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Abstract: This article deals with the investigation of three-
dimensional axisymmetric steady flow of micropolar fluid
over a rotating disk in a slip-flow regime. Further, the
generation of entropy due to heat transfer and fluid fric-
tion is identified. It is noticed that the entropy generation
can be decreased and controlled in the presence of slip.
The anisotropic slip has vital characteristics and it has a
great influence on the flow field and heat transfer. The
von Kármán similarity transformation is used to establish
the equations governing the flow and heat transfer char-
acteristics of the fluid. The impact of some important pa-
rameters on velocity profiles, angular velocity (microrota-
tion) and energy distribution is discussed and illustrated
through graphs and tables. The effects of physical param-
eters on the entropy generation and Bejan numbers are
also presented graphically. In addition, themost favorable
agreement is observed among the results of the present
study and those of the earlier studies.

Keywords: Micropolar; anisotropic slip; entropy genera-
tion; rotating disk; axisymmetric

1 Introduction
In the last few years, the dynamical study of non-
Newtonian fluids has got vital attention among various
researchers. The flow produced from these type of fluids
can be used to analyze a broader class of fluids that ex-
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ist in the physical world. The distinctive property of non-
Newtonian fluids is to have the variable viscosity. Non-
Newtonian fluids are rheologically complex fluids repre-
sented by the non-linear relationships among shear stress
and strain rate. Themicropolar fluidmodel, also known as
polar fluid, is one of the non-Newtonian models that have
microstructure. Micropolar fluids come into the category
of fluids that have nonsymmetrical stress tensor and con-
sist of stiff and arbitrarily structured particles hanging in
a viscous channel where the deformation of fluid particles
is uncountable. In recent times, a lot of researchers have
been giving their attention to the theory of micropolar flu-
ids and this is because conventionalNewtonianfluidsdoes
not have the ability to explain the properties of the fluid
flows containing suspended particles. Themain reason for
the significant attention to the investigation of the flows
of micropolar fluids was their usages and applications in
different industrial processes, which include: solidifica-
tion of liquid crystal, the extrusion of polymer fluids, an-
imal blood, exotic lubricants, cooling of a metallic plate
in a bath, and colloidal and suspension solutions. More
complex fluids can be described by the extension of New-
tonian fluids to the theory of micropolar fluid flow. Erin-
gen [1] presented a model which consists of special types
of fluids known as microfluids. These fluids are composed
of randomly structured rigid particles suspended in a vis-
cous medium and have essential microscopic characteris-
tics. The theory of micropolar fluids received a lot of atten-
tion among the researchers [2–5]. The main reason for the
advances in Eringen’smicrocontinuummechanicswas the
introduction of new kinematic variables, for instance, the
microinertia moment and gyration tensors, and also to in-
clude the ideas of stressmoments, bodymoments, andmi-
crostress. Ariman, et al. [6] discussed the theory ofmicrop-
olar fluids that consists of the effects arising from the in-
trinsicmotion of fluid elements and theirmicropolar struc-
ture. Chamkha, et al. [7] applied the boundary layer the-
ory to examine the three-dimensional flow of amicropolar
fluid due to a continuous stretching surface by using simi-
larity assumptions. Ashraf andBatool [8] proposed the nu-
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merical study based on the axisymmetric laminar flow of
micropolar fluid due to a stretchable disk while taking the
magnetic field effect on the flow. Borrelli, et al. [9] studied
the three-dimensional stagnation point flow of a microp-
olar fluid subjected to the magnetic effects and proposed
the numerical results of governing equations of the flow.
Hussain, et al. [10] obtained the solution of the problemes-
tablished by the flow of a micropolar fluid rotating about
an accelerated disk.

