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Cardiovascular therapy through nanotechnology -
how far are we still from bedside?

Abstract: Recent years brought about a widespread inter-
est in the potential applications of nanotechnology for the
diagnostics and the therapy of human diseases. With its
promise of disease-targeted, patient-tailored treatment
and reduced side effects, nanomedicine brings hope for
millions of patients suffering of non-communicable dis-
eases such as cancer or cardiovascular disorders. However,
the emergence of the complex, multicomponent products
based on new technologies poses multiple challenges to
successful approval in clinical practice. Regulatory and
development considerations, including properties of the
components, reproducible manufacturing and appro-
priate characterization methods, as well as nanodrugs’
safety and efficacy are critical for rapid marketing of the
new products. This review discusses the recent advances
in cardiovascular applications of nanotechnologies and
highlights the challenges that must be overcome in order
to fill the gap existing between the promising bench trials
and the successful bedside applications.
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Introduction

Cardiovascular diseases (CVD) account for almost 50%
of all deaths in Europe and around 30% of all deaths
worldwide (1). According to the Global Burden of Disease
Study 2010, when combining years of life lost and years

lived with disability, coronary heart disease and stroke
rank first and third, respectively (2). Although the clini-
cal management of CVD has improved in Western Europe
leading to about 20% decrease in age-standardized death
rates for CVD in the last two decades (1), the number of
CV deaths is predicted to increase from 17.1 million world-
wide in 2004 to 23.6 million in 2030 due to the increasing
impact of obesity and metabolic syndrome. In this paper,
we review the potential applications of nanotechnologies
in cardiovascular medicine, the current stand of clinical
studies and pilot trials, and the obstacles to overcome
before the nanomedical approaches can be safely intro-
duced to the clinical practice.

Potential applications of nanotech-
nologies in cardiovascular medicine

Nanomedicine offers a unique platform for novel
approaches to the diagnosis and therapy of cardiovas-
cular diseases. The possible applications range from
plaque imaging and thrombus detection to the tar-
geted drug-delivery, stent endothelialization and blood
vessel regeneration. This subchapter summarizes recent
advances in the preclinical experimental efforts to
implement nanomedical approaches to cardiovascular
disorders.

Nanosystems for detection and characteriza-
tion of cardiovascular disorders

Imaging modalities and nanoprobes

The molecular imaging techniques routinely used in
cardiovascular medicine are constantly being optimized
to better detect atherosclerotic plaques, but none of the
modalities is without limitations (3). Whereas magnetic
resonance imaging (MRI), a noninvasive and nonioniz-
ing imaging technique has an excellent resolution but
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low sensitivity, positron emission tomography (PET)
has the highest sensitivity of all imaging modalities and
an unlimited penetration depth. These advantages are
counterbalanced by its low resolution, very high cost,
and radioactivity. Optical fluorescence imaging, suit-
able for e.g., imaging plaque endothelium, can be dif-
ficult to quantify in tissues more than a few millimeters
in depth. Thus far, the preclinical studies performed
in order to investigate the diagnostic and therapeutic
benefit of nanoparticles in atherosclerosis mostly uti-
lized the MRI contrast agents, which consist of sus-
pended colloids of nanoparticles and, when injected
during imaging, reduce the T, signals of absorbing
tissues. In particular, either paramagnetic gadolinium
chelates or iron oxide-based contrast agents, such as
superparamagnetic iron oxide (SPIO, particle size of
120-180 nm) and ultrasmall superparamagnetic iron
oxide (USPIO, 60 nm particle size) have been used.
Recently, multi-modal contrast agents or imaging
probes detectable with multiple molecular imaging
techniques have emerged, which promise a better sensi-
tivity and accuracy of atherosclerotic plaque detection
and classification (4, 5).

