DE GRUYTER OPEN

Open Eng. 2017; 7:363-370

Research Article

Oleg Zaikin*, Pavel Petrov, Mikhail Posypkin, Vadim Bulavintsev, and Ilya Kurochkin

A Volunteer Computing Project for Solving
Geoacoustic Inversion Problems

https://doi.org/10.1515/eng-2017-0040
Received Oct 02, 2017; accepted Nov 15, 2017

Abstract: A volunteer computing project aimed at solv-
ing computationally hard inverse problems in underwater
acoustics is described. This project was used to study the
possibilities of the sound speed profile reconstruction in a
shallow-water waveguide using a dispersion-based geoa-
coustic inversion scheme. The computational capabilities
provided by the project allowed us to investigate the accu-
racy of the inversion for different mesh sizes of the sound
speed profile discretization grid. This problem suits well
for volunteer computing because it can be easily decom-
posed into independent simpler subproblems.

Keywords: volunteer computing, BOINC, geoacoustic in-
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1 Introduction

Desktop Grid computing [11] uses resources of geograph-
ically distributed personal computers, connected over
general-purpose network. Huge increase in personal com-
puters’ performance has made Desktop Grid computing
a powerful tool for solving numerous scientific problems.
Volunteer computing [16] is a special kind of desktop grid
computing. Its defining characteristic is that it uses com-
putational resources of private persons. Usually, one vol-
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unteer computing project is designed to solve one or sev-
eral closely related hard problems. Volunteer computing
is very cheap — to maintain a project one needs only a
dedicated server (connected to Internet) and several client
applications. Volunteer computing suits well to solve hard
problems, which can be decomposed into a set of indepen-
dent subproblems. In last two decades, a lot of important
results in various areas (astronomy, medicine, mathemat-
ics, etc.) were obtained in volunteer computing projects.

There exists a number of classes of computationally
intense geoacoustic inversion problems, which can be
solved using embarrassing parallelism. This is the main
reason why we launched the volunteer computing project
Acoustics@home, aimed at solving such problems. The
project is based on the popular platform BOINC (Berkley
Open Infrastructure for Network Compuitng [3]). The no-
tion of geoacoustic inversion refers to a variety of tech-
niques in underwater acoustics that can be used for the
reconstruction of water column and bottom parameters
from acoustic data [20]. While previously the data for
the geoacoustic inversion was mostly obtained using ex-
pensive receiver arrays, recently it was shown that a
single-hydrophone recording of a broadband pulse signal
can be also successfully used for estimating the acous-
tical parameters of sea bottom [8-10]. Due to the lack
of the spatial diversity in single-hydrophone measure-
ments, the inversion procedure in this case relies on the
so-called waveguide dispersion, i.e., the dependence of ar-
rival times on frequency and mode number (see details,
e.g., in [9, 23]). Some interesting recent results [25] also in-
dicate that single-hydrophone dispersion-based inversion
method outlined in [9] can be used for the estimation of
a sound-speed profile in a shallow-water waveguide. The
implementation of this method in practice can be thought
of as a solution of a minimization problem in a (very large)
discrete search space [26], and every evaluation of the cost
function requires numerous solutions of an acoustic spec-
tral problem [23, 26]. Thus, the whole computational bur-
den can be easily divided into a large number of relatively
simple independent tasks, offering many opportunities for
the application of parallel computing.

The study has the following structure. In Section 2
we outline the dispersion-based geoacoustic inversion
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scheme following [8, 9, 23, 26]. The synthetic acoustic data
used in our work is discussed in Section 3. In Section 4 we
describe the project Acoustics@home and show the results
of computational experiment, performed within its frame-
work. In Section 5 it is discussed in which way we plan to
improve Acoustics@home. In the rest of the paper we dis-
cuss related work and draw conclusions.

2 Dispersion-based geoacoustic
inversion

The dispersion-based technique for the geoacoustic
waveguide parameters estimation [9] introduced by J. Bon-
nel and his colleagues several years ago is currently
a very dynamic field of research in underwater acous-
tics [8, 10, 23, 25]. In this technique, the dispersion
data is used as an input of the inversion algorithm. By
the dispersion data we understand the set of functions
Tm,m = 1,2,...M, where 7,4(f) denotes the arrival time
of m-th modal component [19, 23] of a pulse acoustical
signal as a function of frequency f (M is the total number
of modes that can be filtered from the data). The curves
t = T(f) in the two-dimensional time-frequency space
are called dispersion curves [20].

