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Abstract:
Interrupted time series are increasingly being used to evaluate the population-wide implementation of public
health interventions. However, the resulting estimates of intervention impact can be severely biased if under-
lying disease trends are not adequately accounted for. Control series offer a potential solution to this problem,
but there is little guidance on how to use them to produce trend-adjusted estimates. To address this lack of
guidance, we show how interrupted time series can be analysed when the control and intervention series share
confounders, i. e. when they share a common trend. We show that the intervention effect can be estimated by
subtracting the control series from the intervention series and analysing the difference using linear regression
or, if a log-linear model is assumed, by including the control series as an offset in a Poisson regression with
robust standard errors. The methods are illustrated with two examples.
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1 Introduction

Interrupted time series (ITS) analysis is an increasingly popular method for evaluating public health interven-
tions (Jandoc et al. 2015). An important feature of the analysis is that it quantifies the population-level impact
of the intervention, which often includes herd effects (Armah et al. 2016; Bruhn et al. 2017). ITS effect estimates
are therefore different from, and complementary to, the direct effect estimates obtained from individually-
randomised studies.

Although useful, a major disadvantage of the method is that estimates of intervention impact are vulnerable
to confounding due to trends unrelated to the intervention. Say, for example, a vaccine is introduced in a country
that is undergoing rapid economic development. If there is a reduction in disease after vaccine introduction,
then it is difficult to know whether this is due to the impact of the vaccine itself or to other factors related to
economic development such as improved nutrition.

One potential solution to this problem is to adjust for linear trend using regression: the so-called segmented
regression model (Wagner et al. 2002). The model is popular since it is easy to implement and to interpret.
However, the model is often difficult to justify since in order to estimate the intervention effect it is necessary to
assume that the pre-intervention linear trend would have persisted post intervention had the intervention not
been introduced.

Another solution is to use a control series to model the trend in the absence of intervention. The control series
should share the same confounders as the intervention series and be unaffected by the intervention. The control
might be the same outcome in an untreated population—e. g. Clancy et al. (Clancy et al. 2002) used mortality
in Ireland outside Dublin as the control to assess the impact of a coal sales ban on mortality in Dublin. Or the
control might be a different outcome in the same population—e. g. Morgan et al. used aspirin-related deaths
as the control to assess the impact of reduced paracetamol pack size on paracetamol-related deaths (Morgan,
Griffiths, and Majeed 2007).

Control series are often used descriptively to show that there is no underlying trend, and hence to demon-
strate the validity of an intervention effect estimate (Mackenzie et al. 2016; Fowler et al. 2007). But when there is
a trend this needs to be accounted for in the analysis. We address this issue here by presenting a simple frame-
work for analysing interrupted time series with a control. First, we review the use of segmented regression to
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analyse ITS without a control. Then we show how a control series can be used as an alternative means of adjust-
ing for trend. We illustrate the methodology using data from two ITS studies: an evaluation of a hospital-based
infection control programme, and an evaluation of the impact of rotavirus vaccine introduction.

2 Interrupted time series model

Consider a series of 𝑛 observations on disease incidence, 𝑦𝑡 (𝑡 = 0, … , 𝑛 − 1), made before and after the intro-
duction of an intervention. For example, the observations might be monthly case counts before and after vaccine
introduction. A simple model for these observations is

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝜖𝑡. (1)

In this model, 𝑥𝑡 denotes the presence/absence of the intervention (i. e. 𝑥𝑡 = 0 before the intervention and 𝑥𝑡 = 1
after), 𝛽 is the intervention effect, 𝛼 is the expected incidence in the absence of intervention and 𝜖𝑡 is an error
term. The latter is assumed to be independent of 𝑥𝑡, and represents the effects of disease determinants other than
𝑥𝑡.