The study of fluid flow due to a rotating disk has be-
come increasingly popular in fluid dynamic research for
the interest not only practical but also academic. The flow
over a rotating disk is important because of its wide ap-
plications in many engineering, industrial, geothermal,
geophysical, and technological fields. Kármán [11] inves-
tigated the fluid flow due to an infinite rotating disk that
proved to be a revolutionary study in the field of fluid me-
chanics. He was the first to propose the similarity transfor-
mation for the rotating disk flow problems that is used to
transform the governing partial differential equations into
ordinary differential equations. The similarity analysis of
the rotating disk flow by Kármán led to various investiga-
tions that have been carried out for the flow fields regard-
ing disk flows. Turkyilmazoglu [12] investigated the solu-
tion of an electrically conducting fluid flow and extended
the Kármán viscous pump problem by taking the flow over
a radially stretchable rotating disk under the influence of
a uniform vertical magnetic effect and examined the mag-
netic effects on the flow. The steady flow of an incompress-
ible power law fluid due to rotating infinite disk was stud-
ied by Ming, et al. [13] and they provided the numerical re-
sults of the fluid flow with heat transfer effect. Rashidi, et
al. [14] have developed a set of nonlinear partial differen-
tial equations that corresponded with the steady convec-
tive and magnetohydrodynamic (MHD) slip flow occurred
due to the rotation of a disk in the existence of viscous dis-
sipation and Ohmic heating.

The second law of thermodynamics is more reliable
than the first because it reduces the sum of frictional and
thermal entropy generation rates. However, in the past few
years, the second law analysis have been known as the ex-
ergy analysis of available energy. It has several useful ap-
plications in engineering because it offers the quantitative
information about irreversibilities and exergy losses in the
system. Exergy analysis improves the performance of en-
gineering process that involves heat transfer and inspects
the irreversibility in terms of entropy generation caused
by the motion of fluid and heat transfer and predicts the
performance of engineering processes. The viscous dissi-
pation and heat transfer are the causes of the production
of entropy. Pioneering work on the entropy generation in

fluid flow has been done by Bejan [15, 16]. He also dis-
cussed the generation of entropy for the flowof forced con-
vection viscous fluid in a channel as a result of viscous fric-
tion and heat transfer in the fluid. Many investigators were
motivated to execute the analysis, subjected to the second
law of thermodynamics. Abdollahzadeh Jamalabadi [17]
presented and discussed the problem of the entropy gen-
eration in steady boundary layer flow of a micropolar fluid
over a stretching sheet. Additionally, the heat and mass
transfer features have also been taken into account on the
flow field.

On reviewing the literature, it iswell identified that the
velocity profiles can be significantly affected by the exis-
tence of a slip boundary condition. As far as our knowl-
edge is concerned, no significant attention has been given
to investigate the slip effect on the fluid flow. However,
Joseph [18] gave an idea of slip condition and discussed its
eminent characteristic for reducing the skin friction. Many
studies [19–21] are established to examine the slip effect
on the different fluid flows and it has been noticed that the
slip condition is significant to increase flowpressurewhen
the characteristic size of the flow system is low. In recent
past, the superhydrophobic surfaces have gained much
importance and have become the subject of intense re-
search because of their potential to decrease skin-friction
drag. The superhydrophobic surfaces depend on direc-
tions and have different slip-length values in spanwise
and streamwise directions. The effects on flows over su-
perhydrophobic surfaces have also gained some attention.
Busse and Sandham [22] analyzed the turbulent channel
flow and observed the influence of an anisotropic Navier
slip-length boundary condition.

Motivated by the aforementioned work, the present
research examines the comprehensive study of micropo-
lar fluid flow over a rotating disk along with anisotropic
slip and the dissipation effects. The present study also ex-
amines the entropy generation characteristics for a rotat-
ing disk flow. Such effects have not been considered yet
on a micropolar fluid. This study explores these effects of
emerging flow parameters on the velocity profiles, micro-
rotation, and temperature distribution.

2 Micropolar Fluid Model
In the present study, micropolar fluid is the fluid of inter-
est, which has microscopic characteristics such as micro-
rotational and rotational inertia. The fundamental equa-
tions for the micropolar fluid are written as:

τji = (−p + divV) δji + (2µ + k) e
j
i + kεijm (ω − N) , (1)
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Mj
i = (αdivV) δji + βωi,j + 𝛾ωi,j (2)

Where, τji is the stress tensor, M
j
i is the couple stress ten-

sor, eji are the components of the rate of strain, p is the
pressure, µ and k are viscosity coefficients, (α, β, 𝛾) are
the material constants of micropolar fluids, V denotes the
velocity vector, N and ω indicate the microrotation vec-
tor and vorticity vector components respectively, εijm is
the Levi-Civita symbol, δji is the Kronecker delta and the
comma in i, j gives covariant differentiation.

The stress components of micropolar fluid in cylindri-
cal coordinates system are given by
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In above equations, (r, ψ, z) are the components of cylin-
drical coordinates, (u, v, w) are the components of velocity
vector, and (N1, N2, N3) are the components of microrota-
tion vector.

