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Review
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Cardiovascular therapy through nanotechnology –  
how far are we still from bedside?

Abstract: Recent years brought about a widespread inter-
est in the potential applications of nanotechnology for the 
diagnostics and the therapy of human diseases. With its 
promise of disease-targeted, patient-tailored treatment 
and reduced side effects, nanomedicine brings hope for 
millions of patients suffering of non-communicable dis-
eases such as cancer or cardiovascular disorders. However, 
the emergence of the complex, multicomponent products 
based on new technologies poses multiple challenges to 
successful approval in clinical practice. Regulatory and 
development considerations, including properties of the 
components, reproducible manufacturing and appro-
priate characterization methods, as well as nanodrugs’ 
safety and efficacy are critical for rapid marketing of the 
new products. This review discusses the recent advances 
in cardiovascular applications of nanotechnologies and 
highlights the challenges that must be overcome in order 
to fill the gap existing between the promising bench trials 
and the successful bedside applications.
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Introduction
Cardiovascular diseases (CVD) account for almost 50% 
of all deaths in Europe and around 30% of all deaths 
worldwide (1). According to the Global Burden of Disease 
Study 2010, when combining years of life lost and years 

lived with disability, coronary heart disease and stroke 
rank first and third, respectively (2). Although the clini-
cal management of CVD has improved in Western Europe 
leading to about 20% decrease in age-standardized death 
rates for CVD in the last two decades (1), the number of 
CV deaths is predicted to increase from 17.1 million world-
wide in 2004 to 23.6 million in 2030 due to the increasing 
impact of obesity and metabolic syndrome. In this paper, 
we review the potential applications of nanotechnologies 
in cardiovascular medicine, the current stand of clinical 
studies and pilot trials, and the obstacles to overcome 
before the nanomedical approaches can be safely intro-
duced to the clinical practice.

Potential applications of nanotech-
nologies in cardiovascular medicine
Nanomedicine offers a unique platform for novel 
approaches to the diagnosis and therapy of cardiovas-
cular diseases. The possible applications range from 
plaque imaging and thrombus detection to the tar-
geted drug-delivery, stent endothelialization and blood 
vessel regeneration. This subchapter summarizes recent 
advances in the preclinical experimental efforts to 
implement nanomedical approaches to cardiovascular 
disorders.

Nanosystems for detection and characteriza-
tion of cardiovascular disorders

Imaging modalities and nanoprobes

The molecular imaging techniques routinely used in 
cardiovascular medicine are constantly being optimized 
to better detect atherosclerotic plaques, but none of the 
modalities is without limitations (3). Whereas magnetic 
resonance imaging (MRI), a noninvasive and nonioniz-
ing imaging technique has an excellent resolution but 
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low sensitivity, positron emission tomography (PET) 
has the highest sensitivity of all imaging modalities and 
an unlimited penetration depth. These advantages are 
counterbalanced by its low resolution, very high cost, 
and radioactivity. Optical fluorescence imaging, suit-
able for e.g., imaging plaque endothelium, can be dif-
ficult to quantify in tissues more than a few millimeters 
in depth. Thus far, the preclinical studies performed 
in order to investigate the diagnostic and therapeutic 
benefit of nanoparticles in atherosclerosis mostly uti-
lized the MRI contrast agents, which consist of sus-
pended colloids of nanoparticles and, when injected 
during imaging, reduce the T2 signals of absorbing 
tissues. In particular, either paramagnetic gadolinium 
chelates or iron oxide-based contrast agents, such as 
superparamagnetic iron oxide (SPIO, particle size of 
120–180 nm) and ultrasmall superparamagnetic iron 
oxide (USPIO, 60  nm particle size) have been used. 
Recently, multi-modal contrast agents or imaging 
probes detectable with multiple molecular imaging 
techniques have emerged, which promise a better sensi-
tivity and accuracy of atherosclerotic plaque detection 
and classification (4, 5).

Detection of atherosclerotic lesions

Early identification and aggressive pharmaceutical and/
or interventional treatment of atherosclerotic plaques 
can help to reduce the incidence of acute ischemic 
events. Conjugating nanoparticles to specific ligands 
that target endothelial cell adhesion molecules [vascu-
lar cell adhesion molecule-1 (VCAM)-1 (6, 7), as well as 
E- and P-selectins (8, 9)] has proven a successful experi-
mental approach to noninvasive in vivo imaging of the 
early stages of atherosclerosis. Imaging nanoparticles 
have also been implemented for vulnerable plaque iden-
tification based on their ability to detect intraplaque 
macrophages, lipids, angiogenesis, apoptosis, or throm-
botic deposits [reviewed in detail in (10)]. Below, several 
approaches to atherosclerotic plaque characterization are 
briefly outlined. Macrophage burden in atherosclerotic 
plaques in vivo can be estimated using unlabeled super-
paramagnetic iron oxide nanoparticle (SPION), as shown 
in hyperlipidemic rabbits by differential phase optical 
coherence tomography (OCT) (11) and MRI (12, 13) as 
well as in atherosclerotic plaques of ApoE-deficient mice 
(14). However, as the uptake of SPION is not specific to 
the plaque macrophages (15), targeting of macrophages 
[e.g., with homing pepride LyP-1 (16, 17)] and macrophage 
receptors [e.g., CD36-targeting gadolinium-containing 

liposomes (18, 19) and scavenger receptor-A-targeting 
iron oxide nanoparticles (20)] is helpful to enhance the 
labeling efficiency of the particles in vivo. Lipoproteins, 
natural nanoparticles of 5–20  nm diameter, represent 
good candidates for the transfer of imaging nanoparti-
cles into the lesions. High-density lipoproteins (HDL)-
like nanoparticles enriched with gadolinium have been 
reported to specifically image plaques in vivo (21, 22). 
Detection of vulnerable plaques in mice was also facili-
tated by anti-mouse OxLDL polyclonal antibodies conju-
gated to USPIO (23).

Imaging apoptotic cells is another possible 
approach to identifying plaques with vulnerable mor-
phology, as shown by studies utilizing phosphatidylser-
ine-targeting peptides linked to USPIO (24), as well as 
annexin A5-labeled SPION (25) and gadolinium nano-
particles (26). Neoangiogenesis, a common feature of 
advanced vulnerable plaques can also constitute an 
MRI detection target for plaque characterization, as 
shown in atherosclerotic rabbits (27) administered 
gadolinium-containing perfluorocarbon nanoparticles 
targeted to αvβ3-integrin, one of the key mediators of 
neovessel formation (28, 29).

Thrombus formation that occurs on the luminal 
surface of atherosclerotic plaques presents yet another 
target for detection by MRI. For this purpose, anti-fibrin 
antibodies conjugated to gadolinium-diethylene triamine 
pentaacetic acid (DTPA)-perfluorocarbon nanoparticles 
were successfully used (30), as well as the fibrin-targeting 
CREKA peptide-bound lipopeptide nanoparticles (31), or 
a commercially available gadolinium-linked fibrin-bind-
ing peptide EP-2104R (32). These studies indicate that 
employing targeted nanoparticles to refine the available 
non-invasive techniques should not only advance the 
detection of vulnerable plaques but also enable monitor-
ing the disease progression and therefore improve the risk 
stratification.

Detection of high-risk aneurysms

Abdominal aortic aneurysms (AAA) occur in 5% to 9% 
of the population over the age of 65 years and are the 
tenth leading cause of death in Western countries (33). 
Several recent reports show the feasibility of nanotech-
nological approach to in vivo aneurysm detection and 
characterization using MRI and near-infrared fluores-
cence imaging (NIRF). As an example, SPION-enhanced 
MRI was applied to detect early AAA in ApoE-defi-
cient mice (34). SPION uptake and abdominal aortic 
diameter were found to correspond to the numbers 
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of iron-laden macrophages in the aneurysm. Another 
approach was tested by Klink et  al. (35), who showed 
that intravenous administration of gadolinium-based 
fluorescent micellar nanoparticles functionalized with 
a collagen-binding protein resulted in a significantly 
higher magnetic resonance signal enhancement in the 
aneurysmal wall compared with nonspecific micelles. 
High-resolution MRI allowed longitudinal monitoring 
of the AAA progression and the increase of the aortic 
diameter, enabling the discrimination between stable 
and rupture-prone aneurysms. Nearly in parallel, a 
study by Kitagawa et  al. evaluated NIRF imaging of 
AAA using Arg-Gly-Asp (RGD)-conjugated human ferri-
tin nanoparticles labeled with Cy5.5. In a mouse model 
of AAA, a significantly higher signal in AAA relative to 
non-diseased regions was obtained using RGD-ferritin 
nanoparticles than with unconjugated nanoparticles 
(36). These studies suggest that targeting nanoparticles 
allow more comprehensive characterization and prog-
nosis of aneurysmal disease.