This model is misspecified if some determinants of disease incidence are correlated with 𝑥𝑡. The model
would, for example, not be applicable if there was a change in surveillance intensity during the study period or
if a second intervention was implemented. In this case, the model should include these confounders such that

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + ∑
𝑖

𝜌𝑖(𝑧𝑖𝑡 − 𝑧𝑖0) + 𝜖𝑡, (2)

where 𝑧𝑖𝑡 denotes the ith confounder, 𝜌𝑖 represents its effect on disease incidence, and 𝛼 represents the expected
incidence at 𝑡 = 0 (since 𝑥𝑡 = 0 and 𝑧𝑖𝑡 = 𝑧𝑖0 when 𝑡 = 0). If the confounders are known and measured, then
the impact of the intervention can be estimated by fitting a regression model that includes these factors. But
what can we do if some or all of the confounders are unobserved? One possible solution is to assume that the
combined effect of the confounders is a linear function of time, as is the case if each 𝑧𝑖𝑡 increases or decreases
linearly over time. This is the assumption behind the so-called segmented regression model (Wagner et al. 2002):

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝛾𝑡 + 𝜖𝑡. (3)

In the absence of autocorrelation (see below), the model can be fitted by regressing disease incidence on time,
𝑡, and the intervention indicator, 𝑥𝑡. Often the model is extended to include an interaction between 𝑡 and 𝑥𝑡 to
allow for a time-varying treatment effect (Figure 1 A & B), i. e.

𝑦𝑡 = 𝛼 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡 (𝑡 − 𝑇) + 𝛾𝑡 + 𝜖𝑡. (4)

Figure 1: Four models for estimating intervention impact from an interrupted time series. The models are based on differ-
ent assumptions about the nature of the intervention impact and about disease incidence in the counterfactual no inter-
vention scenario (dotted line). In the segmented regression model (A and B) the counterfactual scenario is determined by
the pre-intervention trend, and in the common trend model (C and D) it is determined by the control series. The interven-
tion impact may be constant (A and C) or time-dependent (B and D).
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In this specification of the model in which we have centred 𝑡 about 𝑇 in the interaction term, 𝛽1 represents the
intervention effect at time 𝑡 = 𝑇 and 𝛽2 represents the change in the intervention effect for each unit increase in
time.

The model assumes the intervention effect increases linearly over time after intervention introduction. But
other models of intervention impact, including models that incorporate lag effects, can also be fitted. If, for
example, there is a roll out period during which the intervention does not reach its full effect, this could be
modelled by including several post-intervention indicators:

𝑦𝑡 = 𝛼 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝛾𝑡 + 𝜖𝑡, (5)

where 𝑥1𝑡 is an indicator for the first post-intervention period, i. e. the roll out period, and 𝑥2𝑡 is an indicator for
the second post-intervention period. Faced with many possible models of intervention impact, to avoid over-
fitting we follow Lopez Bernal, Cummins, and Gasparrini (2017) in recommending that the model be chosen
primarily based on biological plausibility rather than statistical criteria.

In addition to the intervention effect, we may also want to include a seasonal component in the model
(e. g. by including calendar month as a categorical covariate). Often seasonality will have limited confounding
effect, and it will have no confounding effect if both the pre- and post-intervention periods are whole numbers
of years. Nevertheless, accounting for seasonality can be useful since doing so will often reduce autocorrelation
and error variance.

3 Using a control series to adjust for trend

An alternative solution to the problem of confounding is to use the trend observed in a control series to adjust
the intervention effect estimate. Usually the control is an age group or population that did not receive the
intervention, or those with a related disease. The approach is particularly useful when the trend in incidence
is non-linear, and a linear segmented regression analysis is therefore not applicable. But even when the pre-
intervention trend is linear, a control can be useful if it provides information on how the intervention series
might have behaved in the absence of intervention. As such an ITS analysis that uses a control series may be
more convincing than an analysis that uses segmented regression alone.