Figure 1: Geometrical configuration of the flow

2.1 Mathematical Description of the
Problem

Assuming the steady, laminar, and axisymmetric flow of
an incompressible non-Newtonian micropolar fluid over a
rotating disk in slip-flow regime (Figure 1), which can be
defined in three-dimensional frame of reference by using
the cylindrical polar coordinates (r, ψ, z), where r is the ra-
dial distance from theaxis,ψ is thepolar angle, and z is the
normal distance from the disk. Further, the constant tem-
perature on the surface of the disk is assumed to be Tw and
T∞ is the temperature surroundingfluid. It is also assumed
that the fluid flow is under slip boundary conditions, and
the body couples and body force are likely to be neglected.
All the flow quantities are independent of t and ψ as the
flow is steady and axisymmetric. Thus, the components of
velocity (u, v, w) andmicrorotation (N1, N2, N3) along the
radial, tangential, and axial directions are:

u = u (r, z) , v = v (r, z) , w = w (r, z) ,
N1 = 0, N2 = N2 (r, z) , N3 = 0.

Therefore, the equations governing the motion with the
above assumptions are:

1
r
∂ (rρu)
∂r + ∂ (ρw)∂z = 0, (12)

ρ
(︂
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The subjected boundary conditions are

u = k1τzr , v = rΩ + k2τzψ , w = 0, T = Tw at z = 0, (19)

u → 0, v → 0, w → 0, T → T∞, p → 0as z →∞

Where, Cp is the specific heat at constant pressure, k0 is
the thermal conductivity, k1 and k2 are the slip coefficients
in the radial and tangential directions, and φ is the dissi-
pation function respectively.

2.2 Similarity Transformation

The flow is examined by the ordinary differential equa-
tions (ODEs) found by means of an appropriate non-
dimensional transformation variable given by Kár-
mán [11], adapted to reduce partial differential equations
governing the axisymmetric momentum associated with
the rotating disk flow into ODEs. The similarity variable is
defined as:

u = rΩF (Λ) , v = rΩG (Λ) , (20)

w =
√
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Where, the dimensionless functions F, G, andH are the di-
mensionless components of velocity along the radial, tan-
gential, and axial directions, M is the dimensionless mi-
crorotation, ν = µ

ρ is the kinematic viscosity, Λ is the di-
mensionless distance from the surface of thedisk,Re is the

Reynolds number, and p is the dimensionless hydraulic
pressure above the disk. On applying the above transfor-
mation on Eqs. (12)-(18), the equations of continuity and
momentum become:

2F (Λ) + H′ (Λ) = 0, (21)
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subject to the boundary conditions:

F (0) = ζ
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F′ (0) + C1M (0)

)︀
, G (0) = 1 + ηG′ (0) , (27)

H (0) = 0, θ (0) = 1, P (0) = 0

and

F (∞) = 0, G (∞) = 0, θ (∞) = 0 (28)

Where, C1 = k
µ is vortex viscosity parameter, C2 = 𝛾

ρjν ,
C3 = k

ρjΩ represent the spin gradient viscosity parameter
and the microinertia density parameter, Pr = µCp

k0 is the
Prandtl number, and the Brinkman number is Br = µΩ2r2

k0∆T .

2.3 Physical Quantities

In Kármán flows, the coefficients of shear stress are the im-
portant physical quantities. The radial and circumferential
shear stress coefficients of the micropolar fluid can be ob-
tained by:

Cf =
τzr
µΩ

⃒⃒⃒⃒
z=0

, Cg =
τzψ
µΩ

⃒⃒⃒⃒
⃒
z=0

(29)
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The skin friction coefficients Cf and Cg from Eq. (29) are
obtained in dimensionless form as:

Cf =
√
Re
(︀
C1M (0) + F′ (0)

)︀
, Cg =

√
ReG′ (0) (30)

The convective and conductive heat transfers in a fluid
across the surface are interrelated with the help of Nusselt
number, which is defined as:

Nu =
qw

(Tw − T∞)
(31)

Here, qw is the heat flux at the surface of the rotating disk
due to conduction.

qw = −r
(︂
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)︂⃒⃒⃒⃒
z=0

(32)

Thus, the dimensionless form of the Nusselt number is ob-
tained as:

Nu = −
√
Reθ′ (0) (33)

3 Entropy Analysis
Entropy is a state function that shows the unidirectional
nature of thermodynamic processes. It is the most sig-
nificant thermodynamic characteristic that represents the
chaos of a system and surroundings and so often, the en-
tropy is known as the measure of chaos. The basic cause
for the occurrence of entropy is the transfer of heat (en-
ergy) and when it happens, a number of movements ap-
pear such as molecular resistance, molecular vibration,
innermolecular displacement, rotationalmoment, kinetic
energy etc., which becomes the reason of disorderliness in
a system and its surroundings. It emanates from the sec-
ond law of thermodynamics, which is a second important
idea in the field. The thermodynamic irreversibilities can
bemeasured by considering the entropy generation analy-
sis in the system and can be applied to any character of the
energy conversion scheme. There are two sources of en-
tropy generation, first is heat transfer along the direction
of temperature gradients and second is the irreversibility
due to fluid friction.

The volumetric rate of entropy generation for microp-
olar fluid flow in cylindrical coordinates is given as [23]:
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The characteristic entropy generation rate SG0 can also be
given as:

SG0 =
k0Ω (Tw − T∞)

Twν
(35)

where k0 represents thermal conductivity, ν is kinematic
viscosity, and Tw is the channel’s absolute reference tem-
perature.

In dimensionless form, the entropy generation can be
explained as the ratio of characteristic entropy transfer
rate and the actual entropy generation rate, as reported by
Bejan [23]. Thus, for each fluid with dimensionless vari-
ables, the entropy generation number is defined as:

NG = SG
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where σ1 = Tw

(Tw−T∞) , σ2 = T∞
(Tw−T∞) are the temperature ra-

tios and Q0 = T∞
Tw .

The Bejan number, also known as an alternative ir-
reversibility distribution parameter, provides information
concerning with irreversibility mechanism. It is the ratio
of total entropy generation and entropy generation due to
heat transfer and can be represented as:
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4 Numerical Method
The highly nonlinear ODEs governing the flow and heat
transfer are difficult to solve analytically in the presence of
slip conditions. In order to seek solutions for the govern-
ing equations of fluid over a rotating disk with anisotropic
slip, a numerical method (bvp4c) is employed in which a
MATLAB package offered by Kierzenka and Shampine [23]
is used. This method has been effectively used to solve the
nonlinear ODEs of various boundary value problems.
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Figure 2: Effect of C1 on F (Λ) keeping ζ = η = 0.2, C2 = C3 = 1,
Pr = 6.8, Br = 1 and Re = 2950

Figure 3: Effect of C1 on G (Λ) keeping ζ = η = 0.2, C2 = C3 = 1,
Pr = 6.8, Br = 1 and Re = 2950

5 Numerical Results and Discussion
It is highly unlikely to find an analytical solution of the
coupled nonlinear equations; therefore, a numerical so-
lutions for the velocity, microrotation, and temperature
along with the anisotropic slip have been obtained us-
ing the numerical method discussed in previous section
with the purpose of giving the detailed behavior of flow
fields and thermal distribution. In this section, the influ-
ence ofmain controlling parameters present in the govern-
ing equations is discussed and the graphical representa-
tions of entropy generation and Bejan numbers have been
presented to observe the effect of pertinent parameters.
The consideredmathematical problemdefined inEqs. (21)-
(26) with the boundary conditions in Eqs. (27)-(28) have

Figure 4: Effect of C1 on −H (Λ) keeping ζ = η = 0.2, C2 = C3 = 1,
Pr = 6.8, Br = 1 and Re = 2950

Figure 5: Effect of C1 on M (Λ) keeping ζ = η = 0.2, C2 = C3 = 1,
Pr = 6.8, Br = 1 and Re = 2950

been solved by a numerical method (bvp4c) for a suitable
range of the values of fluid parameters like the vortex vis-
cosity parameter C1, spin gradient viscosity parameter C2,
microinertia density parameter C3, Reynolds number Re,
Prandtl number Pr, Brinkmannumber Br, radial slip ζ and
tangential slip η. The effects of theses parameters on veloc-
ity, microrotation, and temperature fields have been pre-
sented graphically through Figures 2-11. All the calcula-
tions are taken at high Reynolds number, i.e. Re = 2950.