Detection of atherosclerotic lesions

Early identification and aggressive pharmaceutical and/
or interventional treatment of atherosclerotic plaques
can help to reduce the incidence of acute ischemic
events. Conjugating nanoparticles to specific ligands
that target endothelial cell adhesion molecules [vascu-
lar cell adhesion molecule-1 (VCAM)-1 (6, 7), as well as
E- and P-selectins (8, 9)] has proven a successful experi-
mental approach to noninvasive in vivo imaging of the
early stages of atherosclerosis. Imaging nanoparticles
have also been implemented for vulnerable plaque iden-
tification based on their ability to detect intraplaque
macrophages, lipids, angiogenesis, apoptosis, or throm-
botic deposits [reviewed in detail in (10)]. Below, several
approaches to atherosclerotic plaque characterization are
briefly outlined. Macrophage burden in atherosclerotic
plaques in vivo can be estimated using unlabeled super-
paramagnetic iron oxide nanoparticle (SPION), as shown
in hyperlipidemic rabbits by differential phase optical
coherence tomography (OCT) (11) and MRI (12, 13) as
well as in atherosclerotic plaques of ApoE-deficient mice
(14). However, as the uptake of SPION is not specific to
the plaque macrophages (15), targeting of macrophages
[e.g., with homing pepride LyP-1 (16, 17)] and macrophage
receptors [e.g., CD36-targeting gadolinium-containing
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liposomes (18, 19) and scavenger receptor-A-targeting
iron oxide nanoparticles (20)] is helpful to enhance the
labeling efficiency of the particles in vivo. Lipoproteins,
natural nanoparticles of 5-20 nm diameter, represent
good candidates for the transfer of imaging nanoparti-
cles into the lesions. High-density lipoproteins (HDL)-
like nanoparticles enriched with gadolinium have been
reported to specifically image plaques in vivo (21, 22).
Detection of vulnerable plaques in mice was also facili-
tated by anti-mouse OxLDL polyclonal antibodies conju-
gated to USPIO (23).

Imaging apoptotic cells is another possible
approach to identifying plaques with vulnerable mor-
phology, as shown by studies utilizing phosphatidylser-
ine-targeting peptides linked to USPIO (24), as well as
annexin A5-labeled SPION (25) and gadolinium nano-
particles (26). Neoangiogenesis, a common feature of
advanced vulnerable plaques can also constitute an
MRI detection target for plaque characterization, as
shown in atherosclerotic rabbits (27) administered
gadolinium-containing perfluorocarbon nanoparticles
targeted to o B-integrin, one of the key mediators of
neovessel formation (28, 29).

Thrombus formation that occurs on the luminal
surface of atherosclerotic plaques presents yet another
target for detection by MRI. For this purpose, anti-fibrin
antibodies conjugated to gadolinium-diethylene triamine
pentaacetic acid (DTPA)-perfluorocarbon nanoparticles
were successfully used (30), as well as the fibrin-targeting
CREKA peptide-bound lipopeptide nanoparticles (31), or
a commercially available gadolinium-linked fibrin-bind-
ing peptide EP-2104R (32). These studies indicate that
employing targeted nanoparticles to refine the available
non-invasive techniques should not only advance the
detection of vulnerable plaques but also enable monitor-
ing the disease progression and therefore improve the risk
stratification.

Detection of high-risk aneurysms

Abdominal aortic aneurysms (AAA) occur in 5% to 9%
of the population over the age of 65 years and are the
tenth leading cause of death in Western countries (33).
Several recent reports show the feasibility of nanotech-
nological approach to in vivo aneurysm detection and
characterization using MRI and near-infrared fluores-
cence imaging (NIRF). As an example, SPION-enhanced
MRI was applied to detect early AAA in ApoE-defi-
cient mice (34). SPION uptake and abdominal aortic
diameter were found to correspond to the numbers
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of iron-laden macrophages in the aneurysm. Another
approach was tested by Klink et al. (35), who showed
that intravenous administration of gadolinium-based
fluorescent micellar nanoparticles functionalized with
a collagen-binding protein resulted in a significantly
higher magnetic resonance signal enhancement in the
aneurysmal wall compared with nonspecific micelles.
High-resolution MRI allowed longitudinal monitoring
of the AAA progression and the increase of the aortic
diameter, enabling the discrimination between stable
and rupture-prone aneurysms. Nearly in parallel, a
study by Kitagawa et al. evaluated NIRF imaging of
AAA using Arg-Gly-Asp (RGD)-conjugated human ferri-
tin nanoparticles labeled with Cy5.5. In a mouse model
of AAA, a significantly higher signal in AAA relative to
non-diseased regions was obtained using RGD-ferritin
nanoparticles than with unconjugated nanoparticles
(36). These studies suggest that targeting nanoparticles
allow more comprehensive characterization and prog-
nosis of aneurysmal disease.

Imaging inflammation after cerebral or cardiac ischemia

Vascular damage and inflammation critically affect
patients’ outcomes after stroke. Nanoparticle-based con-
trast agents can be applied to characterize the extent of
inflammation, as demonstrated by several studies in
an experimental murine model of cerebral ischemia. In
those early studies (2001-2004) by Rausch et al. (37, 38),
Kleinschnitz et al. (39), and Schroeter et al. (40), SPION
have been utilized for MR imaging of the brain inflam-
mation after stroke and showed macrophage-specific
accumulation in the infarcted brain region. The ability
of USPIO-enhanced MRI to detect inflammatory response
surrounding the ischemic regions has subsequently been
confirmed by Wiart et al. (41). Most recently, Frechou
et al. (42) applied USPIO conjugated to VCAM-I-targeting
peptide in order to detect cerebral expression of VCAM-1
after experimental stroke in mice. The study showed that
such targeted MRI contrast agent can be useful for char-
acterizing the vascular damage associated with cerebral
ischemia.