The key features of the control series are that it should (1) be unaffected by the intervention, and (2) share
confounders with the intervention series. If, in addition, we assume the shared confounders have the same
effect on both series, then we arrive at the following model:

𝑦𝐼𝑡 = 𝛼𝐼 + 𝛽𝑥𝑡 + 𝑔(𝑡) + 𝜖𝐼𝑡
𝑦𝐶𝑡 = 𝛼𝐶 + 𝑔(𝑡) + 𝜖𝐶𝑡,

(6)

where 𝑦𝐼𝑡 is the intervention series, 𝑦𝐶𝑡 is the control series, 𝑔(𝑡) = ∑
𝑖

𝜌𝑖(𝑧𝑖𝑡 − 𝑧𝑖0) is the combined effect of the

unobserved confounders, and 𝜖𝐼𝑡 and 𝜖𝐶𝑡 are error terms that may be correlated in time (autocorrelated) but
are independent of 𝑥𝑡.

We will refer to the model in eq. (6) as the common trend model since both series share a trend, 𝑔(𝑡), in the
pre-intervention period and would share a trend in the post-intervention period were it not for the impact of
the intervention (Figure 1C & D).

Assuming the common trend model, we can eliminate the effect of the unobserved confounders (the trend)
by subtracting the control series from the intervention series

𝑑𝑡 = 𝑦𝐼𝑡 − 𝑦𝐶𝑡 = 𝛼𝑑 + 𝛽𝑥𝑡 + 𝜖𝑑𝑡, (7)

where 𝛼𝑑 = 𝛼𝐼 − 𝛼𝐶 and 𝜖𝑑𝑡 = 𝜖𝐼𝑡 − 𝜖𝐶𝑡 and both series are of equal length (𝑛). Thus, the intervention effect, 𝛽,
can be estimated by performing a regression where the difference, 𝑑𝑡, is the outcome and 𝑥𝑡 is an explanatory
variable. Assuming a constant intervention effect, as in eq. (7), this amounts to a “difference-in-differences” es-
timate where the mean of the pre-intervention differences is subtracted from the mean of the post-intervention
differences (Angrist and Pischke 2009). In the simple case where the 𝜖𝑑𝑡 are uncorrelated, the means can be
compared using a t-test. However, if either the control or intervention series is autocorrelated then the 𝜖𝑑𝑡 will
be autocorrelated and it will be necessary to account for this in the regression (see below for further discussion
of autocorrelation).
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As with the segmented regression model, the common trend model can easily be extended to incorporate
more complex intervention effects. If, for example, we expect the treatment effect to increase linearly then we
could model this by including a treatment time interaction in the regression, as we did for the segmented
regression model eq. (4). Or, if we expect the intervention effect to saturate then we could include several post
indicators, as in eq. (5).

We may also include a seasonal component in the model for 𝑑𝑡, (e. g. by including calendar month as a
categorical covariate), if seasonality has not been removed by the process of differencing.

4 Testing the common trend assumption

The approach outlined above is only useful if an appropriate control can be identified. Specifically, we must
ensure the control is unaffected by the intervention and shares confounders with the intervention series. The
latter requirement means that determinants of the intervention series that have changed between the pre- and
post-intervention period, apart from the intervention itself, should also be determinants of the control series
and vice versa. In particular, a potential control is not suitable if it is affected by an intervention or change in
surveillance that does not also affect the intervention series.

As well as using background information to assess the quality of the control, we can test the model by
comparing the pre-intervention trend lines: according to the model these should be parallel.

The trend lines can be estimated using one of a number of non-parametric regression techniques. The sim-
plest is the moving average, which is estimated by fixing a time window of width 2ℎ + 1 and then for each 𝑡
calculating the mean of values between 𝑡 − ℎ and 𝑡 + ℎ. The method can be improved upon by using a weighted
mean, where the weights are determined by proximity to 𝑡, or by using a weighted local linear regression. The
latter is known as locally weighted scatter point smoothing (LOESS) and is recommended by Wasserman as a
default non-parametric regression method (Wasserman 2006). The procedure can be implemented in R using
the loess function (R Core Team 2018) or in Stata using the lowess command (StataCorp 2017).