The experimental dispersion curves can be obtained
from a pulse signal recorded by a single receiver (hy-
drophone) [8, 10]. Usually, various approaches to the mode
filtering are used to extract the dispersion curves from
a time series obtained in an experiment. The rise of the
dispersion-based inversion schemes popularity can be as-
sociated with the so-called warping transform [5, 8] of-
fering a very elegant way to separate the modal compo-
nents of a pulse signal. At the same time, for any fixed
model of a waveguide dispersion curves can be computed
theoretically by solving acoustic spectral problem [19, 26].
The mismatch between the experimental and theoretical
arrival times indicates to what extent the given model of
the waveguide is consistent with the observation results.
Normally the waveguide model includes certain number
of unknown parameters, and the geoacoustic inversion
serves the purpose of estimating their values. The set of
parameters corresponding to the minimal mismatch de-
termines the theoretical model that is the most adequate
to the experimental data. Hereafter this set is referred to
as media parameters estimate based on the given exper-
imental data. Note that probably the most important ad-
vantage of the dispersion-based inversion schemes is their
ability to provide some information on the medium using
single-hydrophone measurements. By contrast, more con-
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ventional geoacoustic inversion methods [20] usually re-
quire the deployment of a vertical or horizontal array of
receivers (which makes the experiment much more expen-
sive and complicated). The lack of spatial diversity of the
measurements in this case is compensated for by the fre-
quency diversity.

The geoacoustic inversion problem can be trans-
formed into a problem of minimization of a certain mis-
match function [26]. The simplest natural choice for such
function is the standard mean square fitness function mea-
suring the average squared discrepancy between the theo-
retical arrivals 7 (f, A) computed for the parameters vec-
tor A and experimental arrivals To> (f):

2
Z%;l Zﬁlinl Tg;(fnm, A) - Tsr)l(p(fnm)
o1 N '

The minimization is performed over a certain domain of
parameters values which is typically a cuboid in a Np-
dimensional Euclidean space, where N, is the number
of the waveguide parameters being inverted. The cuboid
boundaries are determined from certain physical consid-
erations.

E(A) = 6y

3 Waveguide model and the
synthetic data

In the present study, the geoacoustic inversion problem is
considered in the case of a homogeneous two-dimensional
waveguide Q = {(x, 2)|0 < z < H}, where z denotes depth,
and x is horizontal coordinate. The waveguide consists of
the water column O < z < h and a single bottom layer h <
z < H. The sound speed profile in the water is continuous
function ¢ = c(z) (the dependence of sound speed on z).
For simplicity the sound speed profile is assumed to
be independent of x. Although in real ocean this condition
is never fulfilled exactly, the variation of sound speed in
range x is usually much slower than in depth z. It is often
reasonable to assume that the sound speed profile is the
same for all x in a certain area of a shallow sea contain-
ing the source and the receiver. In our simplified model
the bottom is represented by a fluid halfspace with the
sound speed c;, and density p,. Although this may also
look somewhat non-realistic, the situation where the bot-
tom depth h varies by few meters over a track of several
kilometres is quite common in underwater acoustics. In
such cases it is reasonable to assume the bottom depth
to be constant. A more complicated inversion algorithm
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where the variations of the latter are taken into account
is described in [23].

Our goal in this study is to evaluate the possibility of
the sound speed profile c(z) reconstruction from the dis-
persion data. The results from [25] show that certain ap-
proximation of the function c(z) can be obtained by the
dispersion-based inversion (although in [25] it is not really
perfect even for synthetic data). In the present work we
show that at least in principle it can be inverted for very ac-
curately (when inverting for the sound speed profile alone
and considering all other parameters known).

For our numerical experiments we prepared a syn-
thetic data by solving the direct propagation problem as
described in [24]. A chirp signal with instantaneous fre-
quency varying from fo = 20 Hz to f; = 300 Hz was emit-
ted by the source at zs = 10 m. The sound speed pro-
file in the water used in simulations is shown in Figure 1,
while the bottom parameters were chosen as follows: ¢}, =
1700 m/s, p;, = 1.7 g/cm3 . The time series of the signal
was computed at R = 7 km from the source.

We applied the warping-based method of the extrac-
tion of the dispersion curves from the simulated data. As a
result, the dispersion curves 7, (f) of the five modes were
obtained (i.e., in our case M = 5).