Following myocardial infarction (MI), uncontrolled
inflammation and adverse cardiac remodeling can ulti-
mately result in heart failure. Thus far, very small iron
oxide nanoparticles (43) and micrometer-sized iron oxide
particles (44) have been tested to assess inflammation
in murine models of MI showing their ability to charac-
terize the course of pathologic process after myocardial
ischemia.
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Nanosystems for diagnosis of cardiovascular
disorders

Nanotechnology-based signal amplification for biosens-
ing has been a rapidly developing field. Several categories
of nanomaterials such as gold nanoparticles, magnetic
oxide nanoparticles, or quantum dots have multiple
potential applications in this important aspect of car-
diovascular diagnostics. This subchapter focuses on the
application of nanosystems for the estimation of disease
biomarkers.

Estimating the burden of thrombosis

Intravascular thrombosis, the formation of life-threat-
ening obstructive blood clots within the vessels, under-
lies a number of cardiovascular disorders such as heart
attack, ischemic stroke, pulmonary embolism, and deep
vein thrombosis (45, 46). Within the coagulation cascade,
thrombin is the most important serine protease (47), but
the diagnostic tests are lacking that directly reflect its
activity in clinical settings. Recently, Lin et al. described
the development of novel urinary nanomarker assay based
on thrombin-sensitive iron oxide nanoparticles that allows
detection of thrombin activity in vivo (48). The nanomark-
ers were produced by coupling iron oxide nanoworms with
thrombin-cleavable peptides linked to a synthetic reporter
system, composed of protease-resistant peptide, gluta-
mate-fibrinopeptide B, which was modified at the termini
with ligands detectable by an immunoassay (fluorescein,
or Alexa488, and biotin). In a mouse model of pulmonary
embolism induced by thromboplastin (49), the authors
showed that the circulating nanomarkers could access
the local sites of thrombosis and release the reporters,
the urinary clearance of which was detectable by ELISA
with high sensitivity and significantly correlated with the
disease burden as estimated by the histochemically ana-
lyzed amount of fibrin deposited in the lungs (48).

The imaging approach to thrombosis detection using
microCT has been recently tested in a mouse model of
carotid thrombosis using glycol chitosan (GC)-gold nano-
particles. The study showed that these nanoparticles
allowed both the detection of primary and recurrent
thrombi, and the monitoring the therapeutic efficacy of
thrombolysis with tissue plasminogen activator (tPA).
Due to a long circulating half-life, GC-gold nanoparticles
remained available for entrapment into fibrin matrix for
up to 3 weeks, allowing repetition or ongoing monitoring
of thrombogenesis and thrombolysis (50). Given the need
of rapid and reliable in vivo assessment of the thrombotic
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risk in patients with cardiovascular diseases in order to
improve the diagnosis, risk stratification, and manage-
ment of thrombotic syndromes, those systems represent a
very attractive platform for use in clinical practice.

Diagnosis of acute coronary syndromes

Molecular biomarkers are used as objective indicators of
myocardial injury. About 30% of patients with non-ST-
elevation acute coronary syndrome present without evi-
dence of myocardial necrosis using available assays for
cardiac troponin, the biomarker of choice for the sero-
logic diagnosis of acute coronary syndromes. More sen-
sitive assays for troponin are urgently needed to enable
an earlier detection of MI and identify patients who are
at risk of short-term major adverse cardiac events. Nano-
technology offers several solutions to the drawbacks of
the existing cardiac biomarker assays. One of them was
recently reported by Cowles and Zhu (51), who applied the
dual signal amplification method for the measurement of
cardiac troponin I (cTnl) in human serum. The technique
consists of sandwich-ELISA, in which detection antibod-
ies are linked by biotin-avidin complex to semiconductor
nanoparticle labels (quantum dots) of zinc sulfide. By low-
ering pH, the release of zinc ions is induced (first step of
signal amplification), which act as co-factors for carbonic
anhydrase and, at normalized pH, lead to a concentration-
dependent activation of this enzyme. Upon addition of
substrate, fluorescein diacetate, enzyme activity produces
fluorescent product (second step of signal amplification)
the concentration of which is measured spectrophotomet-
rically. Using this technique, cTnl assay was developed
and tested on human serum samples, showing superior
detection resolution and simple handling (51).

