Open Eng. 2017; 7:470-478

DE GRUYTER OPEN

Research Article

Mikhail Posypkin* and Alexander Usov

Implementation and verification of global
optimization benchmark problems

https://doi.org/10.1515/eng-2017-0050
Received Aug 12, 2017; accepted Nov 19, 2017

Abstract: The paper considers the implementation and
verification of a test suite containing 150 benchmarks for
global deterministic box-constrained optimization. A C++
library for describing standard mathematical expressions
was developed for this purpose. The library automate the
process of generating the value of a function and its’ gra-
dient at a given point and the interval estimates of a func-
tion and its’ gradient on a given box using a single de-
scription. Based on this functionality, we have developed
a collection of tests for an automatic verification of the pro-
posed benchmarks. The verification has shown that liter-
ary sources contain mistakes in the benchmarks descrip-
tion. The library and the test suite are available for down-
load and can be used freely.

Keywords: optimization test problems, global optimiza-
tion, interval analysis, function estimation, function gra-
dient

1 Introduction

Test suites are inevitable to develop new algorithms for
global optimization, as well as study existing optimiza-
tion methods. Tests for optimization are available in many
forms. There are several previous studies containing the
collections of test problem. To the best of our knowledge
the most comprehensive test suite for bound-constrained
global optimization is considered in [1]. Some test suites
are available online as modules for various programming
languages. It is worth to mention CUTEr [2], which is a
versatile testing environment for optimization and linear
algebra solvers. The package contains a collection of test
problems, along with Fortran 77, Fortran 90/95 and Mat-

*Corresponding Author: Mikhail Posypkin: Dorodnicyn Comput-
ing Centre, FRC CSC RAS, Russian Federation;

Email: mposypkin@gmail.com

Alexander Usov: Dorodnicyn Computing Centre, FRC CSC RAS,
Russian Federation

lab tools intended to help developers design, compare and
improve new and existing solvers. Many Internet sources
provide collections of global optimization benchmarks, for
example [3]. In addition, there are automated generators of
test functions in [4].

Also, there are several techniques for comparing
global optimization algorithms. For example, [5] intro-
duces a methodology allowing one to compare stochas-
tic and deterministic methods. The article [6] is dedicated
to a comparison between nature-inspired metaheuristic
and deterministic algorithms. The systematic review of the
benchmarking process of optimization algorithms is given
in [7].

It is important to note that in [1], functions were col-
lected from various literary sources. Our careful examina-
tion showed that in the process of rewriting errors were
made in more than 30% of the tests. Thus, it is very im-
portant to verify the test suite. We used for these purposes
the deterministic global optimization approach.

In addition to calculating the value of an objective
function, various methods on estimating a function on a
given box are used in the methods of global optimization.
For example, the evaluation of the enclosing interval of a
function is calculated by the interval analysis method [8]
or by using Lipschitzian properties. Manual programming
of these methods is time consuming and error-prone. We
automated these tasks: the interval bounds are computed
based on the same internal representation as for the value.

This article describes the approach to creating bench-
mark functions that calculate the value of the objective
function at a given point and also to automatically obtain
the interval bounds of the function on a given box using a
single description of a mathematical expression. As a re-
sult of this approach, the test suite of 150 C++ template
functions was created. Practically all the functions for the
test suite were taken from [1] and checked with the original
sources and automatically verified with the interval global
optimization method. In total, four types of unit tests were
developed based on the Google C ++ Testing Framework.

The distinguished feature of our approach is that we
verified the test suite using global optimization methods
and that we provide a flexible C++ interface to bench-

3 Open Access. © 2017 M. A. Posypkin and A. L. Usov, published by De Gruyter. (: This work is licensed under the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 License

https://doi.org/10.1515/eng-2017-0050

DE GRUYTER OPEN

marks. This interface supports standard methods for com-
puting objective’s values and gradients as well as more
complex but highly demanded in global optimization in-
terval estimates.

2 Description of the benchmark
functions

Let’s exemplify our approach on the Rosenbrock (1) and
DropWave (2) functions.