Imaging inflammation after cerebral or cardiac ischemia

Vascular damage and inflammation critically affect 
patients’ outcomes after stroke. Nanoparticle-based con-
trast agents can be applied to characterize the extent of 
inflammation, as demonstrated by several studies in 
an experimental murine model of cerebral ischemia. In 
those early studies (2001–2004) by Rausch et al. (37, 38), 
Kleinschnitz et al. (39), and Schroeter et al. (40), SPION 
have been utilized for MR imaging of the brain inflam-
mation after stroke and showed macrophage-specific 
accumulation in the infarcted brain region. The ability 
of USPIO-enhanced MRI to detect inflammatory response 
surrounding the ischemic regions has subsequently been 
confirmed by Wiart et  al. (41). Most recently, Frechou 
et al. (42) applied USPIO conjugated to VCAM-1-targeting 
peptide in order to detect cerebral expression of VCAM-1 
after experimental stroke in mice. The study showed that 
such targeted MRI contrast agent can be useful for char-
acterizing the vascular damage associated with cerebral 
ischemia.

Following myocardial infarction (MI), uncontrolled 
inflammation and adverse cardiac remodeling can ulti-
mately result in heart failure. Thus far, very small iron 
oxide nanoparticles (43) and micrometer-sized iron oxide 
particles (44) have been tested to assess inflammation 
in murine models of MI showing their ability to charac-
terize the course of pathologic process after myocardial 
ischemia.

Nanosystems for diagnosis of cardiovascular 
disorders

Nanotechnology-based signal amplification for biosens-
ing has been a rapidly developing field. Several categories 
of nanomaterials such as gold nanoparticles, magnetic 
oxide nanoparticles, or quantum dots have multiple 
potential applications in this important aspect of car-
diovascular diagnostics. This subchapter focuses on the 
application of nanosystems for the estimation of disease 
biomarkers.

Estimating the burden of thrombosis

Intravascular thrombosis, the formation of life-threat-
ening obstructive blood clots within the vessels, under-
lies a number of cardiovascular disorders such as heart 
attack, ischemic stroke, pulmonary embolism, and deep 
vein thrombosis (45, 46). Within the coagulation cascade, 
thrombin is the most important serine protease (47), but 
the diagnostic tests are lacking that directly reflect its 
activity in clinical settings. Recently, Lin et  al. described 
the development of novel urinary nanomarker assay based 
on thrombin-sensitive iron oxide nanoparticles that allows 
detection of thrombin activity in vivo (48). The nanomark-
ers were produced by coupling iron oxide nanoworms with 
thrombin-cleavable peptides linked to a synthetic reporter 
system, composed of protease-resistant peptide, gluta-
mate-fibrinopeptide B, which was modified at the termini 
with ligands detectable by an immunoassay (fluorescein, 
or Alexa488, and biotin). In a mouse model of pulmonary 
embolism induced by thromboplastin (49), the authors 
showed that the circulating nanomarkers could access 
the local sites of thrombosis and release the reporters, 
the urinary clearance of which was detectable by ELISA 
with high sensitivity and significantly correlated with the 
disease burden as estimated by the histochemically ana-
lyzed amount of fibrin deposited in the lungs (48).

The imaging approach to thrombosis detection using 
microCT has been recently tested in a mouse model of 
carotid thrombosis using glycol chitosan (GC)-gold nano
particles. The study showed that these nanoparticles 
allowed both the detection of primary and recurrent 
thrombi, and the monitoring the therapeutic efficacy of 
thrombolysis with tissue plasminogen activator (tPA). 
Due to a long circulating half-life, GC-gold nanoparticles 
remained available for entrapment into fibrin matrix for 
up to 3 weeks, allowing repetition or ongoing monitoring 
of thrombogenesis and thrombolysis (50). Given the need 
of rapid and reliable in vivo assessment of the thrombotic 
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risk in patients with cardiovascular diseases in order to 
improve the diagnosis, risk stratification, and manage-
ment of thrombotic syndromes, those systems represent a 
very attractive platform for use in clinical practice.

Diagnosis of acute coronary syndromes

Molecular biomarkers are used as objective indicators of 
myocardial injury. About 30% of patients with non-ST- 
elevation acute coronary syndrome present without evi-
dence of myocardial necrosis using available assays for 
cardiac troponin, the biomarker of choice for the sero-
logic diagnosis of acute coronary syndromes. More sen-
sitive assays for troponin are urgently needed to enable 
an earlier detection of MI and identify patients who are 
at risk of short-term major adverse cardiac events. Nano-
technology offers several solutions to the drawbacks of 
the existing cardiac biomarker assays. One of them was 
recently reported by Cowles and Zhu (51), who applied the 
dual signal amplification method for the measurement of 
cardiac troponin I (cTnI) in human serum. The technique 
consists of sandwich-ELISA, in which detection antibod-
ies are linked by biotin-avidin complex to semiconductor 
nanoparticle labels (quantum dots) of zinc sulfide. By low-
ering pH, the release of zinc ions is induced (first step of 
signal amplification), which act as co-factors for carbonic 
anhydrase and, at normalized pH, lead to a concentration-
dependent activation of this enzyme. Upon addition of 
substrate, fluorescein diacetate, enzyme activity produces 
fluorescent product (second step of signal amplification) 
the concentration of which is measured spectrophotomet-
rically. Using this technique, cTn1 assay was developed 
and tested on human serum samples, showing superior 
detection resolution and simple handling (51).

In a study by Ling et  al. (52), magnetic resonance 
relaxometry was used to noninvasively monitor changes 
in the relaxation properties of antibody-coated magnetic 
particles when they aggregate upon exposure to a bio-
marker of interest. As the single-point measurements 
often do not reflect the directions of the underlying path-
ologic process, thus hindering diagnostic and prognostic 
decisions, the authors of this innovative method applied 
implantable devices containing sensors of three clinically 
relevant cardiac biomarkers: cTnI, creatinine kinase and 
myoglobin, to continuously monitor biomarker levels 
for up to 72 h, with a detection level as low as the pg/mL 
range. In a mouse model of MI, the detected biomarker 
levels and changes over time differed between experi-
mental and control groups and correlated with infarct 
size.

These studies underscore the enormous potential of 
nanotechnologies for improved biomarker detection and 
thus patients’ diagnosis.

Nanosystems for monitoring the treatment 
efficacy

Nanoparticle-based imaging may serve not only as a bio-
marker to identify vulnerable lesions, angiogenesis, or 
ischemic regions, but can also provide a tool to monitor 
the therapeutic effectiveness of medication. In a study 
by Morishige et al. (13), SPION-enhanced MRI was used 
to monitor the effects of rosuvastatin in hypercholester-
olemic rabbits. A recent study by Sigovan et al., applied 
a similar approach using USPIO to noninvasively 
monitor the therapeutic effect of irbesartan therapy on 
macrophage burden in atherosclerotic plaques of ApoE-
deficient mice (14). Serial USPIO-enhanced MRI scans 
were furthermore utilized to monitor the therapeutic 
effects of an anti-inflammatory drug minocycline in 
a mouse model of stroke (53). The authors concluded 
that although there are still several limitations to over-
come before the application of this technique in clini-
cal practice, USPIO-enhanced MRI might provide useful 
surrogate markers for detecting a therapeutic effect in 
pre-clinical studies.

Another approach to the long-term monitoring of vas-
cular system is represented by encapsulation of SPION into 
red blood cells in order to ensure their increased blood cir-
culation time. As shown in a paper by Rahmer et al. (54), 
SPION-loaded RBCs can be imaged in the blood pool of 
mice several hours after injection, and their presence in 
circulation for up to 24 h was confirmed by spectroscopic 
quantification of the iron concentration in mouse blood 
samples collected after injection of SPION-loaded RBCs. 
Using this novel approach, long-term monitoring in car-
diovascular diseases (e.g., monitoring the bleeding after 
stroke, imaging vessel architecture during interventional 
procedures, or controlling the treatment efficacy) can be 
envisioned without the necessity of the repeated adminis-
tration of contrast agents.

Nanosystems for vascular treatment 
and regeneration

Although pharmacologic agents for the treatment of car-
diovascular disorders are available, the conventional 
therapy using systemic delivery methods has several 
serious drawbacks, such as considerable side-effects or 



Cicha et al.: Cardiovascular nanomedicine: a clinical reality?      67

low efficacy at tolerated doses. To overcome the problems 
associated with traditional therapeutic approaches, the 
targeted nanoparticles can be used as transport vehicles 
that allow local targeted drug delivery to disease-specific 
cells or tissues and thus concentrate the therapeutic agent 
at the site of action. In this manner, drug cytotoxicity is 
expected to be reduced by (a) targeted tissue accumula-
tion and (b) reduction of the required dosis. Addition-
ally, as the nanocarrier systems are larger than 5  nm in 
diameter (ca. 10–200 nm) they evade renal clearance thus 
increasing circulation half-life of the transported drugs.

Nano-sized drug carriers

Among the materials most commonly used for cardio-
vascular drug-delivery systems are the nanoparticles or 
nanoshells made of natural or synthetic polymers, such as 
liposomes and lipidots, dextrans, poly(lactic-co-glycolic 
acid) (PLGA), polyaccrylates, as well as metal or metal oxide 
nanoparticles (e.g., gold, silver, SPION), and quantum 
dots. Several of the commonly tested drug-carrier systems 
[reviewed in detail in (55)] are briefly outlined below.

