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Abstract: We consider the problem of packing the maxi-
mal number of unit squares in ahypographof a function. A
polynomial time algorithm is described to solve this prob-
lem for a piecewise linear function.
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1 Introduction
The problems of rectangular packing and cutting are diffi-
cult problems of discrete optimization (for references see
[1]). For example, the computational complexity of the
problem of packing in a rectangular sheet (A, B) the maxi-
mum number of equal small rectangles (c, d) (pallet load-
ing problem (PLP)) is unknown. This problem has num-
ber 55 in the list of open problems "The Open Problems
Project". It is closely connected with another known prob-
lem, 56 in the list of open problems, about the complex-
ity of deciding whether a given number of axis-parallel
unit squares can be packed into a simple polygon (without
holes). Appearance [2] conjecture the problem to be poly-
nomially solvable. The problem is known to be NP-hard
for polygons with holes [3], even if the polygon is an or-
thogonal polygon with all coordinates being multiples of
1/2. Recently, this version of the problem was shown to be
in NP [6], making it NP-complete. This problem arises in
wood industry (cutting a log into quadratic plates), in glass
industry (cutting defecting pane glass into small equal
squares) etc. Applications of analogous problems can be
seen in [4, 5]. In this article we consider the problem of
packing of unit squares in a hypograph of a function. The
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article is organized as follows. The second section contains
the proof of a theorem about the structure of the optimal
packing unit squares in a hypograph of a function. In the
third section we propose a polynomial algorithm for the
problem with piecewise linear function.

2 A theorem about optimal packing
It appears, that a two-dimensional problem about opti-
mum packing unit squares in a hypograph of a function
can be reduced to a one-dimensional problem of packing
unit intervals in a one-dimensional set which have a triv-
ial solution. If a compact set is represented as a separable
union of intervals

M =
⋃︁
i∈I

Ai ,

then the maximum number of single intervals which are
possible to pack in this set is given by the obvious formula

N =
∑︁
i∈I

⌊|Ai|⌋.

Definition 1. A hypograph of a function f on the interval
[a, b] is the set

H(f , a, b) = {(x, y)|0 ≤ y ≤ f (x), a ≤ x ≤ b}.

Note that this definition is different from the classical def-
inition of hypograph in [7]. Cleave this set by lines paral-
lel to the x-axis with integer y-coordinates. We designate
these lines by Li:

Li = {(x, y)|y = i ∈ N = {1, 2, ...}}.

The intersection of the set Li and the hypograph H(f , a, b)
is a compact set, which we designate by Hi(f , a, b). Let
us suppose that this set consists of finite number of in-
tervals. Let us suppose also without loss of generality that
the function f is a bounded continuous function on the in-
terval [a, b]. Then, if Hi(f , a, b) =

⋃︀
j∈J Ai,j, where Ai,j is

an interval, the maximum number Ni of unit intervals in
Hi(f , a, b) is given by

Ni =
∑︁
j∈J

⌊|Ai,j|⌋.
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The following theorem reduces the packing of unit squares
to the packing of unit intervals.

Theorem 1. The maximum number N of unit squares in a
hypograph H(f , a, b) of a function f on the interval [a, b] is
given by

N =
∑︁
i∈N

Ni . (1)

Proof.This theorem is almost obvious.Weprove this claim
by induction on the area of a hypograph. If the area of a
hypograph is less than 1, then any unit square cannot be
packed in such a hypograph. In the sameway, any interval
Ai,j = [ai,j , bi,j] has length less than 1, otherwise, a rectan-
gle

Pi,j = {(x, y)|ai,j ≤ x ≤ bi,j , i − 1 ≤ y ≤ i},
lying inside a hypograph H(f , a, b), contains unit square.
Let for all hypographs of area less then S, theorem is valid.
Let us show its justice for hypographs of area greater then
or equal to S. Let us consider a set H1(f , a, b) =

⋃︀
j∈J A1,j.