D-1
f0=3 [100- (xior = x2)" + 0 - 1)2] 1)

i=1

f(X)=_1+cos (12-,/x1.2+x%> o

0.5 (x2+x3)+2

The function (1) can have an arbitrary number of vari-
ables while the second one has exactly two parameters.
The C ++ template function for a Rosenbrock function is
depicted at Figure 1.

template <class T>
Expr<T> Rosenbrock(int n)

{
Expr<T> x;
Iterator i(0, n-2);
Expr<T>t=i;
return loopSum(100*sqr(x[t+1]-sqr(x[i]))+sqr((x[i]-
1), i);
}

Figure 1: Rosenbrock function.

Let’s look into this section of code in detail. The input
parameter n is a number of function variables of the type
T. The template parameter T is either a C++ standard real
(double or float) type or an Interval<> type for working
with interval estimates (Section III). The function returns
an object of type Expr<T> which allows to calculate the
value of a function at a given point or to obtain an interval
estimate of the function over a given box (Section IV).

The implementation of the function body is based on
the mathematical expressions library outlined in Section
II. The variable at Figure 1 of type Expr<T> is the simplest
possible expression that describes the function parame-
ters vector. The variable of the Iterator type is used as
an index to access vector’s elements.

Implementation and verification of global optimization benchmark problems =— 471

The iterator constructor has two input parameters
meaning the range of the index variable. Note that the in-
dex of the variable does not necessary has an Iterator
type. It can also be any integral expression. The example
is given at the Figure 1: initially, the variable is initialized
by the iterator and then the expression is used as an in-
dex to access the elements of . The loopSum returns the
expression implementing the summation using the itera-
tor i. Another method sqr returns a mathematical expres-
sion of type Expr<T> passed to the method as an input pa-
rameter to quadratic power. Both of these functions are de-
scribed in the mathematical expressions library covered in
the Section III.

Rosenbrock function depicted at the Figure 1 returns
an object representing a mathematical expression to the
calling code. Note that the function description is speci-
fied once. The resulting expression allows to calculate the
value of the function/gradient at given points or calculate
the interval estimate of the function/gradient over a box.

Besides a function a benchmark contains constraints.
In this particular case we consider only interval con-
straints. The remaining information for the benchmark is
stored as a meta description (Figure 2).

"Rosenbrock" : {
"description": "Rosenbrock function",
"anyDim" : ,
"bounds": [

{"a": -30.0, "b": 30.0}
1,
"globMin": [
{"x":[1.0]}
1,
"globMinY": 0.0
}

Figure 2: Meta description for the Rosenbrock benchmark in JSON
format.

In the meta description the following JSON fields are
used:

e description — name of the global optimization
benchmark;

¢ anyDim - true or false flag describing the type of the
dimensionality. If the flag is set to true, then the size
of the parameter’s vector can be arbitrary and must
be set by a user. If the flag is false, then the size of
the space is specified by the dim field Figure 4.

472 =—— M. A.PosypkinandA. L. Usov

¢ dim - The number of an objective function parame-
ters. This field should be empty if the flag anyDim is
set to true.

® bounds — An array that describes the interval
bounds on parameters. Each element of this array
stores the left and right boundaries for the function
parameters. These boundaries are denoted by a and
b fields respectively. In case the flag anyDim is true,
the array has only one element. All other elements
are assumed to be equal to the first Figure 2.

e globMin — An array storing the coordinates of the
global minimum point Figure 4. Note, the array is
necessary because the function may have multiple
global minima. Each element x consists of an ar-
ray that stores the elements of the coordinate of the
global minimum point. In case the flag anyDimis set
to true, this array has only one element Figure 2. All
other elements are assumed to be equal to the first.

® globMin — the global minimum value of the func-
tion.

e comment - an optional field with any additional in-
formation about a function.

Figure 3 shows the description of the DropWave func-
tion (2). This function has strictly defined dimension
(equal to 2) and does not have an input parameter like
Rosenbrock function (1).

template <class T>
Expr<T> DropWave()

{
Expr<T> x;
Expr<T> a = sqr(x[0])+sqr(x[1]);
Expr<T> b = 1+cos(12*sqrt(a));
Expr<T>c=0.5%a + 2;
return —b/c;

}

Figure 3: DropWave function.