Liposomes are composed of a lipid bilayer consisting 
of amphipathic phospholipids (primarily phosphatidyl-
choline) that enclose an interior aqueous space (56). The 
head groups of phospholipids are usually functionalized 
with maleimide, which allows conjugation to antibodies 
or other ligands, and/or with polymerizable moieties to 
improve stability [e.g., polyethylene glycol (PEG)-ylated 
stealth liposomes]. Among the drug-delivery systems, 
liposomes have relatively low toxicity and a good thera-
peutic index (56, 57). A subgroup of those compounds, cati-
onic liposomes, originally used as transfection reagents for 
gene or siRNA delivery, can be easily functionalized with 
antibodies or ligands. Among their advantages as a drug-
delivery platform are the ease of preparation, commercial 
availability and overall low immunogenicity (58), which is 
expected to enable safe and repeated administration.

PLGA, poly(lactic-co-glycolic acid), is the most 
common biodegradable polymer Federal Drug Agency 
(FDA)-approved for use in humans. As PLGA degradation 
products (lactic acid and glycolic acid) are easily metabo-
lized and easily eliminated from the body, the systemic 
toxicity associated with PLGA application is low (59).

Dextrans are stable glucose polymers that contain 
functional groups for derivatization (60). Apart from sta-
bility, several other advantages such as water solubility, 
and drug protection from degradation which allows sus-
tained release of active compounds, make them a suitable 
platform for delivering pharmaceutical agents (61).

Gold nanoparticles consisting of a dielectric core of 
silica coated with a metallic layer of gold, are available 
in various sizes and forms (62) and can be used for e.g., 
as biosensors, or photoactive agents for optical imaging, 
for photothermal ablation therapy, or as drug carri-
ers. SPIONs consist of iron oxide core, often coated with 
organic materials such as fatty acids, polysaccharides, 
or polymers (63, 64). The magnetic properties of SPIONs 
allow the remote control of their accumulation by means 
of external magnetic field, as well as their application for 
hyperthermia-therapy. Conjugation SPIONs with drugs, 
in combination with an external magnetic field to target 
the nanoparticles (so called “magnetic drug targeting”,  
Figure 1), has additionally emerged as a promising strat-
egy of drug delivery, which results in increased drug pay-
loads in the target tissue, at the same time reducing their 
systemic dose and toxicity as demonstrated by the in vivo 
studies from our group (65–67).

Cell-based therapies

Due to the safety concerns associated with the use of 
cell-labeling strategies, development of low side-effect 
agents for tracking of the stem cells has been challeng-
ing (69). Because of this, it is difficult to evidence the fate 
of those cells in the human studies, despite the promis-
ing results with regard to their regenerative capacities in 
cardiovascular diseases. In one of the pioneering works, 
Himes et al. (70) used embryonic stem cells loaded with 
SPION for long-term monitoring of their fate following 
intramyocardial injection in a mouse model of MI. The 
subsequent studies by Sadek et al. (71) utilized the USPIO-
based contrast agent ferumoxide (Endorem/Feridex IV) 
in combination with transfection agent protamine sulfate 
for labeling and tracking of bone marrow-derived human 
mononuclear cells and C2C12 skeletal myoblasts within 
rat myocardium. In the settings of MI, SPION-labeling of 
mesenchymal stem cells (MSCs) was furthermore utilized 
for cell tracking and the simultaneous evaluation of their 
long-term therapeutic potential i.e., left ventricular ejec-
tion fraction assessment (72). SPION-enhanced MRI has 
moreover been tested for tracking endothelial progenitor 
cells in a rat model of MI (73).

To demonstrate the potential of nano-labels for stem 
cell tracking during ischemic brain injury, ferumoxide-
protamine sulfate label has been used for MSC labeling 
in the experimental cerebral infarction (74). Ferumoxide 
has also been tested as an MRI label for human neural 
stem cells (75). Other studies utilized microgel iron 
oxide nanoparticles (76), and SPION-loaded cationic 
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Figure 1 Magnetic drug targeting.
(A) Principle of the MDT method; (B) Superparamagnetic iron oxide nanoparticle accumulation in a bovine artery using magnetic field: Photo 
shows the ex vivo bovine artery model (left panel), experimental setup is schematically presented in the right panel; (C) Histochemical 
analysis of iron accumulation (Prussian blue staining) in the aortic segments relative to the magnet positioning (68).

nanovessicles (77) in different models of murine stroke 
for labeling human and rat MSCs, respectively. Wang 
et  al. (78) developed a novel fluorescent-magnetite-
nanocluster with high MRI sensitivity and high label
ing efficiency for MSCs, which allowed tracking their 
migration and accumulation in the ischemic region in a 
mouse stroke model. Similar results were obtained using 
fluorescent mesoporous silica-coated SPION for labeling 
neural progenitor cell (79). Both intravenous administra-
tion and implantation of such labeled cells in the mouse 
brain hemisphere contralateral to the ischemic injury 
region allowed tracking their migration to the lesion site 
using MRI. Taken together, these studies indicate that 
SPIONs represent a highly effective platform for labeling 

and MRI tracking of therapeutic stem cells in the context 
of CVD.

In a most recent study by Riegler et al. (80), MSC loading 
with SPION was used in order to magnetically target the 
cells to the sites of vascular injury induced by balloon angi-
oplasty in rabbits. This study demonstrated the feasibility 
of magnetic cell delivery approach for localized accumula-
tion of therapeutic cells in the injured arterial regions.

Stroke treatment

After cerebral ischemia and reperfusion, the oxida-
tive stress and inflammation may contribute to the 
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post-ischemic brain injury, affecting patients’ outcomes. 
Nanoparticles can be used for targeted delivery of large 
payloads of antioxidant enzymes or reactive oxygen 
species scavengers into the affected tissue. This approach 
has been tested in mouse ischemic brain using platinum 
nanoparticles (Pt-NPs), which themselves are potent 
scavengers of superoxide anion (81, 82). Compared with 
vehicle, treatment with Pt-NPs significantly improved 
the motor function and greatly reduced the superoxide 
production and the infarct volume, indicating that the 
antioxidant properties of Pt-NPs can contribute to neuro-
protection following the ischemic stroke (81, 82).

In their recent paper, Yun et al. (83) generated various 
nanoparticles (liposomes, polybutylcyanoacrylate 
(PBCA), or PLGA) that contained active superoxide dis-
mutase (SOD), and were tagged with antibodies directed 
against the N-methyl-D-aspartate (NMDA) receptor 1. In 
a mouse model of cerebral ischemia, the nanoparticles 
containing SOD showed protection against ischemia and 
reperfusion injury when applied after stroke with a 50%–
60% reduction in infarct volume, reduced inflammatory 
markers, and improved behavior in vivo.

Another treatment approach utilizing PEGylated-lipid 
nanoparticles that go across the blood-brain barrier was 
reported by Lu et al. (84). The nanoparticles encapsulat-
ing 3-n-butylphthalide were conjugated to Fas ligand anti-
body that selectively present on brain ischemic region. 
Those nanoparticles effectively accumulated in ischae-
mic region of mouse brain, and resulted in significant 
improvements in brain injury and in neurological deficit 
after ischaemia, with the significantly reduced dosages vs. 
free 3-n-butylphthalide. These studies show that targeted 
nanoparticles containing protective factors may be viable 
candidates for the treatment of stroke-induced ischemic 
brain injury.

Thrombolysis

Rapid recanalization of an occluded artery is essential for 
better outcomes in acute myocardial infarction or stroke. 
The current fibrinolytic therapy can be rapidly adminis-
tered, but does not achieve a high reperfusion rate and is 
associated with considerable side-effects (85). Addition-
ally, many patients are ineligible for systemic thrombo-
lytic therapy, e.g., due to delayed admission to the hospital 
after symptom onset, or because of recent surgery, bleed-
ing, etc. Development of delivery systems for rapid throm-
bolysis, characterized by a strong fibrinolytic effect and 
low bleeding risk, is therefore one of the most urgent tasks 
in cardiovascular medicine.

Thrombin represents the most important target of 
direct anticoagulants within the coagulation cascade. Two 
recent publications from the group of Wickline (86, 87) 
investigated the effects of the nanoparticle-bound potent 
thrombin inhibitor, d-phenylalanyl-l-prolyl-l-arginyl-
chloromethyl ketone (PPACK) in a mouse model of acute 
arterial thrombosis due to the photochemical injury of 
the carotid artery. PPACK-perfluorocarbon nanoparticles 
outperformed both heparin and uncomplexed PPACK in 
inhibiting thrombosis, and formed a local clotting barrier 
that continued to manifest clot inhibition even as systemic 
effects rapidly diminished (86). Administration of PPACK-
liposomes prior to the injury significantly delayed the time 
to arterial occlusion as compared to free PPACK. Systemic 
anticoagulant profiles revealed a rapid return to control 
levels within 50 min, whereas the antithrombin activity 
was maintained at the injury site (87). The establishment 
of a potent and long-acting anticoagulant surface over a 
newly forming clot with the use of thrombin targeted nan-
oparticles that do not require systemic anticoagulation to 
be effective offers an alternative site-targeted approach to 
the management of acute thrombosis.

