DE GRUYTER OPEN

Open Eng. 2017; 7:371-378 a

Research Article

Open Access

Yevgeniy Kolokoltsev*, Evgeny Ivashko, and Carlos Gershenson

Improving “tail” computations in a BOINC-based

Desktop Grid

https://doi.org/10.1515/eng-2017-0044
Received November 20, 2017; accepted December 8, 2017

Abstract: A regular Desktop Grid bag-of-tasks project can
take a lot of time to complete computations. An important
part of the process is tail computations: when the number
of tasks to perform becomes less than the number of com-
puting nodes. At this stage, a dynamic replication could
be used to reduce the time needed to complete computa-
tions. In this paper, we propose a mathematical model and
a strategy of dynamic replication at the tail stage. The re-
sults of the numerical experiments are given.

Keywords: Desktop Grid, scheduling, mathematical

model, BOINC.

1 Introduction

Desktop Grid is a high-throughput computing paradigm
that provides a cheap, easy to install and support, and
potentially powerful computing tool. Desktop Grid is
based on a distributed computing system which uses idle
time of non-dedicated geographically distributed general-
purpose computing nodes (usually, personal computers)
connected over the Internet [8]. Desktop Grids popularity
is motivated by quick growth of the number of personal
computers, and a large increase in their performance, as
well as Internet expansion and rise of connection speed.

*Corresponding Author: Yevgeniy Kolokoltsev: Depart-

ment of Physics, Faculty of Sciences, UNAM, Mexico, E-mail:
j.kolokoltsev@gmail.com

Evgeny Ivashko: Petrozavodsk State University, Institute of Applied
Mathematical Research, Karelian Research Centre of RAS, Russia,
E-mail: ivashko@krc.karelia.ru

Carlos Gershenson: Computer Sciences Department of the In-
stitute for Research in Applied Mathematics and Systems (IIMAS)
of the National University of Mexico (UNAM), Mexico, E-mail:
cgg@unam.mx

Centro de Ciencias de la Complejidad, UNAM, Mexico

SENSEable City Lab, Massachusetts Institute of Technology, USA.
ITMO University, Russian Federation

Volunteer computing is a form of Desktop Grid. The
first large volunteer computing project, SETI@home, was
launched in 1999, providing the basis for development of
the BOINC platform. By now, there are several middle-
ware systems for Desktop Grid computing. However, the
open source BOINC platform [6] is nowadays considered
as a de facto standard among them. Today there are more
than 60 active BOINC-based projects using more than 15
million computers worldwide [1]. So, Desktop Grids hold
their place among other high-performance systems, such
as Computing Grid systems, computing clusters, and su-
percomputers.

A Desktop Grid consists of a (large) number of comput-
ing nodes and a server which distributes tasks among the
nodes. The workflow is as follows. A node asks the server
for work; the server replies sending one or more tasks to
the node. The node performs calculations and when it fin-
ishes it, it sends the result (which is a solution of a task
or an error report) back to the server. The detailed descrip-
tion of the computational process in BOINC-based Desktop
Grids is given in [2].

Because of their nature, task scheduling in Desktop
Grids is an important problem. Among other special prob-
lems, there is the “tail” computations problem. It is related
to a final stage of computations in a Desktop Grid, when
the number of tasks is less than the number of computing
nodes. Because of the unreliability of the nodes this stage
can take much time. Therefore, special mathematical mod-
els are needed to reduce duration of the final stage. In this
paper a stochastic mathematical model of the “tail” com-
putations based on finishing task probability distribution
function is considered.

The structure of the paper is as follows: Section 2 de-
scribes the motivation and related works. Section 3 is de-
voted to a mathematical model of the “tail” computations.
Section 4 presents the results of numerical experiments.
Finally, Section 5 contains final remarks and conclusions.