4 Computational experiments in
Acoustics@home

In order to solve computationally hard geoacoustic in-
version problems, we launched the volunteer computing
project Acoustics@home [2] on 28 March 2017. It is based
on the BOINC platform [3]. In Acoustics@home all dae-
mons (that operate on the server) and client application
(it operates on volunteers’ PCs) are based on the CAMBALA
MPI-program [26]. Work generator daemon decomposes
an original problem into independent subproblems by
varying several parameters of a search space. The rest of
the parameters are varied by the client application. For
each set of the parameters A the value of the mismatch
function (1) is calculated by the client application. Pro-
gram sources of the project are avaliable online [1].

As it was mentioned above, the goal of our computa-
tional experiments is the estimation of the sound-speed
profile (SSP) ¢ = c(z) in the water column (see Section 3).
Hence, the set of the inversion parameters A consists of the
sound speed values c1, ¢, ..., cy, on a uniform grid of
the depth values zy, z1, 23, . .., zy, . The grid is introduced
in the water column in such a way that zo = 0, zy, = h
(zi+1 — z; = Az = const). We also assume that cy_ = cy,-1,
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and therefore N parameters should be inverted. For each
z; corresponding c; in our experiment can take the val-
ues in a discrete set of even integers from 1450 m/s to
1510 m/s (31 possible values in total). Although it means
that the estimation error can be ~ 2 m/s just due to the
search space discretization, such accuracy is sufficient for
many applications in underwater acoustics.

Clearly, the resolution of the SSP c(z) depends on
the number of nodes N.. The more nodes we can afford,
the better is the possible accuracy of the SSP estima-
tion. We launched our dispersion-based geoacoustic inver-
sion algorithm for N, = 1, 2, ..., 6. The inversion proce-
dure for N. = 1, 2, ..., 4 was successfully completed via
CAMBALA on the computational cluster “Academician V.M.
Matrosov” of Irkutsk Supercomputer Center of SB RAS [21].
In our experiments we used 1 node of the cluster, which
is equipped with two 18-core CPUs Intel Xeon E5-2695 (36
CPU cores in total) and 128 gigabytes of RAM.

The search spaces for No = 5 and N = 6 turned
out to be too large for a cluster. That is why we launched
them in Acoustics@home on 12 September 2017. For N¢ = 5
the search space was divided into 29 791 workunits, which
were made by varying the values of cq, ¢,, c3. The client
application had to vary the values of c,, c5 for each worku-
nit, so 961 points had to be processed within it. For N. = 6
the search space was divided into 923 521 workunits (by
varying the values of c1, ¢, c3, c4), each of them consisted
of 961 points (the values of cs, cs were varied). On av-
erage it took about 1 hour to process one workunit on 1
CPU core. Both experiments were successfully completed,
it took about 2 months to perform the hardest of them.

Recently Acoustics@home has reached the average
performance of 7 teraflops, 2544 PCs of 1547 volunteers
have already participated in the project. Let us remind,
that during our experiments for N. = 1, 2, ..., 4 we used
36 cluster’s CPU cores. In the considered experiments for
N¢ =5 and N, = 6, the project’s performance was compa-
rable to that of a computational cluster equipped with 500
CPU cores of the mentioned kind. Details of the conducted
experiments are presented in Table 1. The estimated sound
speed profiles are presented in Figure 1.

Let us briefly discuss the inversion results from the
acoustical point of view. It should have been expected that
in the case N = 1 we obtained some value of the sound
speed that is close to its average over the whole water col-
umn. In the case N. = 2 the approximation is still very
inaccurate, yet it already catches the main features of the
true profile. Indeed, to certain extent it reproduces the
thermocline near the surface and the homogeneous layer
near the bottom.
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Figure 1: Estimated sound speed profiles ¢(z) for Nc = 1,2,...,5
and the true one (black line on all panels). Top panel: N; = 1 (green
line) and N¢ = 2 (red line). Middle panel: N. = 3 (green line) and
N¢ = 4 (red line). Bottom panel: N = 5 (green line) and N. = 6 (red
line).
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Table 1: Results of geoacoustic inversion for different values of N.