Current thrombolytic therapy by infusion of tPA is 
characterized by several drawbacks, including low effi-
cacy combined with a high risk of bleeding complications 
(85). Therefore, several innovative strategies aiming at tar-
geted and/or local applications of plasminogen activators 
have been designed. The possibility of magnetic-targeting 
of tPA for local thrombolysis was investigated by Ma et al. 
in a rat embolic model (88). Polyacrylic acid-coated mag-
netite nanoparticles bound to tPA (tPA equivalent of 0.2 
mg/kg) were administered intraarterially under guidance 
with the external magnet moving back and forth along the 
iliac artery. tPA-NPs restored the iliac blood flow within 
75  min to 82% of that before the clot lodging, whereas 
equivalent amount of free tPA exerted no improvement 
on hemodynamics. The authors concluded that magnetic 
tPA-NPs allow reproducible and effective target thrombol-
ysis with  < 20% of the regular dose of free tPA.

Recently, a novel drug delivery nanosystem was 
described comprising tPA, basic gelatin and zinc acetate 
(89). Within this nanosystem, tPA activity was reduced  
in  vitro to approximately 50% of free tPA and was fully 
recoverable by the application of low frequency ultra-
sound. In a swine acute myocardial infarction model, 
plasma tPA activity after intravenous injection of nano-
particles was approximately 25% of free tPA and was 
recovered completely by transthoracic ultrasound appli-
cation, with significantly higher tPA activity near the 
affected coronary artery than in the femoral artery region. 
In comparison to treatment with free tPA (0.447 mg/kg), 
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which recanalized the occluded coronary artery in only 
1 of 10 swine, nanoparticles containing the same dose of 
tPA with ultrasound activation achieved recanalization in 
9 of 10 swine within 30 min, suggesting that this nanosys-
tem bears promising potential for improved thrombolysis.

Another novel and extremely promising nanomedi-
cal strategy of targeted tPA delivery to stenotic arteries 
employing hemodynamic forces was recently described 
by Korin et  al. (90). Since occlusions in blood vessels 
result in local increases in shear stress leading to platelet 
activation and clotting, the authors designed micro-aggre-
gates of PLGA nanoparticles coated with tPA. These micro-
aggregates are not affected by physiologic flow conditions 
with shear stress values up to 70 dyn/cm2, but exposed to 
abnormally high shear stress in the regions of vascular 
occlusion/stenosis, undergo break up followed by local 
drug release. As compared with free drug, the shear-acti-
vated tPA-coated nanoparticles induced rapid dissolution 
of arterial thrombi induced by the exposure of mouse mes-
enteric arteries to ferric chloride, with complete clearance 
of occluding thrombi within 5 min after application (90). 
Moreover, upon infusion of lethally large fibrin clots, the 
immediate application of the shear-activated tPA-coated 
nanoparticles increased survival by 80%. The doses of 
shear-activated tPA-nanoparticles required for clot disso-
lution were about 100-times lower than the doses required 
for achieving comparable effects with free drug (90). This 
strategy, utilizing a universal hemodynamic phenomenon 
of shear stress increase upon reduction in vessel diame-
ter should result in a broad applicability for all occlusive 
vascular conditions, including e.g., treatment of stenotic 
atherosclerotic plaques, pulmonary emboli, and ischemic 
stroke.

Myocardial infarction

Regeneration of the infarcted heart is one of the most 
important therapeutic goals in cardiovascular medicine. In 
search for a suitable nanotechnological platform for regen-
erative and anti-remodeling drug delivery, Paulis et al. (91) 
investigated the penetration of different paramagnetic lipid 
nanoconstructs (micelles, 15 nm in size, or liposomes, ca. 
100 nm in size) in the infarct region. The authors showed 
that both in acute and chronic myocardial infarction set-
tings, micelles permeate the entire infarct area, and can 
thus represent a good system for the delivery of cardiopro-
tective drugs and for non-invasive monitoring of the infarct 
size by MRI (91). Several recent publications have further-
more tested whether nanoparticulate drug- or gene-delivery 
is capable of stimulating the regeneration of ischemically 

damaged hearts. Binsalamah et  al. (92) utilized chitosan-
alginate nanoparticles loaded with proangiogenic and 
cardioprotective placental growth factor (PlGF). The 
intramyocardial injection of these constructs provided a 
sustained slow-release PlGF therapy, resulting in decreased 
scar formation, improved left ventriculat function and 
an anti-inflammatory systemic cytokine profile. Similar 
approach was tested by Chang et al. (93), who utilized PLGA 
nanoparticles conjugated with insulin-like growth factor-1 
(IGF-1). Single post-MI intramyocardial injection of these 
nanoparticles resulted in prolonged retention of IGF-1 in 
the myocardium, which was sufficient to prevent cardio-
myocyte apoptosis, and to reduce infarct size and improve 
left ventricular function at 21 days after MI.

Gene therapy represents yet another possibility to 
improve patients’ outcomes following MI. Zhang et al. (94) 
applied externally controlled magnetic nanobeads con-
jugated to adenoviral vectors-encoded human vascular 
endothelial growth factor (VEGF) gene. Following intra-
venous administration, the nanobeads were accumulated 
in the myocardial region by external epicardial magnet, 
resulting in a good transduction efficiency and a strong 
VEGF gene expression in the ischemic zone of the heart. 
This led to improved left ventricular function, increased 
capillary and arteriolar density and reduced the collagen 
deposition in infarcted region, indicating that magnetic 
targeting enhances local transduction efficiency, and 
supports cardiac repair. Gene silencing was also tested 
in a recent study by Liu et al. (95) as a promising tool for 
regulating gene expression following MI. Oligo-arginine- 
conjugated dendrimer loaded with siRNA against angio-
tensin 2 type 1 receptor (AT1R) prevented the receptor 
upregulation in vivo and improved the recovery of cardiac 
function after the ischemia-reperfusion myocardial injury. 
These studies demonstrate the enormous potential of 
nanoparticle-based technology for improved clinical 
therapy of MI and ischemic CVD.

Plaque stabilization

Atherosclerotic plaque stabilization is the aim of the 
current pharmacologic strategies, including statin 
therapy. As the experimental approaches to nanoparticle-
based treatment of different stages of atherosclerosis are 
reviewed in detail elsewhere (10), this paragraph will only 
briefly list some of the potential targets for lesion stabi-
lization. As an example, interventions with an inhibi-
tory effect on macrophages have thus far been tested in 
ApoE-deficient mice utilizing pitavastatin-loaded PLGA 
nanoparticles (96). As compared with pitavastatin alone, 
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the nanoparticle-mediated delivery of pitavastatin to 
circulating inflammatory monocytes prevented plaque 
destabilization and rupture by inhibiting their inflamma-
tory activity and recruitment to the lesions. In a study by 
McCarthy et al., the administration of magnetofluorescent 
nanoparticles with light-activated therapeutic moieties 
which allow phototoxic activation (97), allowed an effi-
cient focal ablation of inflammatory macrophages upon 
irradiation of the plaques. Such nanoparticles inducing 
focal toxicity confined to macrophages, without affecting 
endothelial or smooth muscle cells (SMCs), could have a 
durable plaque-stabilizing effect.

Another vital target for plaque-stabilizing therapies 
is represented by plaque neovascularization, as shown by 
the studies of Winter et al. (98) who applied αvβ3 integrin-
targeting SPION for site-specific delivery of antiangiogenic 
drug fumagillin in a rabbit model of atherosclerosis. These 
studies demonstrated superior antiangiogenic activity 
and reduced toxicity of ανβ3-targeting, fumagillin-carrying 
nanoparticles, as compared with systemic drug applica-
tion (98). Targeted nanoparticles for local drug delivery 
can thus improve the therapeutic effect of current phar-
macologic compounds for plaque stabilization.

Application of nanoparticles to prevent in-stent restenosis

Stent implantation allows recanalization of stenosed 
vessels, but is often related with complications, such 
as stent thrombosis and restenosis. Stent thrombosis 
is induced by the disruption of the endothelial mono
layer and necessitates lengthy dual-antiplatelet therapy 
(DAPT). Stent implantation additionally results in an 
excessive SMC proliferation, which in the longer term can 
cause restenosis and vessel occlusion (99, 100). To prevent 
this process, drug-eluting stent (DES) containing anti-pro-
liferative drugs are used. In clinical trials, DES has been 
shown to significantly reduce restenosis as compared to 
bare metal stents (101, 102). However, drug-induced inhi-
bition of SMC proliferation also inhibits the re-establish-
ment of a healthy endothelium, thus increasing the risk 
of stent-related thrombosis (103–105). Therefore, new 
stent systems targeting SMCs without adverse effects on 
endothelial cells are urgently needed. Several nanotech-
nological approaches to this issue have been reported, 
some of which are discussed below.

Polymer liposome nanoparticles targeted to chondroi-
tin sulfate proteoglycans that encapsulated prednisolone 
were tested in a study by Joner et al. in order to prevent 
neointimal hyperplasia following bare metal stent implan-
tation in rabbit (106). These nano-constructs specifically 

targeted the sites of stent-induced injury (106), increased 
the tissue concentration of prednisolone in stented arter-
ies by 100-fold as compared to contralateral nonstented 
arteries, and resulted in significant suppression of in-stent 
neointimal growth (106). This indicates that site-specific 
targeting of anti-inflammatory drug-loaded nanoparticles 
to the stented arteries can constitute a suitable method for 
the prevention of in-stent restenosis.