In addition to graphically testing the common trend assumption, a statistical test can be conducted by re-
gressing the pre-intervention differences on time, accounting for autocorrelation if necessary. If the data are
consistent with the common trend model then there should be no evidence of a trend.

Unfortunately, neither the graphical nor the statistical test guarantees that a common trend model is appro-
priate. This is because the model requires not only that trend lines are parallel in the pre-intervention period,
but also that they would be parallel in the post-intervention period were it not for the effect of the intervention.
Because the latter requirement is untestable, a strong biological rationale for the control is necessary even if it
passes graphical and statistical tests.

5 Autocorrelation

Even after accounting for the trend (either by segmented regression or by fitting a common trend model) and,
where relevant, seasonality, the residuals often remain correlated in time. Typically, the correlation is greatest
when residuals are close in time. This correlation, which is also known as autocorrelation, needs to be accounted
for to obtain correct standard errors and hence correct p-values and confidence intervals. Two approaches are
commonly used to account for autocorrelation, both of which can be used to account for many different patterns
of autocorrelation.

One approach is to model the error as an autoregressive moving average (ARMA) process and estimate the
resulting regression model by maximum likelihood (Box and Tiao 1975; Hyndman and Athanasopoulos 2017).
A commonly used ARMA model is the first order autoregressive model where 𝜖𝑡 = 𝜙𝜖𝑡−1+𝜂𝑡 and it is assumed
that the 𝜂𝑡 are independent and normally distributed with zero mean. The model can be fitted using the arima
function in R or arima command in Stata.

Another approach is to fit the regression model ignoring the autocorrelation and adjust the standard er-
rors using the Newey-West method (Newey and West 1987). The method is an extension of the methodology
used to obtain robust standard errors (Huber 1967; White 1980) and as such produces standard errors that are
valid even when there is heteroscedasticity (heterogeneous error variance). As with the robust standard error
methodology, the method is widely applicable, and can be used both in the context of Poisson regression and
linear regression. The key assumption is that autocorrelation is zero beyond a certain lag (e. g. zero autocorrela-
tion beyond lag two implies observations that are separated by more than two time units are uncorrelated). To
obtain consistent standard error estimates, the cut-off should be small relative to the length of the time series.
For example, Wooldridge suggests using the integer part of 𝑛1/4 (Wooldridge 2009). Newey-West standard er-
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rors can be obtained using the NeweyWest function in R (package = sandwich) (Zeileis 2004) or glm command
in Stata (see supplementary information for example Stata code and R code).

6 Poisson regression

When disease incidence is expressed as a count, one may wish to use Poisson regression instead of linear re-
gression, especially when the counts are small.

Since Poisson regression is log-linear, we define a log-linear version of the common trend model as follows:

log (𝜇𝐼𝑡) = 𝛼𝐼 + 𝛽𝑥𝑡 + 𝑔(𝑡)
log (𝜇𝐶𝑡) = 𝛼𝐶 + 𝑔(𝑡),

(8)

where 𝜇𝐼𝑡 and 𝜇𝐶𝑡 are the expected counts in the intervention and control series at time 𝑡.
In the appendix, we show that the intervention effect, in the above model can be estimated using Poisson

regression with the control series included as an offset. Although the Poisson regression model is misspecified
(it is not equivalent to eq. (8)), it gives a consistent estimate of the intervention effect and the confidence in-
tervals are valid provided that robust standard errors (e. g. Newey-West standard errors) are used. A potential
constraint is that the offset in a Poisson regression cannot include zero values because the Poisson distribution
must have a positive mean. However, this problem can easily be circumvented by replacing zero values of 𝑦𝐶𝑡
with a positive number that is close to zero.

7 Multiple control series

In some studies, several plausible controls may be available. This situation might arise, for example, if an in-
tervention is introduced in one state and data are available from other states where the intervention was not
introduced. We can combine information from the controls by fitting a model that assumes a common trend
across all series.