80pen Access. [[(c) AT © 2017 Yevgeniy Kolokoltsev et al., published by De Gruyter Open. This work is licensed under the Creative Com-

mons Attribution-NonCommercial-NoDerivs 4.0 License.

https://doi.org/10.1515/eng-2017-0044

372 —— Y. Kolokoltsev, E. Ivashko and C. Gershenson

2 Motivation and Related Works

As it was mentioned in Section 1, BOINC is the most pop-
ular Desktop Grid middleware, so we consider scheduling
problem based on BOINC workflow.

BOINC is based on the client-server architecture. The
client part is software, which is able to employ idle re-
sources of a computer for computations within one or mul-
tiple BOINC projects. It is available for computers with
various hardware and software characteristics. The server
part of BOINC consists of several subsystems responsible
for tasks generation, distribution, results verification, as-
similation, etc. (see [2]).

BOINC employs several mechanisms to deal with
clients’ unreliability. One of them is replication. For each
computational task, BOINC holds multiple independent
copies of the same task which are called replicas. The repli-
cation level is about 2-5 and is an option of a BOINC project.
Replicas are computed independently with different com-
puting nodes, and then their results are compared with the
aims of verifying the solution. Quorum is the number of
equal replicas results needed to verify a task result. This
mechanism is used to overcome processing errors and sab-
otage. Moreover, BOINC settings allow to create and dis-
tribute more task replicas dynamically as needed (for ex-
ample, dynamic replication is used in papers [4, 5, 14] and
others).

BOINC employs PULL model to interact with comput-
ing nodes. This allows to employ computing nodes that
have no direct access to the Internet. But this also leads to
impossibility to determine that a node abandons the Desk-
top Grid and will never return results. So, BOINC uses a
deadline value which is set for each task instance to limit
tasks completion time. If the server does not get a result
before the deadline, the task instance is considered lost.

The replication mechanism as a form of redundant
computing serves a number of purposes. The main pur-
pose is to increase reliability by increasing the probabil-
ity to obtain the correct answer in time even if some nodes
become unavailable without having finished the task. This
helps, in its turn, to improve efficiency (in particular,
throughput of successful results). The same time it signif-
icantly decreases accessible computing performance. So,
the replication value should be as low as possible to pro-
vide verified results in time. The problem of search for op-
timal replication parameters is studied in practice in [12],
where a simple mathematical model of tasks computa-
tions is presented. Based on this model, the author deter-
mines the most suitable replication value using log data of
NetMax@home project [13].

DE GRUYTER OPEN

A valuable problem of task scheduling in Desktop
Grids is optimization of the so called “tail” computations.
A distributed computational experiment involving a batch
of tasks inherently consists of two stages (see Fig. 1). At the
first one the number of tasks is greater than the number of
computing nodes (usually it much more in the very begin-
ning). At this stage, available computing power limits the
performance, so it is reasonable to supply each node with a
unique task (without replication; from the point of view of
the makespan replication is useless as it was shown in [7]).
With time, the number of unprocessed tasks decreases un-
til it is equal to the number of computing nodes: then the
second stage called the “tail” starts. At this stage there is
an excess of computing power which could be used to im-
plement redundant computing to reduce overall comput-
ing time.

A number of research problems related to specifics of
Desktop Grids are connected to the two-staged batch com-
pletion. One of them is the fastest batch of tasks com-
pletion. In practice, the “tail” computations can take a
long time (usually, about two or three times greater than
deadline value) because of unreliable hosts. A computa-
tional network does not have information on the current
status of tasks completion. So, the “tail” can accumulate
a lot of nodes that have already abandoned the comput-
ing network. As a certain task assigned to such node vio-
lates the deadline, it is assigned again to a different node,
possibly unreliable too. So, this prolongs the “tail” dura-
tion. The solution to the problem is in the redundant com-
puting: currently processing tasks are assigned to vacant
computing nodes. This strategy significantly increases the
chances that at least one copy is solved in time. Employing
this strategy, one should take into account characteristics
of computational nodes (availability, reliability, comput-
ing power, etc.), processing the same task, accumulated
task processing time, expected task completion time, and
Sso on.