It should be noted that if a description of a function
formula is large, then it is more convenient to break it into
several parts. For example, DropWave function (Figure 3)
has intermediate variables a,b and ¢, which are initialized
by some part of the formula. This makes it possible to re-
duce the number of parentheses and improve readability.

DE GRUYTER OPEN

"DropWave" : {
"description": "Drop-Wave function",
"anyDim" : ,

"dim": 2,

"bounds": [
{"a": -5.12, "b": 5.12},
{"a": -5.12, "b": 5.12}

I,

"globMin": [
{"x":[0.0, 0.0]}

1,

"globMinY": -1.0

}

Figure 4: The meta description of the DropWave function in JSON
format.

3 The mathematical expression
library

Mathematical expression library was developed in C++
programming language. Though C++ is not that common
in scientific computing as, for instance, Python and For-
tran we believe it is still important to support it because
a significant fraction of researchers and practitioners use
this language in their work. C++ is significantly faster
than Python and it supports templates and other advanced
object-oriented capabilities. Such capabilities are crucial
for processing polymorphic expressions and building ex-
tensible tools for computing function values and bounds.
Another reason why we use C++ is a possibility of integra-
tion with existing code and libraries in our department.

The library of mathematical expressions is repre-
sented by the template class Expr<T>, where C++ standard
real types double and float or the type Interval<> can be
used as the template parameter T. This enables describing
mathematical expressions based on real numbers or inter-
vals.

The Expr<T> class has two constructors. The first con-
structor has one input parameter of type double. It allows
to create a constant expression based on the value of this
parameter. Also, this constructor is used to automatically
convert real or integer numbers to Expr<T> type. It is worth
noting that the automatic conversion of a number into an
expression occurs if the number is to the right of an ex-
pression of type Expr<T>. If the number is on the left, then
the C++ overload operator is used. An example of such an
operator (binary “-“) is given in the Figure 5.

The second constructor of Expr<T> with no parame-
ters can describe a vector of variables that is used to imple-

DE GRUYTER OPEN

/**
* Subtracts the expression from the real number
* @param lv is left number
* @param rv is right expression
* @return expression
*
/
template <class T2> friend
Expr<T2> operator-(double lv, const Expr<T2>& rv);

Figure 5: The operator of overloading the operation of subtraction in
the class Expr<T>.

ment a function. A vector of variables with a single name
(for example, x) whose size corresponds to the dimension
of the space. In this case, an index is used to refer to a spe-
cific element of this vector. The index can be represented
as an integer starting with 0, type Iterator, or an arbi-
trary expression of type Expr<T>. An access to individual
parameters is provided by an overloaded square brackets
operator Figure 6. For example, the vector variable x was
created to implement the Rosenbrock function Figure 1.
Next, we refer to the elements of this vector using the itera-
torior the calculated expression t + 1. The size of the vector
x is determined by the input parameter n of Rosenbrock
function. The vector variable x is also created in DropWave
function Figure 3, but the elements of this vector are ac-
cessed using integers O or 1 since the dimension of the
space equals to 2.

/**
* Index operator for vector variables
* @param i is integer index
* @return expression
*/
Expr<T> operator[](int i); /**
* Index operator for vector variables
* @param iterator
* @return expression
*
/
Expr<T> operator[](const Iterator &iterator);
/**
* Index operator for vector variables
* @param expr is calculated expression
* @return expression
*
/
Expr<T> operator[](const Expr<T> &expr);

Figure 6: The overloaded square brackets operators in the class
Expr<T>.

Implementation and verification of global optimization benchmark problems = 473

Standard mathematical operations such as addition,
subtraction, multiplication etc. are implemented using
C++ standard operators overloading techniques. To de-
scribe various mathematical expressions, the library in-
cludes elementary mathematical functions. The library
implements trigonometric functions sin, cos, tg, ctg,as
well as inverse trigonometric functions acos, asin, atg,
actg. In addition, the exponential function exp, the loga-
rithmic functions 1n and log, the function for computing
the power pow, the absolute value abs, the minimum func-
tion min and the maximum function max are supported.
The IfThen ternary operation is implemented for the orga-
nization of conditional logic in mathematical expressions.
The functions LoopSum and LoopMul implement summa-
tion and multiplication respectively. To print a mathemati-
cal expression of type Expr<T>, an overloaded operator <<
is used.