In Figures 2-7, the effect of the vortex viscosity param-
eter C1 on the velocity profiles,microrotation, and temper-
ature distribution have been considered for ζ = η = 0.2,
C2 = 1, C3 = 1, Pr = 6.8, Br = 1 and Re = 2950. Figure 2
illustrates the influence of C1 on the radial velocity F (Λ).
The radial velocity field F (Λ) increases near the disk, then
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Figure 6: Effect of C1 on −P (Λ) keeping ζ = η = 0.2, C2 = C3 = 1,
Pr = 6.8, Br = 1 and Re = 2950

Figure 7: Effect of C1 on θ (Λ) keeping ζ = η = 0.2, C2 = C3 = 1,
Pr = 6.8, Br = 1 and Re = 2950

starts to decrease as fluid moves far from the disk and re-
duces to zero. Figure 3 indicates that the tangential veloc-
ity field G (Λ) exhibits exponentially decaying behavior as
the values of C1 rise. Figure 4 shows the influence of C1 on
axial velocity −H (Λ), which illustrates that the axial ve-
locity −H (Λ) increases when it moves away from the disk
by increasing the values of C1. FromFigure 5, it is observed
that themagnitude ofmicrorotation,M (Λ), increaseswith
C1 and these profiles decrease near the boundary and in-
crease far from the boundary. The pressure profiles in von
Kármán flows rises near the disk and become constant as
they move away from the disk. The pressure profiles in-
crease with an increase in the values of C1 as depicted in
Figure 6. The temperature profiles exhibit the increasing

Figure 8: Effect of η on F (Λ) keeping ζ = 0.2, C1 = C2 = C3 = 20,
Pr = 6.8, Br = 1 and Re = 2950

Figure 9: Effect of η on −H (Λ) keeping ζ = 0.2, C1 = C2 = C3 = 20,
Pr = 6.8, Br = 1 and Re = 2950

behavior with the higher values of C1 as displayed in Fig-
ure 7.

The tangential velocity, microrotation profiles, pres-
sure, and temperature distributions are not greatly af-
fected by the slip parameters which lead us to the decision
to consider the effect of these parameters on radial and ax-
ial velocity profiles only, as showed in Figures 8-9.

Figure 8depicts the influence of tangential slip param-
eter η on radial velocity F (Λ) in the presence of radial slip
ζ = 0.2 at C1 = C2 = C3 = 20, Pr = 6.8, Br = 1, and
Re = 2950. It is mentioned formerly that different slip
lengths in span and stream-wise directions have opposite
effect onfluid velocity. FromFigures 8-9, it canbe observed
that radial and axial velocities decrease in both directions
as increasing the values of tangential slip parameter η.
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Figure 10: Effect of ζ on F (Λ) keeping η = 0.2, C1 = C2 = C3 = 50,
Pr = 6.8, Br = 1 and Re = 2950

Figure 11: Effect of ζ on −H (Λ) keeping η = 0.2, C1 = C2 = C3 = 50,
Pr = 6.8, Br = 1 and Re = 2950

In order to analyze the effects of radial slip parameter
ζ on radial velocity F (Λ) and axial velocity −H (Λ) profiles,
graphs are plotted in Figures 10-11 in the presence of tan-
gential slip η = 0.2 and at C1 = C2 = C3 = 50, Pr = 6.8,
Br = 1 and Re = 2950. It is clearly seen that both, the ra-
dial and axial velocities increase with an increase in the
values of radial slip. The reason behind this phenomenon
is that the slip at the disk surface increases as the radial
slip parameter ζ increases.

Figures 12-13 depict the effect of the spin gradient vis-
cosity parameter C2 for C1 = C3 = 200, and the influence
of the microinertia density parameter C3 for C1 = C2 =
400, keeping Br = 1, Pr = 6.8, and Re = 2950. The
influences of these micropolar parameters C2 and C3 are
observed on the pressure distribution −P (Λ) in the pres-

Figure 12: Effect of C2 on −P (Λ) keeping ζ = η = 0.2, C1 = C3 =
200, Br = 1, Pr = 6.8 and Re = 2950

Figure 13: Effect of C3 on −P (Λ) keeping ζ = η = 0.5, C1 = C2 =
400, Br = 1, Pr = 6.8, and Re = 100

ence of radial and tangential slips as ζ = η = 0.2. The
spin gradient viscosity parameter C2 has an inverse effect
on pressure distribution−P (Λ) as shown in Figure 12, be-
cause pressure decreases by increasing the values of C2,
whereas pressure increases as raising the values of mi-
croinertia density parameter C3.