This problem is described in [8], where a simple math-
ematical model is proposed. In this paper we propose more
complex mathematical model which provides better re-
sults.

The fastest batch of tasks completion problem is
more complex if a new batch of tasks should be started
immediately after the current batch completion. In this
case, redundant computing reduces accessible computing
power. One more complicated case is connected to inter-
dependency between the tasks of the new batch and com-
pletion of certain tasks in the current batch.

The performance improvements resulting from task
replication of batch parallel programs running on a SNOW
system of distributed computing is analyzed in [7]. The au-

DE GRUYTER OPEN

in a Desktop Grid
e

number of tasks

stage

— 373

Improving “tail” computations

number of computing nodes

tail
stage

Figure 1: Two stages of batch completion in a Desktop Grid.

thors show that task replication can result in significant
speedup improvements, and derived formulas to calculate
it. Also, for some workloads when the reliability of a work-
station is low, replication can also improve efficiency. Like-
wise, as job parallelism increases, replication becomes
even more beneficial in improving speedup. In the paper,
the problem of extra workstations distribution among the
tasks with the aim of speedup improvements is also stud-
ied. Based on special mathematical models and workload
models, it is shown that in case of workstations excess, it
is better to increase the number of replicated tasks than
to increase the replication level. If there is only one extra
workstation, it is better to allocate the extra workstation
to the least replicated task. Finally, if there are extra work-
stations to distribute among two identical programs, dis-
tributing the workstations equally between the two pro-
grams gives least mean response time for tightly coupled
workload and giving all the extra workstations to one of
the programs gives least mean response time for loosely
coupled workload. Lastly, an analysis of the trade-off be-
tween using an extra workstation to increase parallelism
or to increase replication is presented. Authors argue that

replication can be more beneficial than parallelism for a

range of tightly-coupled workloads.

The “tail” computations problem is also studied in [4,

11]. In [11] the following four task replication strategies are

proposed and experimentally tested:

- Resource Prioritization — assign tasks to the “best”
hosts first.

— Resource Exclusion Using a Fixed Threshold — ex-
clude some hosts and never use them to run applica-
tion tasks, where filtering can be based on a simple
threshold such as hosts clock rates.

— Resource Exclusion via Makespan Prediction — re-
move hosts that would not complete a task, if assigned

Time

to them, before some expected application completion
time.

— Task Replication — task failures near the end of the ap-
plication, and unpredictably slow hosts can cause ma-
jor delays in application execution. This problem can
be remedied by means of replicating tasks on multiple
hosts, either to reduce the probability of task failure or
to schedule the application on a faster host.

In [4] the following strategy is proposed: When the tail

stage starts, all unreliable resources are occupied by in-

stances of different tasks, and the queue is empty. Addi-

tional instances are enqueued by a scheduling process:

first to the unreliable pool then to the reliable one. This

scheduling process is controlled by four user parameters:

— Maximal number of instances sent for each task to the
unreliable system from the start of the tail stage.

— Deadline for an instance.

— Timeout, or the minimal time to wait before submit-
ting another instance of the same task.

— Ratio of the reliable and unreliable pool sizes.

3 Mathematical Model

To address the “tail” computations problem we present the
following mathematical model. It is a normal practice to
assign for each batch of tasks (BoT) a certain number of
nodes N registered in the Desktop Grid network. Whereas a
volunteer or institutional computational networks are nor-
mally heterogeneous, we define by a; a computing perfor-
mance of k-th node, where k=1, .., N.

The problem of estimating the computational com-
plexity for each task in a BoT can be challenging in the
presence of any iterative computations. However integra-

374 —— Y. Kolokoltsev, E. lvashko and C. Gershenson

tion or statistical problems are examples where it is pos-
sible to know the computational task complexity T in ad-
vance. Therefore, for each task in a BoT we define a work-
ing time needed for k-th node to finish a task as:

Te= L, k=1,.,N. (1)
%

Each computing node does not work continuously, so sup-
pose that there is a cumulative probability distribution
function (CDF) F(t) describing the probability of k-th
node to finish a task in certain time. The shape of this CDF
and its parameters are discussed in a subsequent section.
With d > T) we define a deadline, that is a time period be-
tween task submission to the node, and the moment when
the server will reject computation result from that node.
Having all thing considered, Fy(c) is probability to suc-
cessfully finish a task submitted at ¢ = 0 to k-th node be-
fore time ¢, and Pk’"iss = 1 - Fi(d) is probability to miss the
deadline.