The calc method Figure 7 was implemented in the
Expr<T> class for calculating the value of a function at a
given point. The parameter of the method is an algorithm —
an object of the type Algorithm<T> that determines how
to calculate the value of the function. The constructor of
the algorithm is given a point of a box where the value of
the function is calculated. This parameter has the type of
vector std: :vector<T>.

/**

* calculates expressions according to algorithm

* @param alg is algorithm. It allows to calculate either

* value of function or interval estimation of function.

* @return real number or object of Interval type or object
ValDer<>

* type or object IntervalDer<> type

*/

T calc(const Algorithm<T> & alg);

Figure 7: The calc method is required to calculate the value of a
mathematical expression.

The idea of an algorithm in our library follows the con-
cept of the design pattern strategy [9], where the same data
(in our case, a mathematical expression) can be processed
by different algorithms. Currently, four types of algorithms
are implemented: FuncAlg<T> for calculating the value of
the function, InterEvalAlg<T> for calculating the inter-
val estimates of the function, ValDerAlg<T> for calculat-
ing the gradient of a function and IntervalDerAlg<T> for
calculation of an interval estimation of the gradient of a
function. All these algorithms are inherited from the base
class Algorithm<T>. Figure 8 shows an example of calcu-

474 —— M. A. Posypkin and A. L. Usov

lating the value of a function at a given point. The calc
method returns a scalar value of a function of type T for a
given point.

Expr<double> expr = DropWave<double>();
double result = expr.calc(FuncAlg<double>({0.5, 1.5}));
std::cout << result;

Figure 8: Calling the calc method to get the value of the DropWave
function at the given point (0.5, 1.5).

The library of mathematical expressions allows to
calculate the interval estimation of a function on a
given box. The calc method described above should
be used for this purpose with InterEvalAlg<T> al-
gorithm as a parameter Figure 9. Note that as the
template parameter T in std::vector<T>, the type
Interval<double> is passed because the vector stores
the bounds of the box, and not the specified point as
described in the first case. Type InterEvalAlg<T> takes
double as a parameter of the template T, and then, by
inheritance, the type InterEvalAlg<T> is converted to
Algorithm<Interval<T>>. The calc method returns an
interval estimate of a function of type Interval<T> (Sec-
tion IV) over a given box.

Expr<Interval<double>> expr = DropWave<Interval<dou

ble>>();

std::vector<Interval<double>> box = {{ 0.5, 1.5}, {-0.5,
0.5}};

Interval<double> result = expr.calc(InterEvalAlg<dou
ble>(box));

std::cout << result;

Figure 9: Calculation of the interval estimate of DropWave function
over the box [0.5, 1.5]x[-0.5, 0.5].

To calculate the gradient of a function, first it’s neces-
sary to create a mathematical expression by passing the
type ValDer<T> as a template parameter Figure 10. The
ValDer<T> type describes the function gradient and its
value. Next, the ValDerAlg<T> algorithm is passed to the
calc method. The point std: :vector<T> in which the
function gradient is calculated is passed to the construc-
tor of this algorithm. As a result, method calc returns an
object of type ValDer<T>.

The calculation of the interval estimate of the func-
tion gradient is shown in Figure 11. First, it’s neces-
sary to create the mathematical expression by passing
the type IntervalDer<T> as a template parameter. This

DE GRUYTER OPEN

Expr<ValDer<double>> expr = DropWave<ValDer<dou
ble>>();

ValDer<double> result = expr.calc(ValDerAlg<double>({
0.5, 1.5}));

std::cout << result;

Figure 10: Calculate the gradient of the DropWave function at the
point (0.5, 1.5).

type describes the interval estimate of the function gra-
dient and the interval estimation of the function itself.
Then the calc method must be passed the algorithm
IntervalDerAlg<T>. The constructor of this algorithm
takes a box on which the interval estimation of the func-
tion gradient is calculated. A box is described using the
type std: :vector<Interval<T>>. As a result, the calc
method returns an object of type IntervalDer<T>, char-
acterizing the interval enclosure of the gradient.