In a study by Ling et al. (52), magnetic resonance
relaxometry was used to noninvasively monitor changes
in the relaxation properties of antibody-coated magnetic
particles when they aggregate upon exposure to a bio-
marker of interest. As the single-point measurements
often do not reflect the directions of the underlying path-
ologic process, thus hindering diagnostic and prognostic
decisions, the authors of this innovative method applied
implantable devices containing sensors of three clinically
relevant cardiac biomarkers: cTnl, creatinine kinase and
myoglobin, to continuously monitor biomarker levels
for up to 72 h, with a detection level as low as the pg/mL
range. In a mouse model of MI, the detected biomarker
levels and changes over time differed between experi-
mental and control groups and correlated with infarct
size.
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These studies underscore the enormous potential of
nanotechnologies for improved biomarker detection and
thus patients’ diagnosis.

Nanosystems for monitoring the treatment
efficacy

Nanoparticle-based imaging may serve not only as a bio-
marker to identify vulnerable lesions, angiogenesis, or
ischemic regions, but can also provide a tool to monitor
the therapeutic effectiveness of medication. In a study
by Morishige et al. (13), SPION-enhanced MRI was used
to monitor the effects of rosuvastatin in hypercholester-
olemic rabbits. A recent study by Sigovan et al., applied
a similar approach using USPIO to noninvasively
monitor the therapeutic effect of irbesartan therapy on
macrophage burden in atherosclerotic plaques of ApoE-
deficient mice (14). Serial USPIO-enhanced MRI scans
were furthermore utilized to monitor the therapeutic
effects of an anti-inflammatory drug minocycline in
a mouse model of stroke (53). The authors concluded
that although there are still several limitations to over-
come before the application of this technique in clini-
cal practice, USPIO-enhanced MRI might provide useful
surrogate markers for detecting a therapeutic effect in
pre-clinical studies.

Another approach to the long-term monitoring of vas-
cular system is represented by encapsulation of SPION into
red blood cells in order to ensure their increased blood cir-
culation time. As shown in a paper by Rahmer et al. (54),
SPION-loaded RBCs can be imaged in the blood pool of
mice several hours after injection, and their presence in
circulation for up to 24 h was confirmed by spectroscopic
quantification of the iron concentration in mouse blood
samples collected after injection of SPION-loaded RBCs.
Using this novel approach, long-term monitoring in car-
diovascular diseases (e.g., monitoring the bleeding after
stroke, imaging vessel architecture during interventional
procedures, or controlling the treatment efficacy) can be
envisioned without the necessity of the repeated adminis-
tration of contrast agents.

Nanosystems for vascular treatment
and regeneration

Although pharmacologic agents for the treatment of car-
diovascular disorders are available, the conventional
therapy using systemic delivery methods has several
serious drawbacks, such as considerable side-effects or
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low efficacy at tolerated doses. To overcome the problems
associated with traditional therapeutic approaches, the
targeted nanoparticles can be used as transport vehicles
that allow local targeted drug delivery to disease-specific
cells or tissues and thus concentrate the therapeutic agent
at the site of action. In this manner, drug cytotoxicity is
expected to be reduced by (a) targeted tissue accumula-
tion and (b) reduction of the required dosis. Addition-
ally, as the nanocarrier systems are larger than 5 nm in
diameter (ca. 10-200 nm) they evade renal clearance thus
increasing circulation half-life of the transported drugs.