Redundant computing can be used to reduce the time
needed to finish a BoT. At the beginning of the second
stage, when a node comes to the server, there is no unique
tasks left (see Fig. 1) and N - 1 active tasks are already run-
ning on the other nodes. If we make a redundant replica-
tion of any running task and send its copy to a free node,
the probability to finish that task earlier will increase. For-
mally, this idea can be described with the rule of addition
of non-mutually exclusive events.

Suppose, that a probability of task completion before
time ¢ on the node [, where it was started at ¢, is given
by F;(c - t;). If we also assign that same task to the freed
node k, at the moment ¢t;, > t,, there will also appear a non-
zero probability that a node k will return a result before c,
a Fi(c - t). Therefore, a probability that any of the nodes
[or k will return it’s result before c is given by:

Py (€) = Fi(c-t)+F(c-t)-Fi(c-t)-Fr(c-ty) 2 Filc-ty).

@
At the same time, a probability that both nodes miss their
deadlines is given by PSS . PI"isS_ Taking into account that
P™isS < 1 and frequently is selected to be < 1, the prob-
lem of missing deadlines in the “tail” computations can be
solved in practice with a few replicas.

We denote with FI(¢) a CDF of task return time after it
was already submitted to n nodes. If we replicate a task to
node k at time t;, the resulting FZ,, () can be obtained by
a following recurrence relation:

FLi(t) = FI(6) + Fit - t) - FL(£) - Fi(t -) = FE(8), (3)

where F{ = 0. During the second stage, the task comple-
tion CDF FTi(t) can be stored for each task T; separately.

DE GRUYTER OPEN

The maximum number of these functions is N and is re-
duced continuously as long as tasks complete.

Using the mathematical model described above, one
can try to answer the following question: What task is bet-
ter to replicate in order to reduce “tail” computations? A
BoT is finished when the last task of the batch is finished.
Therefore, when node k arrives at time ¢, it is reasonable
to equip it with a replica of the task that has the worst prob-
ability to be finished before the others. F(t) by definition,
is strictly increasing function of t. However, sign(FTi - FT)
can switch any number of times for any pair of tasks i # j
on [t;, +oo) complicating the identification of the longest
predicted task. On the other hand, we know exactly that
replication at node k can meaningfully rise FT for t €
[tx, t, + d] only. The necessary task than can be defined
as:

T; = arg mTi_n Fli(t, + d), (4)

where FTi(t, + d) is the probability that task T; will be fin-
ished before the moment ¢, + d.

Taking into account that the problem defined in Eq. 4
has a discrete nature, various simplifications can be pur-
posed for those cases where a comparison between differ-
ent F'i can be derived analytically based on task submis-
sion history. The generic case is accessible by a numerical
approximation of each F that, following our experience,
does not require more than 100 reference points and is best
done linearly because of oscillations of higher order poly-
nomials at CDF singular points (see below).

4 Numerical Experiments

We model a client computer activity by a sequence of time
periods of availability 7, and unavailability 7,,. When a
node k is available, it dedicates all its CPU power a; to
the current task assigned to it. When a node becomes un-
available, a task computation is immediately suspended
and its subsequent resume does not have any additional
computational cost. None of internal client machine CPU
time scheduling policies are considered.