Expr<IntervalDer<double>> expr = DropWave <Interval

Der<double>>();

std::vector<Interval<double>> box = {{ 0.5, 1.5}, {-0.5,
0.5}};

IntervalDer<double> result = expr.calc(IntervalDerAlg
<double>(box));

std::cout << result;

Figure 11: Calculations of the interval estimation of the gradient of
the DropWave function on a box with boundaries [0.5, 1.5] and [-0.5,
0.5].

4 The Interval arithmetic library

As described in Section III, the library of mathematical ex-
pressions can calculate the interval estimations of a func-
tion. To achieve this, the algorithm implemented by the
class InterEvalAlg<T> uses the library that implements
the basic interval arithmetic [8].

The Interval<T> classis a template class in which the
T parameter can be any real C++ type. This class is wrapper
over a pair of real numbers representing the left and right
boundaries of the interval respectively. Using the standard
C++ operator overload techniques, the following opera-
tions on the intervals are implemented: addition, subtrac-
tion, multiplication and division. In addition, an interval
estimation of elementary mathematical functions corre-
sponding to library functions of mathematical expressions
are also implemented. The Figure 12 shows an example

DE GRUYTER OPEN

of calculating the interval estimation of the Ackley func-
tion [1] for two interval variables x and y.

Interval<double> x(0.9, 1.1), y(-0.1, 0.1);

Interval<double> z = 20.0 * exp(-0.2 * sqrt(0.5 * (sqr(x) +
sqr(y)))) - exp(0.5*(cos(2.0 * * x) + cos(2.0 * *
v))) +20.0 + ;

std::cout << z;

Figure 12: Interval estimation of Ackley function.

Currently, we have implemented extended version of
Interval<T> library which allows to work with collection
of intervals. Let’s consider 1/x function where x is interval
[-1, 1]. Our library supports extended interval arithmetic
and so outputs union of two intervals [-oo, —1] and [1, +oo].
Notice that existing Boost C++ library [10] doesn’t support
work with collections of intervals. That is why we have de-
veloped our own interval library.

The IntervalDer<T> class is implemented similarly
to the ValDer<T> class, but it differs in that it is a wrapper
not over a real number and an array, but over an interval
and an array of intervals. The interval is an interval esti-
mation of the function, and the interval array is an inter-
val estimation of the function gradient. Figure 13 shows an
example of calculating the interval estimation of the gra-
dient of a function f and its interval estimation over a box
[19.0, 21.0]x[43.0, 45.0]x[8.0,10.0].

IntervalDer<double> a({ 19.0, 21.0 }, { 1.0, 0.0, 0.0 });
IntervalDer<double> v({ 43.0, 45.0 }, { 0.0, 1.0, 0.0 });
IntervalDer<double> h({ 8.0, 10.0 }, { 0.0, 0.0, 1.0 });
IntervalDer<double> rad = (M_PI / 180.0) * a;
IntervalDer<double> t = sqr(v*cos(rad));
IntervalDer<double> f = (t / 32.0)*(tg(rad) +
sqrt(sqr(tg(rad)) + 64.0%h / t));

std::cout << f;

Figure 13: Calculation of the interval estimation of the gradient of
the function f.

5 The test set of functions and the
test environment
The test suite contains 150 well known global optimiza-

tion functions borrowed from [1]. The entire collection is
implemented in the form of C++ template functions dis-

Implementation and verification of global optimization benchmark problems =— 475

cussed above Figure 1 and 3. All necessary definitions are
located in testfuncs.h file, which can be easily added
to any C++ application. The DescFuncReader class imple-
ments reading the metadata from a JSON file whose for-
mat was considered earlier Figure 2 and 4. The class has
getdesr method that returns descfunc structure with the
benchmark metadata retrieved by a function key. A list of
all the keys lies in the keys . hpp file in Keys structure. An
example of using this class will be shown below when de-
scribing the environment for testing (Subsection A).