Another approach was tested by Tsukie et  al. (107), 
who utilized a novel bioabsorbable polymeric nanoparti-
cle-eluting stent (NES) that provides more sustained deliv-
ery of therapeutic agents than the common dip-coated DES 
(108). For this purpose, nanoparticles were produced con-
taining pitavastatin. In a pig coronary artery stent model, 
the effectivity of in-stent stenosis inhibition by statin-NES 
equaled that of polymer-coated sirolimus-eluting stents, 
but was not accompanied by delayed endothelialization 
as observed in the sirolimus group. These findings indi-
cate that inhibition of in-stent stenosis without delaying 
endothelial healing is possible (107).

A promising strategy to increase the rate of stent 
endothelialization was reported by Polyak et al. (109). In 
this study, endothelial cells expressing luciferase were 
preloaded with biodegradable polymeric superparamag-
netic nanoparticles in order to enable their magnetic tar-
geting to the steel surfaces of intraarterial stents. In the 
presence of a uniform external magnetic field, magnetic 
nanoparticle-loaded bovine aortic endothelial cells were 
successfully targeted to stents implanted in rat carotid 
arteries. Optical imaging confirmed significantly greater 
luciferase expression at the stented arteries treated with 
magnetically-labeled endothelial cells compared with 
nonmagnetic controls. Nanotechnology thus offers mul-
tiple strategies for improving the safety profiles of stents 
following cardiovascular interventions.

Tissue engineering and vessel endothelialization

Functionalized tissue-engineered vascular grafts do not 
only possess potential for applications in peripheral and 
coronary bypass surgery but are also attractive to the pe-
diatric surgery for congenital heart defects. Cell loading 
with magnetic nanoparticles is one of nanotechnolo-
gic strategies that have been often applied to vascular 
tissue fabrication. This technique allows the deposition 
of loaded fibroblasts, SMCs and endothelial cells on the 
luminal side of the tubular scaffolds by means of external 
magnetic force as described by Ito, Perea and Gonzalez-
Molina (110–113). Moreover, the magnetic tissue fabrica-
tion (114), was recently tested in vitro for cardiac tissue 
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engineering. Using cardiomyocytes labeled with magnetic 
nanoparticles, the formation of a ring-shaped tissue that 
possessed a multilayered cell structure and contractile 
properties was achieved. These results indicate that mag-
netic tissue fabrication is a promising approach both for 
vessel and for cardiac tissue engineering.

Clinical applications: state of the art
Comparing with the vast number of bench research 
reports focusing on cardiovascular applications of nano-
technologies that have been published in the recent years, 
the reported clinical trials are scarce (Table 1). Below, 
several early cardiovascular imaging studies using mag-
netic nanoparticles and the few recent pilot trials involv-
ing nanosystems are highlighted.

Pilot studies – cardiovascular imaging

The majority of the clinical trials involving nanoparticles 
dates back to the beginning of the previous decade (2001–
2004). These studies, most of which originated from 
the group of J.H. Gillard, utilized USPIO-based contrast 
agents in order to detect and characterize atherosclerotic 
plaques, based on the specific incorporation of USPIO by 
activated macrophages [reviewed in (136)].

Early clinical studies using ferumoxtran (Sinerem/
Combidex) have shown that USPIO accumulate in ath-
erosclerotic plaques in aorta and pelvic arteries (115), as 
well as carotid plaques (116, 117), resulting in areas of 
focal signal loss on in vivo MR images that correspond 
to accumulation of iron particles in ex vivo specimens. 
A study by Kooi et al. (117) performed on 11 symptomatic 
patients scheduled for carotid endarterectomy demon-
strated that USPIO accumulated predominantly in mac-
rophages in ruptured and rupture-prone atherosclerotic 
lesions, whereas hardly any USPIO were taken up in stable 
plaques (117).

A clinical study from the group of J.H. Gillard con-
firmed the ability of USPIO-enhanced MRI to identify 
plaque inflammation by accumulation of USPIO within 
macrophages in stenotic carotid plaques (118). In that 
study, areas of signal intensity reduction, corresponding 
to USPIO- and macrophage-positive histological sections, 
were visualized in 7 of 8 patients receiving ferumoxtran. 
These data were subsequently validated on 30 sympto-
matic patients scheduled for carotid endarterectomy, 
showing USPIO enhancement in 90% patients with 
severe stenosis (119). A more recent study used USPIO 

to compare 10 patients with symptomatic and 10 with 
asymptomatic carotid stenosis (137). In symptomatic 
patients, significantly more focal areas of signal drop 
were observed than in asymptomatic group, indicating 
increased inflammatory infiltrates. Interestingly, focal 
areas of signal reduction were also detected in some 
asymptomatic plaques suggesting that USPIO-enhanced 
MRI is capable of identifying inflammation within oth-
erwise morphologically “stable” plaques. Subsequent 
USPIO studies, performed in 40 patients with carotid 
stenosis (120), confirmed that the patients with asympto-
matic carotid atheroma contralateral to the symptomatic 
disease showed more inflammatory activity than the com-
pletely asymptomatic cohort, despite a mean lower grade 
of luminal stenosis (46% vs. 63%). These findings were 
corroborated by a further study that compared the degree 
of inflammation on USPIO-enhanced imaging between 
asymptomatic carotid plaques in patients with coronary 
artery disease (CAD) and in individuals with a carotid ste-
nosis who were completely asymptomatic in all vascular 
regions (121). Patients with CAD had more inflammatory 
activity within their carotid atheroma than did the com-
pletely asymptomatic cohort despite a mean lower degree 
of luminal stenosis (59% vs. 65%). The authors concluded 
that inflammatory activity may be a significant risk factor 
in asymptomatic disease and USPIO-enhanced MRI may 
prove a useful technique to improve the risk stratifica-
tion of patients with carotid stenosis. In 2013, a new study 
from the group of J.H. Gillard was published, investigating 
for the first time the feasibility of longitudinal sequential 
MR imaging before and 36 h after USPIO infusion at 0, 6, 
and 12 months, in 10 patients with a moderate asympto-
matic carotid stenosis (122). The patients, none of whom 
received pharmacotherapy, remained asymptomatic 
within the course of the study and there was no statisti-
cal difference in their USPIO uptake between the three 
time points. Comparing the quadrant signal before USPIO 
infusion, a good agreement over the 1-year period was 
observed. The quadrant signal detected after USPIO infu-
sion was in a good agreement between 0 and 6 months, 
and in moderate agreement between 0 and 12 months, 
suggesting that inflammation within the carotid plaque 
is a changeable and dynamic process. Apart from impor-
tant information on quantitative reproducibility of the 
technique, this study provided evidence that within the 
6 months, USPIO nanoparticles were cleared out of the 
atherosclerotic plaque. Importantly, no adverse effects 
following multiple USPIO infusions were observed (122), 
indicating that this technique is clinically safe and appli-
cable, also for the future longitudinal studies involving 
pharmacologic interventions.
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The feasibility of USPIO-enhanced MRI to detect 
inflammation following the ischaemic stroke was investi-
gated by Saleh et al. (123). In this clinical phase II study, 10 
consecutive patients received ferumoxtran (Sinerem/Com-
bidex) infusion at the end of the first week after symptom 
onset. Two follow-up MRI scans were performed, at 
24–36 h and 48–72 h after infusion. USPIO-induced signal 
alterations representing parenchymal enhancement were 
different from conventional gadolinium-enhanced MRI 
(Magnevist®, Schering), showed an increase over time, 
and corresponded to the distribution of macrophages. The 
authors concluded that increasing USPIO-enhancement 
on T1-weighted images indicates brain infiltration by 
USPIO-laden macrophages, and may provide an in vivo 
surrogate marker of cellular inflammation in stroke. More 
recently, the utility of USPIO-enhanced MRI for estimating 
macrophage infiltration into early ischemic stroke lesions 
was examined in another study from the same group (124). 
Patients with stroke received intravenous ferumoxtran fol-
lowed by four subsequent MRI scans. In 3 of 9 analyzed 
patients, parenchymal USPIO enhancement was observed 
on T1-weighted spin-echo images. USPIO-dependent 
signal changes reflected the variable extent and distribu-
tion of macrophage infiltration in different lesion types, 
indicating that USPIO-enhanced MRI may help tailoring 
the anti-inflammatory therapy in patients with stroke.

As a further possible application, USPIO-enhanced 
MRI was tested for prediction of expansion and rupture of 
life-threatening aortic aneurysms (125). As their prognosis 
currently relies on the measurement of aneurysm diam-
eter only, new techniques are urgently needed to assess 
the rate of AAA expansion. The study was carried out in 
29 stable patients with asymptomatic AAA, who received 
MRI scans before and 24–36  h after administration of 
ferumoxtran. The study demonstrated that the patients 
with distinct mural uptake of USPIO had a 3-fold higher 
AAA growth rate than those with no or nonspecific USPIO 
uptake despite having similar aneurysm diameters. This 
indicated that the uptake of USPIO in AAA is capable of 
identifying cellular inflammation and can distinguish 
between slow and rapidly progressive aneurysm expan-
sion, thus improving risk stratification in the patients.