The work of B. Javadi et al. [9] — a statistical analysis of
230,000 host activity tracks of SETI@home project — has
showed a presence of 21% of tracks where 7, and 1, peri-
ods were statistically independent. Activity tracks with the
same statistics can be understood as implementations of
the same stochastic ergodic process. This process is simple
to analyze analytically and permits a random generation
of the track statistics without any information loss. To de-
scribe such process, it is sufficient to specify the distribu-

DE GRUYTER OPEN

tion functions for both 7, and 7, periods. In [10] the same
authors used their previous results, and the discovered er-
godic tracks have been additionally classified into six clus-
ters with a subsequent fit of 74 and 7, probability densities
by well known analytic distributions. The results of this fit
are given in Table 4 of the cited work and were used in our
track generator. For convenience, we repeat the probabil-
ity density functions (PDF) for all six clusters in Fig. 2.

All
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

All
Cluster 1
Cluster 2
Cluster 3
Cluster 4

4 Cluster 5 4
018 Cluster 6 0.15

PDF
°
PDF
°

‘\:1\\

10 15 20 25 30 35 40
Time, h

10 15 20 25 30 35 40 0 5
Time, h

a) b)

Figure 2: Availability (a) and unavailability (b) per-cluster probabil-
ity density distributions.

In any ergodic process, integration over ensembles
can be replaced with integration over time. In our simu-
lations, we use both cases depending on convenience. It
should be stressed, however, that some care must be taken
in the case of track ensemble generation. When a particu-
lar track is used to simulate node activity, the total number
of T4 + Ty periods is typically low, so the statistical correct-
ness of track starting moment cannot be neglected.

First, we calculate analytically the mean available 7,
and mean unavailable 7, periods. With these values, we
define a probability to find a computational node in avail-
able state, that is T4/(T4 + Tu), and use this probability to
randomly generate starting state of each new track. Next,
we note that track can start at any phase of its first state.
A forward recurrence time 1. is defined as the time until
the next state change moment. If the process started from
available state, T, statistics depends on 7, cumulative dis-
tribution Fr, only (or a 7, distribution if a node was started
from unavailable state). The 7. CDF is derived in a point
process renewal theory, see [3]:

Folt) = =

Ta,u

t
/ (1 - Fr,, (0)dx 5)
0

Improving “tail” computations =—— 375

4.1 Task completion time statistics

In the following simulation, we set the same computing
power for all the nodes, so that ; = «; = « and does not
depend on the node’s statistical cluster. In this case, we
can address a task complexity T using time units (hours),
that is equal to the task complexity that can be finished
during time T of a continuous computation on any node.
For the activity track random generator of each cluster, we
continuously send the same task, recording its comple-
tion time. A task completion time is defined as a period
between its submission moment and a node report with
an infinite deadline (the node is always available at these
moments). For each cluster, a statistical ensemble con-
sisting of 100,000 completion times was collected. Given
these statistical ensembles, an experimental PDF was cal-
culated.

In Fig. 3 we show the PDF bar-plots of a single task
completion time for all clusters. Each distribution has a
notable peak on its left side corresponding to the case
when a node was available from the task start and until its
completion T. A theoretical probability of this event is not
zero and is given by 1 — F¢(T), see Eq. 5. A corresponding
CDF of a task completion time F} is not smooth and has a
singularity of the first kind at T, so the corresponding ~ 6
behavior in each PDF is not surprising.

All six clusters have notably different dispersion. How-
ever, their shapes are comparable: a starting peak at T fol-
lowed by a smooth maximum with a long decay tail. In a
single cluster, dispersion also depends on the task com-
plexity T, because it defines a mean number of availability
periods sufficient to complete a task. By varying T it is pos-
sible to observe nearly all variety of typical shapes present
on Fig. 3 for any single cluster.

