System for the Month of September

(j) Best Fitness Value or Forecasted Solar PV
System for the Month of October

(k) Best Fitness Value or Forecasted Solar PV
System for the Month of November

(l) Best Fitness Value or Forecasted Solar
PV System for the Month of December

Figure 3: Shows the Best Fitness Value or Forecasted Solar PV System for the every month of Year
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7 Conclusion
The level of solar Power that can be generated by a so-
lar photovoltaic system depends upon the environment in
which it is operated and two other important factor like the
amount of solar insolation and temperature. Application
of GA to Forecasting of the Solar AC output system is dis-
cussed in this paper. It is found that the forecasting using
GA is much more convenient and accurate as compared to
statistical method of analysis. In the next paper of this se-
ries Optimisation of Solar PV Output with respect to two
variable such as Temperature as well as Solar Radiation
will be presented. Grid connected solar Photovoltaic issues
based on the Forecasted result and their mitigation tech-
niques will be discussed in future work.
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