Mathematically, the (linear) common trend model with multiple controls can be written as

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽𝑥𝑖𝑡 + 𝑔(𝑡) + 𝜖𝑖𝑡, (9)

where 𝑖 = 1, … , 𝐾 denotes the series, one of which is the intervention series and 𝐾 −1 of which are controls. The
model can be fitted by combining the series into a single outcome vector 𝑦 = (𝑦10, … ., 𝑦1𝑛−1, … .., 𝑦𝐾0, … ., 𝑦𝐾𝑛−1),
and conducting a linear regression that includes terms for series, intervention and trend. The series effect, 𝛼𝑖, is
modelled as a fixed effect and the common trend is modelled either by assuming a functional form, e. g. linear,
or by using indicators for each time period.

Note that this approach is not limited to linear regression. If the series consist of count data a log-linear
version of the common trend model can be fitted using Poisson regression.

Autocorrelation remains an issue whatever type of regression is used. Fortunately, however, it can be ac-
counted for either by using an extension of the Newey-West methodology for multiple times series (panel data),
or by treating the series as clusters and using cluster-robust standard errors (Bertrand, Duflo, and Mullainathan
2004). The latter approach works best when the number of clusters (series) is large but simulations suggest that it
may also work well when there are few clusters (e. g. <10) provided that standard corrections are implemented
(Cameron and Miller 2015; Bottomley et al. 2016).

Recently an alternative method has been proposed that involves using a synthetic control as the comparator
(Abadie, Diamond, and Hainmueller 2010). The synthetic control is generated by comparing all linear com-
binations of the controls and finding the one that most closely resembles the intervention series in the pre-
intervention period. Statistical inference is design based and the null distribution is derived by treating each
control as the intervention series and recalculating the intervention effect under this assumption. The method
therefore requires a reasonably large number of controls. In particular, at least 20 controls are required to have
a possibility of achieving a p-value less than 0.05.
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8 Including the control as a covariate

In many ITS analyses confounder adjustment is done by including the control series as a covariate—i. e. 𝑦𝐼𝑡
is regressed on 𝑦𝐶𝑡 and 𝑥𝑡 (Bruhn et al. 2017; Clancy et al. 2002). Superficially this seems reasonable since the
control series can be considered a proxy for the combined effect of the confounders. However, it can be seen
from eq. (6) that 𝑦𝐶𝑡 and 𝑔(𝑡) are not equivalent; 𝑦𝐶𝑡 includes error whereas 𝑔(𝑡) does not. Thus, as is well
known from the theory of measurement error (Carroll et al. 1995), including 𝑦𝐶𝑡 in the model instead of 𝑔(𝑡)
causes attenuation bias: the estimated coefficient associated with 𝑦𝐶𝑡 is, on average, closer to zero than the
coefficient associated with 𝑔(𝑡) (N.B. under the common trend model the coefficient associated with 𝑔(𝑡) is
assumed to be equal to 1). Hence, because of this attenuation, the degree of confounding is underestimated,
and the intervention effect estimate is biased. We therefore do not recommend this approach.

9 Examples

9.1 Example 1: Impact of an infection control programme on gram-negative rod bacteraemia

Goto et al. evaluated a hospital-based infection control programme in 130 Veterans Health Administration fa-
cilitates in the US using data collected between Jan 2003 and Dec 2013 (Goto et al. 2016). The programme was
originally designed to reduce the incidence of Methicillin-Resistant Staphylococcus aureus infections, but some
components of the programme—e. g. efforts to improve hand hygiene—were thought to be more widely ef-
fective. To test this hypothesis, Goto et al. evaluated the intervention impact against hospital-acquired gram-
negative rod bacteraemia—specifically cases due to Escherichia coli, Klebsiella species and Pseudomonas aerug-
inosa—using community-acquired bacteraemia as a control. The data, which consist of monthly incidence
rates of hospital-acquired bacteraemia per 10,000 person days (mean = 3.7, range 2.3–5.4) and monthly rates
of community-acquired bacteraemia per 10,000 person months (mean = 6.6, range 4.6–8.9), are shown in Figure
2A together with LOESS trend lines.