4.2 ABoT computations simulation

In the following simulation, the BoT is composed of a num-
ber of equal complexity tasks. Here we consider the case
when the total number of tasks is much greater than the
number of computing nodes N. It means that a BoT start-
moment is far in the past that no correlations related with
its submit heterogeneity can be observed at the final stage.
We start our simulations with the number of free tasks ex-
actly equal to the number of nodes. At t; = 0 each node
is equipped with a task pending from previous computa-
tion and will complete it successfully at t > t; requesting
for the new one. The time moment with the system con-
figuration described above, appears in any computation,
independently of the deadlines due to the replicate limit

376 —— Y.Kolokoltsev, E. Ivashko and C. Gershenson

0.01 4

0.008

0.006

PDF

0.004 +

0.002

DE GRUYTER OPEN

Al ——
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

1000 1500 2000

Task Completion Time, h

Figure 3: Task completion time probability density distributions for each cluster. The task complexity T =168h (1 week).

in real servers. It is convenient to denote a set of tasks left
attgas TL, with |TL| = N.

The time period between two subsequent requests for
anew task that a node sends to the server is known as the
turnaround time, Tq. Turnaround values are random, and
in our simplified model they depend on the node activ-
ity track statistics, task difficulty T and deadline. In our
simulations, 7¢, CDF was obtained experimentally for a
given set of parameters (the 5-th cluster, T =168h, d =
2T =336h). We demonstrate the results based on the 5-
th cluster because all the clusters show similar behavior.
Unlike the task completion distributions with deadline ig-
nored, T, have two singularities: the first one at T and the
second one at d. The other features of 7, statistics are sim-
ilarto F k (Fig. 3).

To generate a time (after ty) when each node will re-
turn to the server to take one of TL tasks, we calculate a
forward recurrence time distribution for a turnaround pro-
cess (same as in Eq. 5) and use a von Neumann random
number generator based on that distribution, which is ex-
perimental this time.

In Fig. 4 a fraction of nodes ny;(t) equipped with
unique tasks from TL set simulated for 1000 jobs is shown.
As it can be seen, a function ny;(t) mean value linearly
grows until the second stage t;; starts, that is defined as
the moment when nr(t) = 1.

The second stage represented in this simulation corre-
sponds to the default BOINC policy and illustrates a BoT
completion problem considered in this paper. The default
BOINC policy does not have any sense of BoT complete-
ness: when a single task is sent to a computational node,
the server will do nothing until either the node response
arrives or a deadline comes. Therefore, if the node does not
answer until the deadline, a task is left active and will be
sent again to the next upcoming node.

From Fig. 4 we observe that n;(t) cut dispersion in-
creases beginning from the first deadline occurrences after
to. The maximum of dispersion is reached near ¢;; + d mo-
ment and a multiply deadlines stretch for a time notably
greater than the “best” BoT completion time (t;; + T). Ob-
servation of the worst case in real computations is unac-
ceptable; in the final subsection we will see how the situ-
ation changes when dedicated server policies are used.

4.3 BoT completion time simulations

The BoT completion time t,,4 is the moment when its last
task result was reported by a computational node. First,
on Fig. 5 we observe simulation results of t,,,4 PDF for the
standard BOINC policy. Theoretically, if all nodes arrive at
the same time at t; and do not have unavailability periods,
the job completion time is equal to T. Beyond this moment
tona PDF is exactly zero. However, as it can be seen on the
plot, this case has negligible probability. A notable short-
est t,,q probabilities appear at times nearly twice greater
than T. Then, we see the first maximum at nearly 750h.
This corresponds to the case when there were no missing
deadlines. The second maximum at 1200h correspond to
the case where some tasks suffered exactly one deadline.
The small subsequent peak corresponds to two deadlines.
Presence of the long tail on the right indicates a nonzero
probability that even more subsequently deadlines can be
missed.

During the second phase, the number of tasks left is
reducing continuously. In a standard policy considered
above, each node becomes idle by returning a successfully
completed task. However if we send a redundant replicates
of the running tasks left to these idle nodes, we expect that
the probability distribution of ¢;,;, will change. In the fol-

DE GRUYTER OPEN

Fraction of nodes
equipped with unique tasks

— 377

Improving “tail” computations

Cluster 5

200

400 600

T T T 1
800 1000 1200 1400 1600 1800

Time, h

Figure 4: A fraction of nodes nrz(t) equipped with unique tasks for default BOINC policy for the 5-th cluster with T =168h and d =336h.