The effect of Reynolds number Re on radial velocity
F (Λ) profiles and axial velocity −H (Λ) profiles are exhib-
ited through the graphs shown inFigures 14-15. The graphs
are plotted in the presence of radial slip ζ = 0.5, tangen-
tial slip η = 0.2 and at C1 = C2 = C3 = 50, Pr = 6.8,
Br = 5. It is observed that radial velocity F (Λ) and ax-
ial velocity −H (Λ) reduce when the Reynolds number Re
changes from low to high values as displayed in Figures 14-
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Figure 14: Effect of Re on F (Λ) keeping ζ = 0.5, η = 0.2, C1 = C2 =
C3 = 50, Pr = 6.8, and Br = 5

Figure 15: Effect of Re on −H (Λ) keeping ζ = 0.5, η = 0.2, C1 = C2 =
C3 = 50, Pr = 6.8, and Br = 5

15. Therefore, the parameter Re shows the decreasing ef-
fect on both the radial and axial velocities.

Figures 16-17 show the pressure distribution −P (Λ) for
selected values of the radial slip ζ and tangential slip η
parameters.

The influence of the radial slip parameter ζ on the
pressure distribution −P (Λ) is displayed in Figure 16,
which shows that an increase in the values of radial slip ζ
results in the fall of pressure. It can be observed from Fig-
ure 17, that increasing the values of the tangential slip pa-
rameter η also decrease the pressure. From Figures 18-19,
it is quite evident that there is an increase in temperature
θ (Λ) with increasing the values of the Brinkman number
Br as well as the microinertia density parameter C3 in the

Figure 16: Effect of ζ on −P (Λ) keeping η = 0.2, Pr = 6.8, Br = 1,
Re = 2950, C1 = C2 = C3 = 50

Figure 17: Effect of η on −P (Λ) keeping ζ = 0.2, Pr = 6.8, Br = 1,
Re = 2950, C1 = C2 = C3 = 20

presence of radial and tangential slips, taking ζ = 0.5 and
η = 0.2.

To examine the effects of Prandtl number Pr and
Reynolds number Re on temperature fields θ (Λ), the
graphs are plotted as shown in Figures 20 and 21 from
which, it can be seen that the temperature profiles de-
crease for an increase in the values of Pr and Re.

Figure 22 gives the influence of the vortex viscosity pa-
rameter C1 on the boundary layer thickness and it is in-
ferred that it increases with increasing the values of vor-
tex viscosity parameter. The circumferential velocity is em-
ployed to observe the boundary layer thickness for von
Kármán flows of Newtonian fluids, which occurs at the
point where the tangential velocity drops to G ≈ 0.01 as
referred in [24].
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Figure 18: Effect of Br on θ (Λ) keeping ζ = 0.5, η = 0.2, C1 = C2 =
C3 = 100, Pr = 6.8, Re = 100

Figure 19: Effect of C3 on θ (Λ) keeping ζ = 0.5, η = 0.2, C1 = C2 =
400, Pr = 6.8, Br = 1, Re = 100

Figures 23-28 exhibit the pronounced variation of en-
tropy generation number NG and the Bejan number Be as-
sociated with the effects of Brinkman number Br, vortex
viscosity parameter C1, and Prandtl number Pr. Figure 23
demonstrates the variationof the entropygenerationnum-
ber, which varies with the increasing values of Brinkman
number, which gives its maximum value near the disk and
decreases away from the disk. The opposite behavior is
shown in Figure 24. The Bejan number decreases as the
Brinkman increases.

It is illustrated by Figures 25-26 that the entropy gen-
eration and the Bejan numbers decrease near the disk as
C1 increases. The influence of the Prandtl number on the
entropy generation number and the Bejan number are pre-
sented in Figure 27-28. The entropy generation number in-

Figure 20: Effect of Pr on θ (Λ) keeping ζ = 0.5, η = 0.2, C1 = C2 =
C3 = 400, Br = 1, Re = 40

Figure 21: Effect of Re on θ (Λ) keeping ζ = 0.5, η = 0.2, C1 = C2 =
C3 = 50, Br = 5, Pr = 6.8

creases with Prandtl number as depicted in Figure 27. A
rise in the values of Prandtl number increases the Bejan
numberbut it becomesminimumasfluidmoves away from
the disk as shown in Figure 28.