Most recently, Yilmaz et al. (126, 127), tested the suit-
ability of USPIO-based MRI contrast agents for charac-
terization of myocardial infarct pathology as compared 
with conventional gadolinium-based imaging. The 
studies showed that the approved dose of ferucarbotran 
(Resovist®, NIMINI-1 trial) did not allow improved visu-
alization of myocardial peri-infarct zone as compared 
to gadolinium-based contrast agent Magnevist® (126). 
In contrast, the administration of ferumoxytol (Rienso/

FerahemeTM, NIMINI-2 trial) in 14 patients with myocardial 
infarction allowed a better characterization of the injured 
myocardium and inflammatory macrophage accumula-
tion, as well as the extent and composition of the peri-
infarct zone, as compared with Magnevist® (127). Nearly 
in parallel, another clinical study utilizing ferumoxytol 
for USPIO-enhanced MRI to assess cellular myocardial 
inflammation following acute myocardial infarction was 
published (128). In line with the data of Yilmaz et al., this 
study showed a strong USPIO accumulation in the infarct 
tissue of patients with recent myocardial infarction, and 
a less pronounced uptake in the peri-infarct and remote 
myocardium. These findings indicate that a new genera-
tion of USPIO formulations with a favorable safety profile 
(138) allows non-invasive detection and characterization 
of the infarcted myocardium and rise hope for the rapid 
development of nanoparticulate and easily functional-
ized contrast agents with superior clinical and prognostic 
value.

Pilot studies –treatment monitoring  
and cardiovascular biomarkers

Apart from providing prognostic information and aiding 
disease diagnosis, nanoparticles can constitute a useful 
tool for monitoring the treatment efficacy and act as bio-
markers for therapeutic interventions. Below, several clin-
ical feasibility studies are described that highlight these 
important applications.

USPIO-enhanced MRI was first used to monitor the 
effects of aggressive vs. mild lipid-lowering therapy on 
macrophage burden in carotid plaques, in a randomized 
controlled study performed by the group of J.H. Gillard 
[ATHEROMA study, (130)]. Patients with moderate carotid 
stenosis, who demonstrated intraplaque accumulation 
of USPIO (ferumoxtran) on MRI at the baseline, received 
either 10  mg or 80  mg atorvastatin daily for 12 weeks. 
Twenty patients completed the treatment in each group. 
A significant reduction from baseline in USPIO-defined 
inflammation was observed in the 80-mg group at both 6 
weeks and at 12 weeks. Moreover, aggressive lipid-lowering 
therapy for 12 weeks was associated with significant reduc-
tion in USPIO-defined inflammation as compared to the 
mild lipid-lowering treatment (130). This technique was 
thus suitable to assess therapeutic response in an interven-
tional drug trial in humans, additionally facilitating enroll-
ment of the specific patient cohort in the trial. The results 
of the long-term follow-up of the ATHEROMA trial were 
published in 2012 (131), evaluating the ability of USPIO-
enhanced MRI to predict subsequent cerebrovascular 
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and cardiovascular events. In those analyses, 62 patients 
initially screened for enrollment to ATHEROMA trial were 
examined for the occurrence of adverse cerebrovascular or 
cardiovascular events following the initial USPIO-imaging. 
Despite the small size of the study group and only 17 car-
diovascular/cerebrovascular events reported in total, an 
association was observed (p = 0.07) between the magnitude 
of maximal USPIO-induced signal intensity loss within 
carotid plaques and the risk of developing subsequent vas-
cular events (131). As the study lacked adequate statistical 
power, future prospective studies with new generation of 
USPIO-based contrast agents are urgently needed. Such 
studies should incorporate long-term follow-up analyses 
in order to estimate the usefulness of USPIO-enhanced 
MRI for the assessment of future event risk in asympto-
matic patients with carotid atherosclerosis.

Cell-based therapies are another attractive option for 
treatment of cardiovascular diseases. In this context, a 
safe and reliable method of tracking the cells in vivo to 
ensure the delivery of sufficient cell numbers to the dis-
eased region is critical for the therapy development (69, 
139). In their recent paper, Richards et  al. (132) report 
the development of GMP-compliant method of labeling 
peripheral blood mononuclear cells (PBMCs) with SPION, 
and their successful tracking by MRI in humans. Labeling 
of the mononuclear cells with ferumoxides (Endorem/
Feridex IV) did not affect their viability, migration or 
cytokine release in vitro, and allowed their MRI identifi-
cation in vivo for at least 7 days. A phased-dosing study, 
demonstrated that systemic delivery of up to 109 SPION-
labeled cells in humans is safe and does not affect any 
hematological, biochemical, or coagulation variables. 
Therefore, 12 healthy volunteers received 108–109 SPION-
labeled cells approximately 27  h after a local cutaneous 
inflammation was induced in the thigh by intradermal 
injection of tuberculin. Intravenously delivered SPION-
labeled cells were tracked to the inflamed skin at 24 
and 48  h post-administration, as visualized by MRI and 
confirmed using Prussian blue staining of inflamed skin 
biopsies. The authors concluded that SPION-labeling is a 
safe and feasible technique that has a major potential for 
cardiovascular applications including monitoring of cell 
therapies and tracking inflammatory cells by MRI.

Myocardial injury estimated by cardiac troponin 
plasma or serum levels often goes unnoticed due to the 
low sensitivity of the current generation assays. In 2009, 
a pilot study was performed to evaluate the clinical value 
of a new ultra-sensitive nanoparticle assay for cardiac tro-
ponin I (nano-cTnI; detection limit 0.0002 μg/L) based on 
the sandwich antibody technique with chemical signal 
enhancement of gold nanoparticles to which the secondary 

antibody was bound [PROTECT-TIMI 30 trial, (129)]. In this 
study, blood samples from two cohorts were re-analysed: 
50 patients with unstable angina and serial negative cTnI 
using current generation troponin assay, and 50 patients 
with definite myocardial infarction who had an initially 
negative current generation cTnI result, but results of 
sampling at 6–8 and 18–24 h revealed increase in cTnI. In 
the first cohort classified as UAP, 44%, 62%, and 82% of 
patients had an elevated nano-cTnI result measured at 0, 
2, and 8 h with the nano-cTnI assay. In patients with defi-
nite myocardial injury but an initially negative cTnI, 72% 
and 98% had a positive nano-cTnI score ( > 0.003 μg/L) 
at 0 and 2 h. Thus, using a nanoparticle assay for cTnI, 
myocardial injury was detectable in a substantial propor-
tion of patients previously classified as having unstable 
angina pectoris. The emergence of a new generation of 
troponin assays has the potential to improve the diagnosis 
of myocardial infarction based on an enhanced analytical 
performance at very low concentrations of troponin.

Pilot studies – disease treatment

In comparison to diagnostic applications, nanomedical 
approaches to treatment of cardiovascular disorders in 
humans remain limited. Two published pilot trials inves-
tigating the feasibility of nanoparticle-based drug deliv-
ery systems for treatment of angina pectoris and in-stent 
restenosis are briefly described below.

Angina pectoris resulting from myocardial ischemia 
affects about 50% of all patients with CAD. In a study by 
Chu-fan et  al. (133), prostaglandin E1 (PGE1), an endog-
enous vasodilatory mediator effective in the treatment of 
critical limb ischemia, was tested in patients with angina 
pectoris undergoing a percutaneous coronary interven-
tion (PCI). A randomized controlled trial utilizing PGE1 
incorporated into lipid microspheres (lipo-PGE1) was con-
ducted in 79 patients. Intravenous administration of lipo-
PGE1 (20 μg/day for 5 days, starting at least 48 h before 
PCI) was well tolerated, with no serious adverse events or 
side-effects. With regard to the therapeutic effect, cardiac 
troponin T and creatine kinase myocardial isoenzyme 
concentrations were lower in the lipo-PGE1 group than in 
the control group at 6 h, 12 h and 24 h after PCI. The inci-
dence of postprocedural myocardial injury was reduced in 
the lipo-PGE1 group by ca. 20% compared with the control 
group, indicating that lipo-PGE1 may improve patients’ 
outcomes following the elective PCI.

In-stent restenosis remains a significant limitation 
to the long-term patency of vascular stents. Drug-eluting 
stents inhibit restenosis but are associated with increased 
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risk of stent thrombosis (103). The only published 
safety and dose-finding human trial utilizing nanopar-
ticle-based drug delivery system for in-stent restenosis 
(SNAPIST-I trial) utilized a novel 130-nm, albumin-bound 
particle form of paclitaxel (nab-paclitaxel) (135). Patients 
with angina received nab-paclitaxel at 10, 30, 70, or 100 
mg/m2 intravenously after bare metal stenting of de 
novo lesion in a single coronary artery. Data obtained 
for all 23 enrolled patients indicated that no significant 
adverse events were attributable to the nab-paclitaxel at 
10 or 30 mg/m2, although moderate neutropenia, sensory 
neuropathy and mild to moderate reversible alopecia 
occurred at higher doses. At 2 months post-procedure, no 
major adverse cardiac events were reported, whereas 4 
target lesions required revascularization for restenoses at 
6 months. The authors concluded that intravenous appli-
cation of nab-paclitaxel was well tolerated at doses below 
70 mg/m2, suggesting that systemic nab-paclitaxel may be 
used with any available bare-metal stent and at potentially 
lower cost than DES (135). To date however, no evaluation 
is available as to the clinical efficacy of nab-paclitaxel for 
the suppression of coronary in stent restenosis.