Figure 2: (A) Monthly incidence of hospital-acquired bacteraemia (per 10,000 person days) and community-acquired
bacteraemia (per 10,000 person months) before and after the implementation of an infection control programme. Trend
curves estimated by LOESS (locally weighted scatter point smoothing). Vertical dashed lines represent the period over
which the intervention was rolled out (Mar–Oct 2007). (B) Segmented regression model: the intervention effect is es-
timated by extrapolating the pre-intervention trend and comparing with the observed incidence post-intervention. (C)
Common trend model: the intervention effect is estimated by computing the difference between the two series and com-
paring the differences pre and post intervention. In both models (B and C) it is assumed the intervention effect increases
linearly with time.

Three estimates of the intervention effect at the end of the study were calculated.
The first was an unadjusted estimate (i. e. it does not account for trend). The second was obtained by fitting

a segmented regression model (Figure 2B), and the third was obtained by differencing (Figure 2C). All models
included an indicator for the transitional period (Mar–Oct 2007) during which the intervention was not fully
implemented, and the intervention effect was assumed to increase linearly over time. The segmented regression
model additionally included calendar month as a categorical variable to account for seasonality. Standard errors
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were adjusted for autocorrelation up to lag three using the Newey-West method. The data are provided as
supplementary information together with R code and Stata code for conducting the analysis.

According to the segmented regression model, the intervention reduced the incidence of gram-negative
bacteraemia by 1.98 (95 % CI 1.30, 2.67) cases per 10,000 person days by the end of the study (Table 1) and,
according to the common trend model, it reduced the incidence by 0.81 cases (95 % CI 0.40, 1.23).

Table 1: Estimated impact of a hospital infection control programme on the incidence of gram-negative rod bacteraemia.

Difference* 95 % CI

No adjustment −1.09 −1.38, −0.80
Segmented regression model −1.98 −2.67, −1.30
Common trend model, differencing −0.81 −1.23, −0.40

*Estimated difference in incidence per 10,000 person days at study end (Dec 2013).

Table 2: Estimated impact of rotavirus vaccine introduction.

RR* 95 % CI

No adjustment 0.939 0.919, 0.959
Segmented regression model 0.962 0.926, 0.998
Common trend model, control used as offset 0.964 0.951, 0.977

*Rate ratio for change in rotavirus-positive diarrhoea incidence per month post intervention.

There is a substantial difference between these estimates because the two models make opposite predictions
about the counterfactual no intervention scenario: the segmented regression model predicts increasing inci-
dence in the post-intervention period, whereas the common trend model predicts decreasing incidence.

Which estimate is better? In general, if the control satisfies the requirements of the common trend model
then the estimate from the common trend model is better because it incorporates the additional information
provided by the control.

In this example, biological justification for the common trend model is strong. Firstly, the control is un-
likely to be affected by the hospital-based intervention. Secondly the two series are likely to share confounders
because they share the same population, same outcome and same mode of surveillance. As well as having a
strong biological justification, the model is supported by the fact that the pre-intervention trend lines are ap-
proximately parallel (Figure 2A), and by the fact that there is no evidence of linear trend in the pre-intervention
differences (p = 0.87, see also Figure 2B).

Overall, the common trend model would therefore seem to be plausible. Nonetheless the intervention effect
estimate from this model is not immune from bias. One possible bias, which was identified by Goto et al. is that
the proportion of community-acquired bacteraemia treated in an outpatient setting, as opposed to a hospital
setting, may have changed over the course of the study. A change of this kind that is limited to just one of the
two series violates the shared confounders assumption.

9.2 Example 2: Rotavirus vaccine introduction

Rotavirus vaccine was introduced into the Ghanaian childhood vaccination programme in April 2012. To evalu-
ate the impact of its introduction, Armah et al. used surveillance collected between January 2010 and December
2014 from two large tertiary care hospitals (Armah et al. 2016). During surveillance, all children < 5 years admit-
ted with diarrhoea were tested for rotavirus. In their analysis, Armah et al. used rotavirus-negative diarrhoea
cases as the control.