The entire test set has been thoroughly tested and ver-
ified. We developed four types of unit tests:

o Test for the equality of the calculated and expected
value of a function.

¢ The test for the belonging of the value of a function
to the interval.

¢ The test for the equality of the found and expected
global minimum of a function.

e The test for the equality of the calculated and ex-
pected value of the function gradient.

We used Google testing framework (gtest) [11] to de-
velop unit tests. About 600 tests of different types were im-
plemented. All tests are characterized by the use of a ded-
icated common part and a short call of this common part
from the body of a test function. Below we describe these
tests in detail.

Figure 14 shows an example of testing the value
of the Rosenbrock function. The goal of the test is to
check the equality of the calculated and expected val-
ues at the global minimum point of the function. The
Rosenbrock function is called in the body of the test func-
tion TestRosenbrock to create a mathematical expression
for this function. Next, the Test method of FuncsTest
class is called, which is common for all unit tests. The pa-
rameters of this method are the key (a unique name of a
benchmark), a mathematical expression and optional the
number of variables parameter. The latter is specified if
anyDim flag is true (see Figure 2).

The DescFuncReader class object is created in the con-
structor of the FuncsTest class. This object is required to
read the metadata function. The constructor of this class
is passed the path to JSON file. The body of the Test func-
tion is given in Figure 14. First, getdesr method of the
DescFuncReader class is called to get the metadata for
the Rosenbrock benchmark. Next, we get the first point
of the global minimum globMinX. Further, the global min-
imum value is calculated at that point. Then we get the
expected value globMinY of the global minimum of the
function. At the end of Test function, ASSERT_NEAR macro
of gtest environment is called to compare the calculated

476 —— M.A.PosypkinandA. L. Usov

value and the expected value of globMinY. These values
should not differ more than the maximum permissible dif-
ference EPSILON equal to 0.001.

class FuncsTest : public ::testing:: Test {
protected:

FuncsTest() : dfr(JSONPATH)

{

}

void Test(const std::string& key, const
Expr<double>& expr, int dim = 1)

{
auto desc = dfr.getdesr(key, dim);
std::vector<double> globMinX =
desc.globMinX[0];
double globMinY = expr.calc(globMinX,
FuncAlg<double>());
double expected = desc.globMinY;
double epsilon = EPSILON;
ASSERT _NEAR(expected, globMinY, ep-
silon);
}
DescFuncReader dfr;
b
TEST F(FuncsTest, TestRosenbrock)
{
intN=3;
auto expr = Rosenbrock<double>(N);
Test(K.Rosenbrock, expr, N);
}

Figure 14: Testing the value of Rosenbrock function.

Figure 15 shows an example where it is checked that
the particular value belongs to the enclosing interval. The
test is organized as follows:

1. The value of a function is calculated at a random
point in a box.

2. A new box is created around the generated point
with a given length of edges.

3. The interval estimation of a function is calculated
for the box obtained at the step 2.

4, Assertions are called to check that the value of a
function obtained at a random point at the step 1 be-
longs to the interval estimation of the function com-
puted at the step 3.

DE GRUYTER OPEN

void TestInterval(const const
Expr<double> &exprFunc,

const Expr<Interval<double>> &exprinterval, int custom
Dim = 0)

{

std::string& key,

auto point = getRandomPoint(key, customDim);
double funcValue = exprFunc.calc(point, FuncAlg
<double>());
auto intervals = getIntervals(point);
auto interval = exprinterval.calc(intervals,
InterEvalAlg<double>());
double lowBound = interval.lb();
double upperBound = interval.rb();
ASSERT GE(funcValue, lowBound);
ASSERT_LE(funcValue, upperBound);

}

TEST_F(IntervalTest, TestIntervalRosenbrock)

{
intN=3;
TestInterval(K.Rosenbrock,
Rosenbrock<double>(N),

Rosenbrock<Interval<double>>(N), N);

}

Figure 15: Testing whether the particular value of the Rosenbrock
function belongs to the enclosing interval.