Obstacles and considerations

Imaging

In spite of the promising results of the pilot studies in 
humans, the marketing and the clinical application of 
iron oxide-containing contrast agents are at the still-
stand. Although SPIO and USPIO have been approved 
for clinical use in the past, currently they are scarcely 
available (see Table 2), with the exception of the oral iron 

oxide contrast agent, ferumoxsil (Lumirem/Gastromark), 
and ferumoxytol (Rienso/Feraheme), a novel intravenous 
agent approved for iron replacement therapy in chronic 
renal failure patients with iron-deficiency anemia.

The nephrotoxicity related to gadolinium-based con-
trast agents remains a concern. Because of the nanopar-
ticle accumulation occurring typically in liver, spleen, 
kidneys and bladder, the retention of gadolinium can lead 
to a delayed serious adverse reaction known as nephro-
genic systemic fibrosis in patients with impaired renal 
function (140). Although SPION/USPIO had been reported 
to have favorable safety profiles (141), the delayed toxic-
ity effects due to an increased inflammation and oxidative 
stress cannot be excluded (142). New generation of iron 
oxide-based contrast agents with superior safety profile 
and targeting properties is thus needed for the future clin-
ical imaging of atherosclerotic plaques, myocardial infarc-
tion, and ischemic stroke (138).

Drug-delivery systems

Nanoparticle-based drug delivery systems are an attractive 
platform to improve the efficacy and reduce the systemic 
toxicity of cardiovascular drugs. For the purpose of thera-
peutic applications, novel nanoparticle formulations, 
including drug-carrying liposomes, lipidots, and polyac-
crylates are currently being developed. In order to deliver 
the therapeutic nanoparticles locally and to monitor the 
treatment efficacy, additional modifications are required, 
such as grafting of targeting-moiety and/or image contrast 
enhancement, leading to the development of complex 
multifunctional nanoparticles (Figure 2). However, manu-
facturing such intelligent, tissue- or cell-specific “thera-
nostic” nanoparticles necessitates additional production 

Table 2 SPIO- and USPIO-based contrast agents tested in pre-clinical and clinical trials. Source: http://www.mr-tip.com/.

Product   Trade name (EU)   Trade name (USA)   Availability   Marketed by (EU/USA)

Ferumoxides   Endorem   Feridex IV   Discontinued in 2008   Guerbet/Berlex BayerHealthcare
Ferrixan (Ferucarbotran)   Resovist (Cliavist)     Approved in EU 2001, 

production abandoned in 2009
  Bayer Shering Pharma AG

Ferumoxtran-10   Sinerem   Combidex   Marketing authorization 
withdrawn in 2007

  Guerbet/AMAG Pharma

Feruglose   Clariscan   NC100150, PEG-
feron

  Development discontinued due 
to safety concerns

  GE Healthcare

Ferumoxil   Lumirem   Gastromark   FDA-approved 1996, available 
for sale

  Guerbet/AMAG Pharma

Ferumoxytol   Rienso   Feraheme   FDA approved in 2009 for 
iron-replacement therapy; EU 
marketing authorization in 
2012

  Takeda/AMAG Pharma
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steps and increases the costs of synthesis. Additionally, 
much more detailed characterization methods, as well 
as complex behavior in vivo must be considered, which 
increase the regulatory hurdles and hinder the clinical 
translation (143). Some of these considerations are dis-
cussed in detail below.

Nanoparticle characterization

Compared to the free drugs, nanosystems are extremely 
complex constructs and the lack of their comprehen-
sive standardized characterization is a serious obstacle 
to overcome before they can obtain the approval for use 
in humans. Whereas high-sensitivity diagnostic nano-
systems for ex vivo determination of the urine or serum 
biomarkers are likely to enter clinical practice in the near 
future, in vivo drug-delivery systems must be subject to a 
close toxicologic and pharmacologic scrutiny prior to the 
application in patients.

Nanoparticle chemical composition is often the most 
the critical feature that affects their toxicity. For example 
silver nanoparticles are reportedly more cytotoxic than 
gold nanoparticles (144, 145), but also dextran adminis-
tration has been associated with some side effects, such 
as anaphylaxis, volume overload, pulmonary and cer-
ebral oedema, or platelet dysfunction (146, 147). Acute 
renal failure is another rarely occurring but serious 
complication of dextran osmotic effect (148). Therefore, 
in patients with history of renal insufficiency, diabetes 
mellitus, or vascular disorders, large volumes of dex-
tran-based drugs should be administered with particular 
caution.

Particle surface charge, indicated by zeta potential, 
has a strong influence on their stability in biologic fluids. 
Nanoparticles with a zeta potential above ( ± ) 30  mV are 
usually stable in suspension, as the surface charge pre-
vents their aggregation. Surface charge additionally influ-
ences the biologic effects: in vivo studies have shown that 
cationic liposomes can cause dose-dependent toxicity 
and pulmonary inflammation (149). Size is another of the 
critical factors that affect the behaviour of nanoparticles 
(150). An inherent difficulty related to its standardized 
characterization is that nanoparticle size can dramati-
cally vary between different dispersion media, depend-
ing on their ionic strength and protein content. Generally, 
10–100  nm particle size is considered optimal for drug 
delivery; the smaller size can cause undesirable effects 
such as passing through the blood-brain barrier, and the 
particles with diameter  < 5  nm are renally cleared which 
dramatically reduces their circulation time. In contrast, 
for delivery of drugs or imaging agents to atherosclerotic 
plaques, the nanoparticle diameter should not exceed 100 
nm, as larger nanoparticles do not penetrate the vessel 
wall readily. Due to the small sizes of nanoparticles, their 
surface area is large. This provides various possibilities 
of surface modifications in order to stabilize and prevent 
aggregation of nanoparticles, and to allow conjugation 
of ligands or drugs. However, functionalization of the 
nanoparticles with ligands or antibodies can additionally 
contribute to their immunogenicity. Moreover, stability of 
surface coatings within biological environment and the 
possible side effects of degradation products must be con-
sidered. Nanoparticle agglomeration, which occurs due to 
their large surface area-to-volume ratio, is a factor that may 
affect their toxicity (151). Agglomeration is influenced by 
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the particle composition, size and zeta potential, but also 
extrinsic factors, e.g., temperature, as well as pH, osmotic 
strength and the presence of serum in the dispersion 
media. For clinical applications, nanoparticle agglomera-
tion may be a key factor limiting their use in patients, as 
it affects the physicochemical properties, bioavailabil-
ity, and thus efficacy. As aggregated nanoparticles are no 
longer nano-sized, they undergo a rapid recognition by 
reticuloendothelial system (RES) and are cleared by the 
liver or spleen. Moreover, their presence in circulation may 
cause serious undesirable side-effects, such as clogging 
blood or lymphatic vessels (152). Prevention of agglomera-
tion is therefore required for designing a stable, clinically 
safe nanosystem. In this respect, PEGylation of nanoparti-
cles is considered a good solution to reduce their agglom-
eration and toxicity, and to increase their circulation time. 
By creating a hydrophilic layer around the nanoparticles, 
PEGylation provides a strong steric barrier to opsonin 
adsorption (153), therefore preventing nanoparticle recog-
nition by the RES and increasing their circulation half-life.

The detailed and standardized characterization of the 
above-mentioned physico-chemical properties in physi-
ologic fluids is the key issue to consider before any given 
nanosystem can enter the preclinical in vitro and in vivo 
testing. As different techniques for nanoparticle characteri-
zation are available (e.g., transmission electron microscopy, 
Fourier transform infrared spectroscopy, dynamic light scat-
tering), each of them featuring its own advantages and limi-
tations, optimally the characterization data obtained with 
several different measurement methods should be routinely 
compared to ensure reliable results. Detailed characteriza-
tion can facilitate the prediction of nanoparticle effectivity 
and toxicity in physiologic conditions and contribute to an 
improved design of stable, non-immunogenic constructs.

Nanoparticle toxicity

Characterization of the biological responses elicited by 
the nanosystems is critical for their future clinical applica-
tions. Although the concept of nanomedicine encompasses 
a localized delivery of nanosystems to target organs or 
tissues, their extended circulation time, as well as multiple 
degradation products, may result in cyto- and genotoxicity 
(154), as well as immunogenicity (155). Thus far, however, 
the basic cause-effect relationships are either not clearly 
demonstrated, or remain largely unexplored (156). Hence, 
detailed studies are urgently needed to identify various 
nanoparticle characteristics that can predict their toxicity. 
Due to this fact, nanotoxicology has emerged as an impor-
tant area in the field of nanomedicine (152).