As in Example 1, we estimated vaccine impact using both the segmented regression model and common
trend model. However, because the data consist of counts, the models were fitted using Poisson regression
instead of linear regression.

Both models included an intervention × time interaction but no intervention main effect—i. e. we assumed
no vaccine effect immediately after introduction followed by an increasing effect over time. The segmented re-
gression model additionally included month as a categorical variable to account for seasonality. In both models,
Newey-West standard errors were used to account for autocorrelation up to lag two. The data as well as R code
and Stata code for the analysis are provided as supplementary information.

7

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Bottomley et al. DE GRUYTER

The data, which consist of monthly rotavirus-positive counts (mean = 23, range: 4–101) and rotavirus-
negative counts (mean = 34, range: 14–83), are plotted on the log-scale in Figure 3 and on the original scale
in Supplementary Figure 1.

Figure 3: Monthly rotavirus-positive and rotavirus-negative diarrhoea cases in children < 5 years before and after the in-
troduction of rotavirus vaccine (vertical dashed line). The counts and LOESS trend lines are presented on a log-scale.

Estimates of vaccine impact are similar for the segmented regression and common trend model (Table 2). Based
on the segmented regression model, incidence of rotavirus-positive diarrhoea was reduced by 4.1 % (95 % CI
0.7, 7.5) per month and based on the common trend model it was reduced by 3.6 % (95 % CI 2.3, 4.8) per month.
Interestingly, the confidence interval was narrower for the estimate from the common trend model, which sug-
gests that this model explains more of the variation in incidence.

Both confidence intervals were calculated using Newey-West standard errors and therefore account for over-
dispersion and autocorrelation. We can see the importance of using the correct standard errors by comparing
the Newey-West standard errors with the naïve standard errors from the Poisson regression. For the segmented
regression model, the Newey-West standard error is almost three times as large as the naïve standard error
(0.0180 versus 0.0067), and for the common trend model it is almost twice as large (0.0067 versus 0.0035). Thus,
in both models the naïve standard error substantially underestimates the uncertainty.

Broadly speaking, the assumptions of the common trend model seem reasonable: the control is unaffected
by the intervention (the vaccine does not protect against rotavirus negative diarrhoea), and it is plausible that
both series share confounders. The argument for shared confounders is reasonably strong because the method
of surveillance is the same and, although the pathogens differ between the series, they share the faecal-oral
mode of transmission.

Despite the reasonably strong biological justification, when the model was tested through the inclusion of
time as a covariate, there was evidence of model misspecification (p < 0.001). Consistent with this result, the
pre-intervention log trend lines are not parallel on the log scale (Figure 3), though the lines suggest only modest
misspecification.

In this example it is unclear whether we should prefer the common trend model or the segmented regression
model. Fortunately the choice is not critical here because the trend in the control is approximately log-linear
and the models are therefore roughly equivalent.

10 Conclusions

ITS are unusual in that the degree of confounding is immediately apparent from a time series plot of the data.
When there is no trend, and hence no confounding, ITS can be analysed by comparing pre and post intervention
means, accounting for autocorrelation if necessary. On the other hand, when a trend is apparent the analysis
must allow for confounding.

The segmented regression model and the common trend model can both be used to adjust for confounding.
The latter is potentially the more convincing of the two models, but only if the control has a strong biological
justification and is statistically consistent with the model. In studies where no control is available, or where
the quality of the control is in doubt, the segmented regression model may provide a useful alternative. This
model, however, is based on the strong assumption that the pre-intervention trend would have persisted in the
absence of intervention. It should therefore be used cautiously, particularly if the impact of trend over the study
period is large relative to the intervention effect.

8

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Bottomley et al.

Acknowledgements

We would like to thank Michihiko Goto for sharing the gram-negative rod bacteraemia data and Ben Lopman
for sharing the rotavirus data. This work was supported by an award that is jointly funded by the UK Medical
Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID
Concordat agreement, which is also part of the EDCTP2 programme supported by the European Union (grant
reference MR/K012126/1).