Table 1 presents numerical values for local skin fric-
tion coefficients Cf and Cg, and local Nusselt number Nu
for different pertinent parameters. The vortex viscosity pa-
rameter C1 decreases both the skin friction coefficients
and Nusselt number, which increases the fluid flow over
disk and heat transfer increases as a decrement in theNus-
selt number. The increase in the values of spin gradient
viscosity parameter C2 increases the skin friction coeffi-
cient Cf , which reduces the fluid flow in the radial direc-
tion andalso increases theNusselt number,while skin fric-
tion coefficient Cg diminishes allowing more fluid to flow
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Table 1: Numerical values of local skin friction coeflcients Cf and Cg, local Nusselt number Nu for physical parameters C1, C2, C3, ζ , η and
Pr while keeping Re = 2950 and Br = 1

C1 C2 C3 ζ η Pr Re− 1
2 Cf Re− 1

2 Cg Re− 1
2 Nu

0
10
20

10 10 0.2 0.2 6.2 0.3526
0.1291
0.0925

0.5837
0.1898
0.1401

0.6413
0.6642
0.5891

10 10
20
30

10 0.2 0.2 6.2 0.1291
0.1316
0.1329

0.1898
0.1883
0.1876

0.6642
0.6757
0.6815

10 10 0
10
20

0.2 0.2 6.2 0.1360
0.1291
0.1265

0.1838
0.1898
0.1915

0.6985
0.6642
0.6510

10 10 10 0.0
0.2
0.4

0.2 6.2 0.1356
0.1291
0.1231

0.1825
0.1898
0.1963

0.5639
0.6642
0.7506

10 10 10 0.2 0.0
0.2
0.4

6.2 0.1369
0.1291
0.1223

0.2012
0.1898
0.1798

0.6692
0.6642
0.6590

10 10 10 0.2 0.2 1
3
5

0.1291
0.1291
0.1291

0.1898
0.1898
0.1898

0.1871
0.4421
0.5928

Figure 22: Effect of vortex viscosity parameter C1 on boundary layer
thickness δ keeping ζ = η = 0.2, C2 = C3 = 10, Br = 1, Pr = 6.8, Re
= 2950

in a tangential direction. The radial skin friction coefficient
and Nusselt number decrease as the values of themicroin-
ertia density parameter C3 increase, whereas skin friction
coefficient increases in the tangential direction. The skin
friction coefficient decreases for increasing values of radial
slip parameter ζ , which allows more fluid to flow in a ra-
dial direction. On the other hand, the tangential skin fric-
tion and Nusselt number increase, which reduces the flow
ina tangential direction. The increasing effect in the values
of tangential slip parameter η decreases both the physical
quantities like skin friction coefficient and Nusselt num-

Figure 23: Effect of Br on NG keeping ζ = η = 0.2, C1 = C2 = C3 =
10, Br = 1, Pr = 6.8, Re = 2950, σ1 = 1, σ2 = 0.5, Q0 = 0.5

ber. Therefore, fluid velocity increases with increase in the
tangential slip parameter. Finally, it is observed that varia-
tions in the Prandtl number Pr change the Nusselt number
only, which reduces heat transfer as the Nusselt number
increases.

For the reliability of numerical outcomes, comparison
of the present results with [24] is presented in Table 2.
It can be seen that the results are in good agreement at
C1 = C2 = C3 = ζ = η = 0, which validates the re-
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Table 2: Numerical comparison of some physical quantities with Ref. [24] obtained at Re = 2950

Physical
Quantities

[24] C1 = C2 =
C3 = 0
ζ = η = 0

C1 = 5, C2 =
C3 = 0
ζ = η = 0

C2 =
10C1 =
C3 = 0
ζ = η = 0

C1 = C2 =
C3 = 0

ζ = 0.2,η =
0

C1 = C2 =
C3 = 0
ζ = 0,η =

0.2

C1 = C2 =
C3 = 10

ζ = 0.2,η =
0.2

F′ (0) 0.51023 0.5102 0.2081 0.5102 0.4201 0.4324 0.1291
−G′ (0) 0.61592 0.6159 0.2511 0.6159 0.7076 0.5220 0.1898
−H (∞) 0.8838 0.8844 2.0730 0.8844 0.9324 0.8370 2.4870
−P (∞) 0.3906 0.3911 2.1487 0.3911 0.2667 0.3502 2.7828
Re− 1