As stated above, physicochemical properties that may 
contribute to toxic effects of nanomaterials include chemi-
cal composition, charge, agglomeration state, particle size 
and surface properties (55). Among the currently investi-
gated nanomaterials, the best safety profile i.e., the lowest 
toxicity was reported for PLGA, which thus has the best 
potential to be used in clinical applications. In the case of 
liposomes, the features that can predict their systemic toxic-
ity are mainly related to their lipid composition and charge. 
Those characteristics should thus be considered when 
designing liposome-based drug-delivery systems in order 
to minimize the potential side effects (149, 157). Silica and 
titanium dioxide nanoparticles were reported to cross pla-
centa barrier in mice and cause neurotoxicity in fetus, but 
these effects are abolished upon surface modification with 
carboxyl and amine groups (158). Among the metal oxide 
nanoparticles, iron oxide nanoparticles were reported to 
be non-cytotoxic for endothelial cells in vitro at concen-
trations below 0.1 mg/mL (159). Nonetheless, upon intra-
venous administration, their accumulation in liver and/or 
target tissue may potentially cause iron overload. Increased 
amounts of free iron can affect iron homeostasis and induce 
oxidative stress, leading to DNA damage and/or inflam-
mation (142). However, the recent clinical study by Sadat 
et al. (122) provided evidence that USPIO nanoparticles are 
cleared out of the atherosclerotic plaques within 6 months 
post-application, and no adverse effects following multiple 
USPIO infusions were observed, confirming that these parti-
cles are clinically safe and well tolerated (138).

Other considerations related to nanosystem toxicity 
include their pyrogenicity and endotoxin contamination. 
Depending on the chemical/biological components and 
the production process, the final product may contain 
bacterial endotoxins (160), which can cause inflammatory 
response upon in vivo application, leading to the organ 
damage. The FDA-recommended high-sensitivity bacterial 
endotoxin test (limulus amoebocyte lysate assay) is com-
monly used in preclinical pharmaceutical development, 
but most nanoparticles interfere with the assay (160, 161). 
Alternate nanoparticle-compliant pyrogenicity tests are 
therefore urgently needed to assure the sterility of nano-
particles produced for clinical use (160).

In general, the toxicity of any nanosystem should first 
be evaluated in vitro on cultured cells, under conditions 
that resemble or mimic the physiological state in order to 
produce relabile data that predict in vivo responses (162). 
Following these extensive initial tests to assess the effect 
of nanoparticles on the components of blood, the first-
contact cells (e.g., endothelial cells in the case of intra-
venous application) and the target cells, the regulatory 
toxicity studies in animals, usually rats and mice, should 
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be performed. Due to their size, nanoparticles typically 
remain in the circulation for considerable periods of time, 
and their in vivo behaviour and interactions with cellu-
lar and extracellular substrates may induce undesired 
effects, including hemolytic reactions, platelet and com-
plement activation, reactive oxygen species production 
and genotoxicity. To assess acute single/repeated dose 
toxic effects and estimate maximum tolerated dose of 
nanosystems in vivo, animals should be monitored over 
14 days for body weight, organ weight indices, as well as 
behavioural, biochemical and histopathological changes. 
Longer time span is necessary to evaluate nanoparticle-
mediated immunotoxicity and chronic toxicity. Moreover, 
the determination of pharmacokinetics, biodistribution, 
as well as the clearance rate and routes of degradation 
products must be performed (163), which is usually done 
by the detection of radiolabeled constituents in animal 
tissues harvested at different time points. In case of 
complex multi-component nanosystems, the expense and 
the efforts required for these investigations are immense.

Characterization of nanoparticle-based agents in an 
animal system is an essential part of assessing both nano-
toxicology and in vivo efficacy, and a vital requirement 
to fulfill before any nanosystem is approved for clinical 
use by the regulatory bodies. However, the number of dif-
ficulties associated with these safety assessment studies 
is enormous, as analyses of all individual constituents of 
a complex multicomponent nanoparticle are required. 
Nanotoxicologic characterization is thus an important 
area that must undergo both extensive development and 
prompt standardization to ensure nanosystems approval 
for use in humans (156, 163).

Scale-up and GMP production

Another major hurdle to overcome in the process of nano-
system approval for clinical use is the GMP-compliant 
production (164). Additionally, the research and develop-
ment methods often involve a low volume production and, 
in case of some manufacturing technologies, scaling up 
the process may pose serious difficulties. Apart from this, 
the costs of synthesis must be considered, as well as the 
batch-to-batch reproducibility (143). The latter issue is a 
serious problem, and may lead to devastating clinical con-
sequences as recently reported for ferumoxytol (Rienso), 
the whole batch of which had to be withdrawn from the 
Swiss market due to one case of death and several cases of 
drug-hypersensitivity. Therefore, the extensive batch char-
acterization and safety assessments are required, as well 
as the chemical engineering and pharmaceutical efforts, 

to provide a platform for a large-scale production of high-
quality therapeutic nanosystems.

Administration route

Lack of effective delivery methods constitutes one of the 
major obstacles hindering the development and clinical 
application of therapeutic nanosystems (165). In terms 
of patients’ acceptance, the best delivery route is usually 
represented by oral administration, however, few vasculo-
protective nanoparticle formulations are thus far available 
in this form [e.g., PLGA-curcumin (166, 167), heparin-
loaded nanoparticles (168, 169)]. Parenteral administra-
tion evades the problems related to gastrointestinal route, 
i.e., the poor absorption, gastrointestinal intolerance and/
or non-compliance associated with oral preparations. 
However, parenteral administration of nanodrugs com-
monly tested in animal studies is suboptimal, as it neces-
sitates a careful patient monitoring and can be expected 
to have a very low acceptance in patients. Joint efforts of 
bioengineers, toxicologists, clinicians and pharmacolo-
gists will be necessary to design and synthesize targeted 
drug-delivery systems which will combine an improved 
pharmacokinetics and biodistribution of the therapeutics 
with the patient-accepted formulation.

Regulatory issues

During the approval process of any novel drugs, the can-
didates are closely scrutinized with regard to their safety 
and efficacy in humans. Standard drugs are usually com-
posed of a single active agent combined with inactive 
formulation aids. As the nanodrugs often represent multi-
component formulations, new considerations arise con-
cerning the regulated drug development and testing (143, 
163). Thus far, due to the lack of clear guidelines and regu-
lations applicable to nanomedicines, the responsible reg-
ulatory agencies examine each nanoparticle-based drug 
on a product-by-product basis. The in vivo behaviour of 
the multi-component nanoconstructs can, however, differ 
from the activities enticed by single-component system. 
Precise new guidelines for nanoparticle characterization 
are necessary, as well as uniform standardized methods 
for testing the toxicity and efficacy of nanosystems in pre-
clinical animal models, in order to provide a transparent 
regulatory frame for the pharmaceutical industry.

Taken together, whereas the implementation of novel 
nanoparticle-based ex vivo diagnostic assays for cardio-
vascular biomarkers analysis can only be limited by the 
complexity of production or the high costs, much more 
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serious obstacles hinder the clinical application of nano-
particles for cardiovascular imaging or drug delivery 
(Figure 3). As shown by the promising results of the pilot 
clinical studies, imaging of atherosclerosis using USPIO-
enhanced MRI harbours tremendous potential to monitor 
the disease progression and to influence prognosis, both in 
asymptomatic population, as well as in subjects at risk of 
future or recurrent cardiovascular events. Imaging nano-
systems composed of e.g., approved nanoparticle-based 
contrast agents and a targeting moiety have a good chance 
to pass the in vivo efficacy and toxicity tests favourably and 
obtain the approval for clinical use. However, even then 
substantial clinical research will be necessary to verify 
the clinical utility and identify the category of patients in 
whom this type of evaluation will translate into the biggest 
clinical benefits. Although routine bedside application of 
nanoparticle-based cardiovascular drug-delivery systems 
still belongs to a distant future, interdisciplinary efforts 
and collaborative research programs move cardiovascular 
nanomedicine a step closer to reality.

From bench to bedside: conclusions
Despite multiple technical and regulatory constraints 
that currently hinder the widespread clinical application, 
the potential clinical impact of nanotechnology in terms 

of managing strategies to ultimately reduce the occur-
rence of cardiovascular events is enormous. The trans-
lation of basic research studies into the clinical trials 
represents one of the biggest challenges in this field. 
Apart from safety and efficacy issues, legal and finan-
cial aspects must be considered to ensure a rapid and 
secure implementation of the new techniques in clini-
cal practice. Moreover, the acceptance of the industry is 
required in order to establish GMP-compliant production 
and marketing. Extensive efforts in the field of cardio-
vascular nanomedicine together with promising results 
of animal studies and early clinical trials rise hope that, 
before long, safe nanosystems integrating a theranostic 
component and a targeting moiety will be approved for 
the diagnosis and therapy of cardiovascular diseases. As 
the clinical experience remains limited, careful evalua-
tion of nanosystems’ safety, as well as the validation of 
their diagnostic and prognostic value in clinical trials are 
urgently needed.
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