Appendix

A Using Poisson regression to estimate the common trend model

Here we show that the intervention effect parameter in a log-linear common trend model can be estimated by
including the control series as an offset in a Poisson regression. This regression model is not equivalent to the
log-linear common trend model (i. e., it is misspecified). However, it turns out, as shown below, that this model
can nonetheless be used to obtain a consistent estimate of the intervention effect.

Under the log-linear common trend model, and assuming a constant intervention effect, the means of the
intervention series, 𝜇𝐼𝑡, and the control series, 𝜇𝐶𝑡, are denoted by

log (𝜇𝐼𝑡) = 𝛼𝐼 + 𝛽𝑥𝑡 + 𝑔(𝑡)
log (𝜇𝐶𝑡) = 𝛼𝐶 + 𝑔(𝑡),

where 𝑔(𝑡) represents the common trend.
However, if we fit a Poisson regression that includes the control series as an offset, then we are assuming

the intervention series follows a Poisson distribution with mean

log 𝜇̃𝐼𝑡 = ̃𝛼𝐼 + ̃𝛽𝑥𝑡 + log (𝑦𝐶𝑡 + 𝛿) ,

where the positive constant 𝛿 is included to ensure log 𝜇̃𝐼𝑡 is defined when 𝑦𝐶𝑡 = 0.
The log likelihood for this assumed model is

𝑙 ( ̃𝛽, ̃𝛼𝐼) = ∑
𝑡

log[𝑒−𝜇̃𝐼𝑡 𝜇̃𝑦𝐼𝑡
𝐼𝑡 /𝑦𝐼𝑡! ] ∝ ∑

𝑡
−(𝑦𝐶𝑡 + 𝛿)𝑒 ̃𝛼𝐼+ ̃𝛽𝑥𝑡 + 𝑦𝐼𝑡[ ̃𝛼𝐼 + ̃𝛽𝑥𝑡 + log (𝑦𝐶𝑡 + 𝛿)],

and, assuming 𝑦𝐶𝑡 and 𝑦𝐼𝑡 are independent, the parameters being estimated are the values of ̃𝛽 and ̃𝛼𝐼 that
maximise the average log likelihood

E [𝑙 ( ̃𝛽, ̃𝛼𝐼)] = ∑
𝑡

− (𝑒𝛼𝐶+𝑔(𝑡) + 𝛿) 𝑒 ̃𝛼𝐼+ ̃𝛽𝑥𝑡 + 𝑒𝛼𝐼+𝛽𝑥𝑡+𝑔(𝑡) ( ̃𝛼𝐼 + ̃𝛽𝑥𝑡 + E [log (𝑦𝐶𝑡 + 𝛿)]) ,

where the expectation is taken with respect to the true model (Pawitan 2013).
By solving 𝜕E[𝑙( ̃𝛽, ̃𝛼𝐼)]

𝜕 ̃𝛽
= 0 and 𝜕E[𝑙( ̃𝛽, ̃𝛼𝐼)]

𝜕 ̃𝛼𝐼
= 0 it is apparent that as 𝛿 → 0 the maximum is achieved when

̃𝛼𝐼 = 𝛼𝐼 − 𝛼𝐶 and ̃𝛽 = 𝛽. Thus the Poisson regression model can be used to obtain a consistent estimate of the
intervention effect.

Although the estimate is consistent, standard Poisson regression confidence intervals and p-values are not
valid because the model is misspecified. Even if we assume both the intervention and control series follow a
Poisson distribution, the variance of the residuals obtained from the Poisson regression will still be greater
than that predicted by the Poisson model. This is because by using the control series to account for trend we are
including additional error (control series = trend + error) that is not accounted for in the standard Poisson re-
gression analysis. Fortunately, the problem can be overcome by using robust standard errors or, if it is necessary
to account for autocorrelation, Newey-West standard errors.
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