This next type of tests compares the global minimum
value obtained with the help of the non-uniform cover-
ing method and the global minimum value documented
in the literature [12]. The entire set of 150 functions was
tested on this type of tests. We used the interval lower
bounds for the non-uniform coverings method. The as-
sertion checks whether the global minimum found differs
from the expected value not more than the specified accu-
racy EPSILON.

The basis of the test comparing the computable and
expected value of the gradient is the calculation of a
derivative of a function by an approximate method of finite
differences and an exact method based on the automatic
differentiation [13]. The test compares the results of calcu-
lating the gradient of the function at an arbitrary point on
a given box. It works as follows:

1. Calculate the value of the function and its’ gradi-
ent at a random point of a given box using the
ValDerAlg<T> algorithm.

2. Calculate the value of the function in the same ran-
dom point using the FuncAlg<T> algorithm.

DE GRUYTER OPEN Implementation and verification of global optimization benchmark problems = 477

std::vector<double> getRandomPoint(const std::string& key, int customDim = 0)
{

auto desc = dfr.getdesr(key);

const int dim = desc.anyDim ? customDim : desc.dim;

Box<double> box(dim);

for (inti = 0;i < dim; i++)

{

int boundIndex = desc.anyDim ? O : i;
box.mA[i] = desc.bounds[boundIndex|.first;
box.mBJi] = desc.bounds|boundIndex|.second;

}
RandomPointGenerator<double> rg(box);
std::vector<double> point(dim, 0.0);
rg.getPoint(point.data());
return point;
}
void TestDerivative(const std::string& key, const Expr<double>& exprFunc, const Expr<ValDer<double>>& exprDer, int
customDim=1)
{
std::vector<double> point = getRandomPoint(key, customDim);
auto der = exprDer.calc(ValDerAlg<double>(point));
double func_val = exprFunc.calc(FuncAlg<double>(point));
double func_val_by_der = der.value();
double epsilon = EPSILON;
ASSERT_NEAR(func_val, func_val_by_der, epsilon);
auto grad = der.grad();
for(int i=0; i < point.size(); ++i)

{

auto new_point = std::vector<double>(point);

new_point[i|+=DELTA;

double new_func_val = exprFunc.calc(FuncAlg<double>(new_point));
double partial_derivative = (new_func_val - func_val)/DELTA;
std::cout << "func_val=" << func_val << "new_func_val="
<<new_func_val <<’\n’;

double expected = 100;

double derivative_relative_value = (partial_derivative/grad[i])*100;
double persent = PERCENT;

ASSERT_NEAR(expected, derivative_relative_value, persent);

}

TEST_F(DerivativeTest, TestDerivativeRosenbrock)

{
intN=3;
TestDerivative(K.Rosenbrock, Rosenbrock<double>(N),
Rosenbrock<ValDer<double>>(N), N);

}

Figure 16: Test the gradient of the Rosenbrock function.

478 =—— M. A. Posypkinand A. L. Usov

3. The values of the function obtained by the algo-
rithms ValDerAlg<T> and FuncAlg<T> should not
differ more than EPSILON.

4, Next for each coordinate of the random point, get
a new point by adding DELTA to the current coordi-
nate. Calculate the value of the function at this point
using the algorithm FuncAlg<T>.

5. Calculate the partial derivative by dividing by DELTA
the difference between the value of the function at
the random point and the new point.

6. Compare the value of the partial derivative obtained
in step 1 and in step 5. The comparison is performed
in relative terms expressed.

7. Return to step 4 until all coordinates are checked.

Figure 16 shows an example of testing the gradient of
the Rosenbrock function.

6 Conclusions

In this paper, we studied the implementation and verifi-
cation of tests for bound-constrained global optimization.
A test suite of 150 functions was developed with the help
of this approach. The suite was verified by a basic global
optimization solver.

We plan to support the automatic calculation of the
second derivatives of the function, as well as their inter-
val estimates as a further development of the libraries de-
scribed above. The techniques of fast automatic differen-
tiation [14] will be used to achieve these goals. This func-
tionality will allow the evaluation of alternative function
estimates, for example, based on Lipschitz constant [15]. It
is also planned to extend our approach to multi-objective
problems to enable existing methods of deterministic
global multi-criteria optimization [16] be employed.