N: Residue Points Time Platform
1 0.0127314 31 10 seconds cluster
2 0.00924369 961 2 minutes cluster
3 0.00500185 29791 45 minutes  cluster
4 0.00416296 923521 23 hours cluster
5 0.00428371 28629151 10 days BOINC
6 0.00384831 887503681 58days BOINC

From the middle and the bottom panels of Figure 1 it
is clear that starting from N, = 3 we already obtain a rela-
tively accurate estimate of the sound speed profile. On av-
erage the approximations corresponding to Nc = 4 and
N¢ = 5 are almost identically accurate. Thus, the grid of
a few points is in fact sufficient to estimate the hydrolog-
ical properties of the shallow-water waveguide via geoa-
coustic inversion. The results for N: = 6 also indicate that
the increase of the number of nodes does not necessar-
ily improves the inversion accuracy. This can be consid-
ered an additional justification for using trans-D inversion
technique [25], where the preference in given to the sound
speed profile approximations with fewer nodes.

One of the most efficient ways to boost the perfor-
mance of a BOINC-based project is to organize a competi-
tion on the BOINCstats site [7]. In the course of such com-
petitions teams try to earn as many project’s credits as
possible. In September 2017 the “Ocean of fantasy” com-
petition was launched to help Acoustics@home perform
the aforementioned experiments faster. As a result, 26%
of workunits for N = 6 were processed within a week
(let us remind, that the whole experiment took 58 days).
At the end the competition, the project’s has reached the
record performance of 18 teraflops. It should be noted, that
competitions of the mentioned type can lead to high load
of a project’s server. In order to minimize the server load,
an improved task scheduling can be used (e.g., [22]). How-
ever, in our case the default task scheduling coped with
the competition.

5 Preliminary experiments on GPU

In the future, we are planning to improve Acous-
tics@home in two respects. Firstly, it is intended to employ
advanced black-box optimization algorithms. Secondly, a
GPU-based version of the computing application will be
implemented. In the following subsection, a new black-
box optimization algorithm is proposed, then we describe
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its GPU implementation, and present the experimental
results obtained by this application on one geoacoustic
inversion problem.

5.1 New Black-box Optimization Algorithm

The problem (1) belongs to the class of black-box optimiza-
tion problems which are very common in practice. In such
problems derivatives are either unavailable or very hard
to compute. Thus, solution methods should not rely on
derivatives. In this paper, in order to minimize the objec-
tive function (1) we use uniform mesh to obtain a finite
search space. This search space is processed by exhaustive
search (see Section 4). In [27] instead of exhaustive search
we applied iterative hill climbing algorithm. In the future,
we are planning to apply the combination of global and
local search techniques. The global search techniques will
be used to diversify the search, by starting the local search
from several initial points. The local search method will be
used to minimize the value of the objective function. We
plan to consider several local search techniques: Hooke-
Jeeves method [17], pseudo-gradient approach [15] and a
variety of coordinate descent techniques.

In black-box optimization problems derivatives are ei-
ther unavailable or very hard to compute. Thus, solution
methods should not rely on derivatives. There are a lot
of local search techniques which can be used for this
purpose: Hooke-Jeeves method [17], pseudo-gradient ap-
proaches [15] and a variety of coordinate descent tech-
niques. We developed a simple modification of the coor-
dinate descent method presented in Algorithm 1

The proposed algorithm (ASN search) uses asymmet-
ric neighborhood adaptation. It tries to improve the ob-
jective function f(x) by shifting by some value §; along
each coordinate vector e; in both directions. In the case of
success (failure) the respective step size is increased (de-
creased) by multiplying it on @ > 1(8 < 1). When ap-
proaching minimum values of §; usually decrease. The
method terminates when the maximal component of the
vector 6 becomes less that the predefined ¢ > 0.

The choice of initial 6 and € significantly affects the
performance. For the problem under consideration the
best performance were obtained with §; = 107!,i =
1...,n,e=10""
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1 while max;_

.....

2 fori=1tondo

3 X' =x+6;¢

4 if f(x') < f(x) then
5 X:=xX

6 61' = a(S,-

7 else

8 x' =x-6;¢

9 if f(x') < f(x) then
10 X: =X

11 51‘ = a6i

12 else

13 | 6;:=B5;

14 end

15 end
16 end

17 end

Algorithm 1: ASN Search

5.2 A GPU implementation of the Black-box
algorithm

For many classes of computational problems, graphics
processing units (GPUs) show significant speedup over
central processing units (CPUs). In particular, GPUs can
help to solve global optimization problems (e.g., see [4]).
However, to actually obtain this speed-up, the implemen-
tation of an algorithm should be thoroughly adapted for
GPU architecture. Fortunately, in our approach to geoa-
coustic inversion problem the base algorithms are well fit
for a GPU. The complete process of solving the geoacous-
tic inversion problem could be represented as a hierar-
chy of the subproblems solved by the corresponding sub-
algorithms (see Table 2).