0.01 4

0.008

0.006

PDF

0.004

0.002 +

Standard (passive) BOINC policy (a)
Send random policy (b) ——
Prediction based policy (c)

500

1000 1500 2000

Job Completion Time, h

Figure 5: BoT completion time distributions: 5-th cluster, T=168h, d=

present.

lowing simulation, instead of making a node idle, we send
to it a randomly selected task from those that are still not
finished. This way a redundant replication appears and no
nodes are left idle. As a result, we observe an absence of
the missing deadline peaks on tj,_rqnq PDF, see Fig. 5.
So the deadline problem that brings long tail in t;,, dis-
tribution can be solved simply with a “random” policy. A
Gaussian-like distribution obtained, indicates on the good
approximation to the central limiting theorem for the sum
of availability and unavailability periods for a TL set con-
sisting of only 50 tasks. In the case considered, a mean
availability period is less than T so the statistics was suf-
ficient, however a deviations may happen if this criteria is
not satisfied.

Random task assignment produces redundant replica-
tion for each task without any account that a given task
could be already replicated. The policy we consider in this
paper is addressed to select such task for each upcoming
free node, that has the worst predicted probability to be

336h. The standard BOINC (a), random (b) and the Eq. 4 (c) policies are

completed without redundant replication. The simulation
results for this case is shown with the curve (c) in Fig 5.
In addition to the properties observed for the random pol-
icy, in this case the mean job completion time is notably
reduced.

5 Conclusions and future work

BOINC-based Desktop Grids are widely used to perform
long-running scientific computing projects involving thou-
sands of volunteers. BOINC handles huge amount hetero-
geneous computing tasks and distributed them among
thousands of heterogeneous unreliable computing nodes.
That is why task scheduling plays crucial role in providing
computing performance. The scheduling problem is com-
plicated by the nature of Desktop Grids.

378 —— Y. Kolokoltsev, E. Ivashko and C. Gershenson

The “tail” computations is one of the important prob-
lems in the domain of task scheduling. It arises when the
number of tasks become less than the number of comput-
ing nodes. Because of unreliability of computing nodes the
“tail” stage can take much time despite of excess of avail-
able computing power. The special mathematical models-
based dynamic replication strategies can be employed to
solve this problem.

In this paper we propose a new mathematical model
which is based on known in advance probability distribu-
tion functions describing the probability of a node to finish
a task in certain time. These functions can be constructed
based on computing nodes statistics. Using probability
distribution functions we estimate the expected task fin-
ishing times and propose to equip free node with a replica
of the task that has the worst probability to be finished be-
fore the others. So, it will reduce the time needed to finish
the “tail” stage of computations.

Our numerical experiments based on wide simula-
tions show advances of the approach. Also, there are dif-
ferent criteria which could be used to optimize the “tail”
stage of computations. The examples of these criteria are
mean computing time reduction, game theoretical multi-
objective payoffs, or look-ahead criteria, etc. These are the
possible directions of our future work.

Acknowledgement: The authors would like to thank to
UNAM’s DGAPA (Direccién General de Asuntos del Per-
sonal Académico), that within it’s PREI program made it
possible to collaborate with Evgeny Ivashko personally
during the 14/04/2015 — 3/07/2015 period. This work is also
partially supported by the Russian Foundation for Basic
Research (grant numbers 16-07-00622 and 15-29-07974).

References

[1] BOINCstats. In https://boincstats.com, 2017-06-22.

[2] David P. Anderson. Boinc: A system for public-resource com-
puting and storage. In Proceedings of the 5th IEEE/ACM Inter-
national Workshop on Grid Computing, GRID *04, pages 4-10,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-
7695-2256-4. 10.1109/GRID.2004.14. URL http://dx.doi.org/10.
1109/GRID.2004.14.

[31 Soren Asmussen. Applied Probability and Queues. Springer, 2
edition, 2003. ISBN 0-387-00211-1.