It can cross no more than

N1 =
∑︁
j∈J

⌊|A1,j|⌋

unit squares. All remaining unit squares are above the line
y = 1. Then these squareswithdecreasedby 1 y-coordinate
are in the hypograph of a function, f (x) − 1. By the induc-
tive hypothesis, in the hypograph of a function f (x) − 1,
it can be packed

∑︀
i∈N\{1} Ni unit squares. Together with

squares intersecting a line y = 1 it can be proved easily
that it is impossible to locate in the hypograph H(f , a, b)
more than N =

∑︀
i∈N Ni unit squares. But such a number

of unit squares can be locate, if the first N1 squares we lo-
cate in a hypograph between lines y = 0 and y = 1. The
theorem is proved.
Let’s illustrate this theorem by a problem of optimal pack-
ing of unit squares in a semicircle of radius 5 (hypograph
of a function

√
25 − x2). We have N1 = ⌊

√
96⌋, N2 =

⌊
√
84⌋, N3 = ⌊8⌋, N4 = ⌊6⌋. According to theorem, no

more than 32=9+9+8+6 unit squares can be packed in a
semicircle of radius 5 and optimal packing is presented in
Figure 1.

As another application of this theorem, we consider a
problem of packing unit squares in a hypograph H(f , a, b)
of a function F(x) = n

x . If this problem can be solved in a
polynomial time, then a known unsolved problem of fac-
toring integers in a polynomial time has a positive answer.
Let’s designate N(f , a, b) as the maximum number of unit
squares, which can be packed into a hypograph of a func-
tion H(f , a, b), then N( nx , a, b) − N( n−1x , a, b) is equal to
the number of integral points on the graph of the func-
tion f (x) = n

x , a ≤ x ≤ b. As the points (1, n), (n, 1) lie

Figure 1: Packing unit squares in a semicircle

on the graph of this function, an inequality N( nx , 1, n) −
N( n−1x , 1, n) ≥ 3 tests theprimality of n. Then, to findprime
factors of n, one can apply the method of half division of
the interval [1, n]. Thus, the complexity of a problemof op-
timum packing of unit squares in a hypograph of a func-
tion H( nx , a, b) is limited from below by the complexity of
factoring integers for which the best algorithms to date do
not run in a polynomial time.

3 Polynomial algorithm for a
piecewise-linear function

In this section we consider a problem of optimum packing
of unit squares in a hypograph of a piecewise-linear func-
tion and show the existence of a polynomial algorithm for
its solution.

Let us consider in the beginning, the case of
trapezioidal function:

f (x) =

⎧⎪⎪⎨⎪⎪⎩
c1 + d1x, a ≤ x ≤ a1
c, a1 ≤ x ≤ a2
c2 + d2x, a2 ≤ x ≤ b.

Coefficients of this function satisfy the equalities

c1 + d1a1 = c = c2 + d2a2,
c1 + d1a = c2 + d2b = 0, d1 > 0, d2 < 0.

The graph of this function is presented in Figure 2.
Then, by Theorem 1, a solution to the problem of pack-

ing of unit squares in a hypograph of a function H(f , a, b)
is given by the formula

N(f , a, b) =
⌊c⌋∑︁
i=1

Ni ,

where
Ni =

⌊︂
b − a − i(b − a − a2 + a1)

c

⌋︂
.
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Figure 2: Trapezoidal function

This expression is equal to the number of points of a two-
dimensional integral lattice without the points on axes
of the abscissas in a trapezoid with vertices in points
(0, 0), (0, c), (a2 − a1, c), (b − a, 0). The formula for the
number of integral points in a trapezoid in the vertices
(0, 0), (0, a), (b, a), (c, 0) is given by

N =
⌊a⌋∑︁
i=1

⌊c − i(c − b)
a ⌋

Thus, the problemof optimumpacking of unit squares in a
hypographof a trapezoidal function is reduced to theprob-
lem of counting the number of integral points in a trape-
zoid. This last problem in the general case of polygons is
widely investigated and the existence of polynomial time
algorithms is well known (see e.g. [8, 9]). So, for a solution
of this reduced problem there exist effective polynomial al-
gorithms. Thus, the problem of optimum packing of unit
squares in the hypograph of trapezoidal function has ef-
fective, polynomial algorithms.

Let’s consider the case of a piecewise linear function

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c1 + d1x, if a ≤ x ≤ a1
c2 + d2x, if a1 ≤ x ≤ a2
... if ...
cn + dnx, if an−1 ≤ x ≤ an = b.

Such a function can be represented as an ordered se-
quence of vertices of a hypograph considered as a polygon
with vertices

(a1, b1), (a2, b2)..., (an , bn), a1 < a2 < ... < an .