The GPU programming model is based on data paral-
lelism. To achieve peak efficiency, modern GPUs should
simultaneously run about 10 000 computational threads
[12]. In the GPU-based implementation of our search proce-
dure, we exploit data parallelism found in the parallel cal-
culation of modal group velocities for a single point. Level
1 sub-algorithm executes on the CPU, while level 2-4 sub-
algorithms execute on the GPU (Table 2). A typical residue
calculation for a single search space point requires calcu-
lation of modal group velocities for thousands of frequen-
cies. Thus, data parallelism exposed in this way should be
enough to efficiently exploit modern GPUs.

Traditionally, geoacoustics computations are per-
formed in double precision floating point arithmetics
(FP64). However, modern consumer-grade GPUs suffer a
great (for some devices, up to 32 times [12]) drop in per-
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Table 2: Hierarchy of algorithms used in the process of solving the geoacoustic inversion problem.

Level Problem Algorithm

1 Search for lowest residue point ASN Search

2 Calc. residue for a point Calc. residue over individual frequencies

3 Calc. modal group velocities for a single frequency Numerical differentiation

4 Sturm-Liouville problem on a mesh Calc. eigenvalues of a tridiagonal symmetric matrix

formance when using FP64 instructions instead of their
single-precision (FP32) counterparts. This fact led us to in-
vestigate the consequences of changing the algorithm to
FP32.

In our computational experiments the ASN search (see
Subsection 5.1) was applied for minimizing the objective
function (1). We condidered the model problem of geoa-
coustic inversion with 3 parameters (R, pj, ¢). The sound
speed profile in the water column and the pulse signal
emitted by the source was the same as in [27]. The true val-
ues and the intervals of the unknown parameters are pre-
sented in Table 3.

Table 3: Intervals and true values of the unknown parameters.

Parameter True value Min value Max value
Cp, M/s 1700 1550 1850

Py, glem® 1.7 1.1 2

R, m 7000 6850 7150

The results are presented in Table 4. All experiments
were conducted on the Intel Core i7 930 CPU and the Nvidia
GTX 1050 GPU, with the use of CUDA 8.0 SDK and GCC 5.4.0
compiler. The NVCC compiler was forced to produce native
Compute Capability 6.1 code. Both NVCC and GCC compil-
ers were run with -03 optimization flag.

Table 4: Algorithm performance for various platforms and floating-
point precisions formats.

Platform Precis. Residue Time,s. points/s.
CPU, AlgLib FP64 0.0128206 4678 0.1710
CPU FP64 0.0132451 1212 0.5272
FP32 0.0209403 487 1.0616
GPU FP64 0.0131659 109 6.5779
FP32 0.0215154 46 15.2391

The most computationally intensive part of our algo-
rithm is the bisection sub-algorithm at level no. 4 in Ta-
ble 2. We implemented it as described in [13] and [12], pro-
ducing single- and double-precision versions, algorithmi-

cally identical on both GPU and CPU platforms. For refer-
ence, we provide the double-precision version based on
the AlgLib library [6]. This library includes a state-of-
the-art implementation of the bisection algorithm, thor-
oughly tuned to produce the most accurate results pos-
sible with the modern CPUs floating point units (FPUs).
Our CPU-based implementation of bisection algorithm can
not boast such accuracy. However, it is notably faster than
AlgLib due to its simplicity. That is why, our and A1gLib-
based algorithm’s results are different. The discrepancy
between the outputs (residue) of the same algorithm on the
CPU and GPU is the result of the different implementations
of floating-point units on these platforms.

Table 4 clearly indicates the superiority of the GPU
performance, even in FP64. The FP32 mode of the GPU
is 150 times faster than the FP64 mode, though the for-
mer’s final residue (0.0215154) is much worse than the lat-
ter one’s (0.0131284). However, recomputation of this final
point in FP64 gives the result (0.0134315, see Table 5) that
is on par with that of the FP64 CPU implementation.