[4] Orna Agmon Ben-Yehuda, Assaf Schuster, Artyom Sharov, Mark
Silberstein, and Alexandru losup. Expert: Pareto-efficient task
replication on grids and a cloud. In Parallel & Distributed Pro-
cessing Symposium (IPDPS), 2012 IEEE 26th International, pages
167-178. IEEE, 2012.

[5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

DE GRUYTER OPEN

Y. Brun, G. Edwards, J. Y. Bang, and N. Medvidovic. Smart re-
dundancy for distributed computation. In 2011 31st International
Conference on Distributed Computing Systems, pages 665-676,
June 2011. 10.1109/1CDCS.2011.25.

T. Estrada, D.A. Flores, M. Taufer, P.J. Teller, A. Kerstens, and
D.P. Anderson. The effectiveness of threshold-based schedul-
ing policies in BOINC projects. In e-Science and Grid Comput-
ing, 2006. e-Science’06. Second IEEE International Conference
on, pages 88-88. IEEE, 2006.

Gaurav D Ghare and Scott T Leutenegger. Improving speedup
andresponse times by replicating parallel programs on a SNOW.
In Workshop on Job Scheduling Strategies for Parallel Process-
ing, pages 264—-287. Springer, 2004.

Evgeny Ivashko. Mathematical model of a "tail" computation
in a desktop grid. In Proceedings of the Xl International Sci-
entific Conference on Optoelectronic Equipment and Devices in
Systems of Pattern Recognition, Image and Symbol Information
Processing, pages 54-59. Southwest State University, Faculty of
Fundamental and Applied Informatics, Department of Computer
Science, Kursk, Russia, 2017.

Bahman Javadi, Derrick Kondo, J-M Vincent, and David P Ander-
son. Mining for statistical models of availability in large-scale
distributed systems: An empirical study of seti@ home. In Mod-
eling, Analysis & Simulation of Computer and Telecommunica-
tion Systems, 2009. MASCOTS’09. IEEE International Symposium
on, pages 1-10. IEEE, 2009.

Bahman Javadi, Derrick Kondo, Jean-Marc Vincent, and David P.
Anderson. Discovering statistical models of availability in large
distributed systems: An empirical study of seti@home. [EEE
Trans. Parallel Distrib. Syst., 22(11):1896-1903, November 2011.
ISSN 1045-9219. 10.1109/TPDS.2011.50. URL http://dx.doi.org/
10.1109/TPDS.2011.50.

D. Kondo, A.A. Chien, and H. Casanova. Scheduling task par-
allel applications for rapid turnaround on enterprise desktop
grids. 5(4):379-405, oct 2007. ISSN 1570-7873, 1572-9184.
10.1007/510723-007-9063-y.

I. Kurochkin. Determination of replication parameters in the
project of the voluntary distributed computing NetMax@home.
In International scientific conference "High technologies. Busi-
ness. Society." 14-17.03.2016, Borovets, Bulgaria, pages 10-12,
2016.

I.I. Kurochkin. The voluntary distributed computing project net-
max@home. In Distributed computing and grid-technologies in
science and education: book of abstracts of the 6th international
conference, GRID, pages 233-258, 2009.

J. Sonnek, A. Chandra, and J. Weissman. Adaptive reputation-
based scheduling on unreliable distributed infrastructures. IEEE
Transactions on Parallel and Distributed Systems, 18(11):1551—
1564, Nov 2007. ISSN 1045-9219. 10.1109/TPDS.2007.1094.

http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/ICDCS.2011.25
http://dx.doi.org/10.1109/TPDS.2011.50
http://dx.doi.org/10.1109/TPDS.2011.50
http://dx.doi.org/10.1109/TPDS.2011.50
http://dx.doi.org/10.1007/s10723-007-9063-y
http://dx.doi.org/10.1109/TPDS.2007.1094

	1 Introduction
	2 Motivation and Related Works
	3 Mathematical Model
	4 Numerical Experiments
	4.1 Task completion time statistics
	4.2 A BoT computations simulation
	4.3 BoT completion time simulations

	5 Conclusions and future work