2 δ 5.4 5.25 12.0 5.4 4.95 5.55 13.65

Figure 24: Effect of Br on Be keeping ζ = η = 0.2, C1 = C2 = C3 =
10, Br = 1, Pr = 6.8, Re = 2950, σ1 = 1, σ2 = 0.5, Q0 = 0.5

Figure 25: Effect of C1 on NG keeping ζ = η = 0.2, C2 = C3 = 10,
Br = 1, Pr = 1.5, Re = 2950, σ1 = 1, σ2 = 0.5, Q0 = 0.5

sults and computational technique. This table also shows
the effects of four other parameters by varying the value
of one parameter while the others are kept at zero. It is

Figure 26: Effect of C1 on Be keeping ζ = η = 0.2, C2 = C3 = 10,
Br = 1, Pr = 6.8, Re = 2950, σ1 = 1, σ2 = 0.5, Q0 = 0.5

Figure 27: Effect of Pr on NG keeping ζ = η = 0.2, C1 = C2 = C3 =
10, Pr = 6.8, Re = 2950, σ1 = 1, σ2 = 0.5, Q0 = 0.5

observed that the vortex viscosity parameter C1 has a de-
creasing effect on radial and tangential skin frictionswhile
it increases the volumetric flow rate, pressure, and bound-
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Figure 28: Effect of Pr on Be keeping ζ = η = 0.2, C1 = C2 = C3 =
10, Br = 1, Re = 2950, σ1 = 1, σ2 = 0.5, Q0 = 0.5

ary layer thickness for C1 = 5. On the other hand, when
the spin gradient viscosity parameter is fixed at C2 = 10, it
gives the same results as obtained in [24] but it changes the
volumetric flow rate from 0.8838 to 0.8844 and the pres-
sure from 0.3906 to 0.3911. The radial skin friction, pres-
sure, and boundary layer thickness are found decreasing
for ζ = 0.2, while it enhances the tangential skin fric-
tion and volumetric flow rate. The tangential slip parame-
ter illustrates the decreasing behavior on all the quantities
except boundary layer thickness, which slightly increases
from 5.4 to 5.55 at η = 0.2. It can be seen that radial and
tangential skin friction reduce for C1 = C2 = C3 = 10, and
ζ = η = 0.2, while it increases the volumetric flow rate,
pressure, and boundary layer thickness.

6 Conclusion
The present work examined the flow of an incompressible
micropolar fluid over a rotating disk in the existence of
anisotropic slip conditions and dissipation. The flow, mi-
crorotation, and temperature fields have been computed
by considering the effects of most significant parameters
including the spin gradient viscosity, vortex viscosity, mi-
croinertia density, Reynolds number, Brinkman number,
Prandtl number, and radial and tangential slips. The de-
tails of the flow, microrotation, and heat transfer charac-
teristics have been illustrated by numerical results. The
following results have been concluded from the investiga-
tion of the considered problem:

(i) The radial, tangential, and, axial velocities in-
creased for the rising values of vortex viscosity pa-

rameter C1. The microrotation, temperature, and
pressure also increased with an increase in C1.

(ii) The radial and axial velocities and pressure de-
creased with the increase in the tangential slip pa-
rameter η.

(iii) The increasing values of the radial slip parameter
ζ have increased the radial and axial velocities but
have decreased the pressure.

(iv) The pressure and temperature increased by increas-
ing the values of the microinertia density parameter
C3 but pressure showed inverse effect when the val-
ues of the spin gradient viscosity parameter C2. were
increased.

(v) The radial and axial velocities as well as the temper-
ature decreased by increasing the Reynolds number
Re.

(vi) The temperature increased on increasing the values
of Brinkmannumber Br but decreasedwhen the val-
ues of Prandtl number Pr were increased.

(vii) The boundary layer thickness increased by increas-
ing the values of the vortex viscosity parameter C1.

(viii) The Entropy generation and Bejan numbers were
also obtained and illustrated explicitly for different
values of pertinent parameters.

(ix) A favorable agreement has been observed when
comparing the numerical results of the present
study with previously published studies.
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