This leads us to suggest the mixed-mode, two-stage al-
gorithm, that uses the “coarse” FP32 computation mode
during Stage I, and then refines its result in Stage II by re-
suming the search in the “fine” FP64 computation mode.
The performance of this algorithm is presented in Table
5. For reference, the “Initial residue” column of Table 5
shows residue of the best point found by Stage I recom-
puted by various Stage II algorithms. It is easy to see that
the GPU-based FP32 algorithm for Stage I is best comple-
mented for Stage I by the GPU-based FP64 algorithm. The
total runtime of this mixed-mode algorithm is 127 seconds.
This is faster than runtime of the pure GPU-based FP64 al-
gorithm (777 seconds), and its final residue (0.0130635) is
almost equal to that of the pure CPU-based FP64 (alglib
[6]) algorithm (0.0130471).

The FP64 performance of our GPU-based algorithm
is only 2.5 times lower than the performance of our FP32
algorithm on the same GPU (see Table 4). However, ac-
cording to [12] this performance drop should be at least
4x times for the GTX1050 GPU used in our experiments.
This means that the GPU performance is likely to be bot-
tlenecked by suboptimal multiprocessor occupancy [12]
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Table 5: Mixed-mode algorithm performance.
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Stage | Stage Il
Platform Final residue  Time, s. Platform Initial residue  Final residue Time, s. | Totaltime, s.
CPU (alglib) 0.0137885 0.0130473 1446 1492
GPU (FP32) 0.0215154 46 CPU 0.0133772 0.0131325 1099 1145
GPU 0.0134315 0.0130635 81 127

and/or excessive memory transfers, rather than the FP64
FPUs of the device. The higher GPU performance we per-
ceived in our previous experiments with the paralleliza-
tion scheme based on the simultaneous computing of
residues for many search space points supports this the-
ory. This means that a thorough optimization of the GPU
code could increase the GPU performance of our geoacous-
tic inversion algorithm at least 2-3 times.

6 Related work

The computing clusters are often used in the practical ap-
plications of geoacoustic inversion algorithms (see, e.g.,
[14] and references therein). While sometimes one can
compromise by using heuristic optimization techniques in
end-user applications, the problems of development and
validation of inversion algorithms anyway set very strong
demand for the high-performance computational tools.

In the previous works [26, 27] we solved on a com-
puting cluster the problems similar to that, considered in
the present paper. The restrictions on available computa-
tional resources forced us to launch Acoustics@home. But
we will continue to use the cluster in order to solve simple
scenarios, or to test new versions of the computing appli-
cation.

In [18] general purpose GPUs were used to accelerate
underwater acoustic propagation modeling.

7 Conclusions

In the present study we describe the volunteer comput-
ing project Acoustics@home that was set up to handle
computationally intense geoacoustic inversion problems.
With the help of our volunteers we conducted a series of
experiments aiming to investigate the capabilities of the
dispersion-based inversion method in producing the es-
timate of the sound speed profile in shallow-water envi-
ronment. In our view, it seems interesting to find out, how
many grid points are required to resolve the function c(z)

and how accurate the inversion result can be. In [25] a sim-
ilar question was studied by using a sophisticated trans-
D Bayesian inversion approach. Our results are obtained
in a much more simple and straightforward way, and they
are also probably easier to understand. The accuracy of the
sound speed profile inversion is quite encouraging, and it
seems that in principle function c(z) can be estimated from
the data almost exactly. At least, it is clear that there is no
limitation neither on the side of the warping-based mode
filtering algorithm, nor on the side of the global minimiza-
tion problem (i.e., it features only one global extremum
of the fitness function near the true set of parameters val-
ues). It is also important to note that increasing the num-
ber of nodes in sound speed profile approximation does
not necessarily improve the inversion accuracy. At some
point adding new dimensions of the search space results
in the larger deviation of the inverted sound speed profile
from the true one.

The present study highlights great opportunities that
volunteer computing can bring into the field of computa-
tional underwater acoustics. In the future, we are aiming
at developing a powerful computational framework that
can be used on demand by any member of ocean acoustics
research community who needs to conduct some very in-
tense calculations in order to solve certain direct or inverse
problems. To this end, we are planning to expand our code
by adding some modules capable of solving propagation
problems in inhomogeneous 2D and 3D waveguides and
also implement other inversion algorithm (not necessarily
relying on single-hydrophone data).
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