It is easy to see that O(n) arithmetical operations are suf-
ficient for transforming from one form of presentation to
another. Moreover, a problem of optimum packing unit

squares in a hypograph of a piecewise linear function can
be considered by virtue of the theorem 1, as a problem of
counting their numbers with the help of formulas (1), i.e.
as counting the sum of integer part of lengths of intervals
cutting from a hypograph of a piecewise linear function
by the set of lines y = i, i ∈ N. Then a problem of counting
the sum of integer part of lengths of intervals cutting from
a hypograph of a piecewise linear function, considered as
a sequence of vertices of a polygon

(a1, b1), (a2, b2)..., (an , bn), a1 < a2 < ... < an .

by the set of lines y = i, i ∈ N is easily decomposed into
problems with smaller numbers of vertices, and the sum
of such numbers of vertices will be no more than n. The
main idea consists in cutting a trapezoidal part of a hypo-
graph of a non-unimodal piecewise linear function. Before
formulating an algorithm for general case, we shall con-
sider the case of a unimodal piecewise linear function, for
which a sequence bi is of the form:

b1 ≤ b2 ≤ ... ≤ bk ≥ bk+1 ≥ ... ≥ bn−1 ≥ bn .

Such a polygon can be easily presented in a way in which

b1 = bn−1, b2 = bn−2..., bk = bn−k ...

Then, counting the sum of the integer part of lengths of
intervals cutting from a hypograph of such a function can
be reduced to the formula

N =
n/2∑︁
i=1

Ni ,

whereNi is equal to the sumof the integer part of lengths of
intervals cutting from a hypograph of trapezoidal function
as an appropriate trapezoid with vertices

(ai , bi), (ai+1, bi+1), (an−i−1, bn−i−1), (an−i , bn−i).

As we already have stated, for calculating Ni there is a
polynomial algorithm based on counting the points of in-
tegral lattice in an appropriate trapezoid. Therefore, there
is a polynomial algorithm for counting the sum of the inte-
ger part of lengths of intervals cutting from a hypograph of
a unimodal piecewise linear function by lines y = i, i ∈ N.

Let’s consider the general case of a piecewise linear
function, presented by the sorted list of vertices:

(a1, b1), (a2, b2)..., (an , bn), a1 < a2 < ... < an .

If this function is not unimodal on the interval [a1, an],
there is a local minimum of this function bk:

bk−1 > bk < bk+1.
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Figure 3: Piecewise linear function

Select the least among such local minima. Let this mini-
mum has an index k. Then by a line y = bk, we cut a hy-
pograph into two parts. The bottom part corresponds to a
unimodal function. The upper part corresponds to a func-
tion on a smaller interval, and this smaller interval can be
divided into two intervals, on each of which it is possible
to solve a problem of counting the sum of integer part of
lengths of intervals cutting by lines y = i. Thus, the follow-
ing decomposition has been derived (see figure 2):

N = N1 + N2 + N3,

where N1 corresponds to a solution of a problem for uni-
modal function, N2 is a solution of a problem for function
on an interval [a′, ak], N3 is a solution of a problem for
function on an interval [ak , b′], a′, b′ are the left and right
intersection of a line Y = bk with the graph of considered
function.

Then the time of solution T(n) of considered problem
satisfies the recurrent ratio

T(n) = P(n) + T(k) + T(n − k),

where P(n) is the time of the solution of a problem for
trapezoidal component of a function plus elementary op-
erations on calculation of k, a′, b′. It is easy to show that
a solution of the last recurrent ratio requires an easily
proved polynomial evaluation T(n). Thus, taking into ac-
count that a problem of calculating the sum of integer
parts of intervals cutting by lines y = i in a hypograph of
function is equivalent to a problem of optimum packing of
unit squares in a hypograph of this function, the following
theorem is proved.

Theorem 2. For a problem of optimum packing of unit
squares in a hypograph H(f , a, b) of a piecewise linear func-
tion f on the interval [a, b] there exists a polynomial algo-
rithm.

Let’s remark, that the crude estimates allow to evaluate a
computing time of the given algorithm as quadratic num-
ber of arithmetical operations. That is for a hypograph of
function, consisting n vertices, the number of arithmetical
operations required for calculating the maximum number
of unit squares, which can be packed into the hypograph,
is evaluated by O(n2).

4 Conclusions
The proved theorems make probable a hypothesis about
an existence of polynomial algorithm for a general prob-
lem of optimum packing the unit squares in a polygon
without holes. It is natural to consider at first the follow-
ing weaker problems.

Problem1. Toprove the existence of apolynomial algo-
rithm for problems of packing of unit squares in a convex
polygon.

Problem 2. To prove the existence of a polynomial al-
gorithm for the problem about packing of squares 2×2 in a
rectilinear polygon without holes, whose all vertices have
integer coordinates.
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