The test suite can be used to compare vari-
ous methods of global or local optimization. C++
source code of all libraries, as well as a test set
of functions can be downloaded from GitHub at
https://github.com/alusov/mathexplib.git

Acknowledgement: This study was supported by Min-
istry of Science and Education of Republic of Kazakhstan,
project 0115PK00554, Russian Fund for Basic Research,
project 17-07-00510 A, Leading Scientific Schools project
NSH-8860.2016.1, Project III of the division of mathemat-
ics of RAS

DE GRUYTER OPEN

References

[1] Jamil, M., & Yang, X. S. (2013). A literature survey of bench-
mark functions for global optimisation problems. International
Journal of Mathematical Modelling and Numerical Optimisation,
4(2), 150-194.

[2] Nicholas I.M. Gould, Dominique Orban, Philippe L. Toint. A
Constrained and Unconstrained Testing Environment. Web:
http://www.cuter.rl.ac.uk/

[3] Global Optimization Benchmarks and Adaptive Memory Pro-
gramming for Global Optimization. Web: http://infinity77.net
/global_optimization/genindex.html

[4] Gaviano, M., Kvasov, D. E., Lera, D., & Sergeyev, Y. D. (2003).
Algorithm 829: Software for generation of classes of test func-
tions github with known local and global minima for global opti-
mization. ACM Transactions on Mathematical Software (TOMS),
29(4), 469-480

[5] Sergeyev,Y.D., Kvasov, D. E., & Mukhametzhanov, M. S. (2017).
Operational zones for comparing metaheuristic and determinis-
tic one-dimensional global optimization algorithms. Mathemat-
ics and Computers in Simulation, 141, 96-109.

[6] Kvasov, D. E., & Mukhametzhanov, M. S. (2017). Metaheuristic
vs. deterministic global optimization algorithms: The univariate
case. Applied Mathematics and Computation. 318, 245-259.

[7]1 Vahid Beiranvand, Warren Hare, Yves Lucet. (2017) Best prac-
tices for comparing optimization algorithms. Optimization and
Engineering, 18 (4), pp 815-848.

[8] Hansen, Eldon, and G. William Walster, eds. Global optimization
using interval analysis: revised and expanded. Vol. 264. CRC
Press, 2003.

[9] Erich Gamma, Ralph Johnson, Richard Helm, John Vlissides De-
sign Patterns Elements of Reusable Object-Oriented Software

2001.

[10] Interval Arithmetic Library. Boost C++ libraries. Web:
http://www.boost.org/doc/libs/1_65_1/libs/numeric/interval/
doc/interval.htm

[11] Google Test, Google’s C++ test framework. Web:

https://github.com/google/googletest
[12] Evtushenko, Y. G. (1971). Numerical methods for finding global
extrema (case of a non-uniform mesh). USSR Computational
Mathematics and Mathematical Physics, 11(6), 38-54.
[13] Kearfott, R. Baker. Rigorous Global Search: Continuous Prob-
lems. Nonconvex Optimization and Its Applications (1996)
Evtushenko, Y. G., & Zubov, V. I. (2016). Generalized fast au-
tomatic differentiation technique. Computational Mathematics
and Mathematical Physics, 56(11), 1819-1833.
[15] R.G. Strongin and Y.D. Sergeyev, Global Optimization with
Non-convex Constraints: Sequential and Parallel Algorithms,
Springer Science & Business Media, New York, 2013.
Evtushenko, Y. G., & Posypkin, M. A. (2014). A deterministic al-
gorithm for global multi-objective optimization. Optimization
Methods and Software, 29(5), 1005-1019.

[14]

[16]

https://github.com/alusov/mathexplib.git
http://www.cuter.rl.ac.uk/
http://infinity77.net/global_optimization/genindex.html
http://infinity77.net/global_optimization/genindex.html
http://www.boost.org/doc/libs/1_65_1/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/1_65_1/libs/numeric/interval/doc/interval.htm
https://github.com/google/googletest

	1 Introduction
	2 Description of the benchmark functions
	3 The mathematical expression library
	4 The Interval arithmetic library
	5 The test set of functions and the test environment
	6 Conclusions