Nano-sized drug carriers

Among the materials most commonly used for cardio-
vascular drug-delivery systems are the nanoparticles or
nanoshells made of natural or synthetic polymers, such as
liposomes and lipidots, dextrans, poly(lactic-co-glycolic
acid) (PLGA), polyaccrylates, as well as metal or metal oxide
nanoparticles (e.g., gold, silver, SPION), and quantum
dots. Several of the commonly tested drug-carrier systems
[reviewed in detail in (55)] are briefly outlined below.
Liposomes are composed of a lipid bilayer consisting
of amphipathic phospholipids (primarily phosphatidyl-
choline) that enclose an interior aqueous space (56). The
head groups of phospholipids are usually functionalized
with maleimide, which allows conjugation to antibodies
or other ligands, and/or with polymerizable moieties to
improve stability [e.g., polyethylene glycol (PEG)-ylated
stealth liposomes]. Among the drug-delivery systems,
liposomes have relatively low toxicity and a good thera-
peutic index (56, 57). A subgroup of those compounds, cati-
onic liposomes, originally used as transfection reagents for
gene or siRNA delivery, can be easily functionalized with
antibodies or ligands. Among their advantages as a drug-
delivery platform are the ease of preparation, commercial
availability and overall low immunogenicity (58), which is
expected to enable safe and repeated administration.
PLGA, poly(lactic-co-glycolic acid), is the most
common biodegradable polymer Federal Drug Agency
(FDA)-approved for use in humans. As PLGA degradation
products (lactic acid and glycolic acid) are easily metabo-
lized and easily eliminated from the body, the systemic
toxicity associated with PLGA application is low (59).
Dextrans are stable glucose polymers that contain
functional groups for derivatization (60). Apart from sta-
bility, several other advantages such as water solubility,
and drug protection from degradation which allows sus-
tained release of active compounds, make them a suitable
platform for delivering pharmaceutical agents (61).
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Gold nanoparticles consisting of a dielectric core of
silica coated with a metallic layer of gold, are available
in various sizes and forms (62) and can be used for e.g.,
as biosensors, or photoactive agents for optical imaging,
for photothermal ablation therapy, or as drug carri-
ers. SPIONs consist of iron oxide core, often coated with
organic materials such as fatty acids, polysaccharides,
or polymers (63, 64). The magnetic properties of SPIONs
allow the remote control of their accumulation by means
of external magnetic field, as well as their application for
hyperthermia-therapy. Conjugation SPIONs with drugs,
in combination with an external magnetic field to target
the nanoparticles (so called “magnetic drug targeting”,
Figure 1), has additionally emerged as a promising strat-
egy of drug delivery, which results in increased drug pay-
loads in the target tissue, at the same time reducing their
systemic dose and toxicity as demonstrated by the in vivo
studies from our group (65-67).

Cell-based therapies

Due to the safety concerns associated with the use of
cell-labeling strategies, development of low side-effect
agents for tracking of the stem cells has been challeng-
ing (69). Because of this, it is difficult to evidence the fate
of those cells in the human studies, despite the promis-
ing results with regard to their regenerative capacities in
cardiovascular diseases. In one of the pioneering works,
Himes et al. (70) used embryonic stem cells loaded with
SPION for long-term monitoring of their fate following
intramyocardial injection in a mouse model of MI. The
subsequent studies by Sadek et al. (71) utilized the USPIO-
based contrast agent ferumoxide (Endorem/Feridex IV)
in combination with transfection agent protamine sulfate
for labeling and tracking of bone marrow-derived human
mononuclear cells and C2C12 skeletal myoblasts within
rat myocardium. In the settings of MI, SPION-labeling of
mesenchymal stem cells (MSCs) was furthermore utilized
for cell tracking and the simultaneous evaluation of their
long-term therapeutic potential i.e., left ventricular ejec-
tion fraction assessment (72). SPION-enhanced MRI has
moreover been tested for tracking endothelial progenitor
cells in a rat model of MI (73).

To demonstrate the potential of nano-labels for stem
cell tracking during ischemic brain injury, ferumoxide-
protamine sulfate label has been used for MSC labeling
in the experimental cerebral infarction (74). Ferumoxide
has also been tested as an MRI label for human neural
stem cells (75). Other studies utilized microgel iron
oxide nanoparticles (76), and SPION-loaded cationic
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(A) Principle of the MDT method; (B) Superparamagnetic iron oxide nanoparticle accumulation in a bovine artery using magnetic field: Photo
shows the ex vivo bovine artery model (left panel), experimental setup is schematically presented in the right panel; (C) Histochemical
analysis of iron accumulation (Prussian blue staining) in the aortic segments relative to the magnet positioning (68).

nanovessicles (77) in different models of murine stroke
for labeling human and rat MSCs, respectively. Wang
et al. (78) developed a novel fluorescent-magnetite-
nanocluster with high MRI sensitivity and high label-
ing efficiency for MSCs, which allowed tracking their
migration and accumulation in the ischemic region in a
mouse stroke model. Similar results were obtained using
fluorescent mesoporous silica-coated SPION for labeling
neural progenitor cell (79). Both intravenous administra-
tion and implantation of such labeled cells in the mouse
brain hemisphere contralateral to the ischemic injury
region allowed tracking their migration to the lesion site
using MRI. Taken together, these studies indicate that
SPIONs represent a highly effective platform for labeling

and MRI tracking of therapeutic stem cells in the context
of CVD.

In amost recent study by Riegler et al. (80), MSC loading
with SPION was used in order to magnetically target the
cells to the sites of vascular injury induced by balloon angi-
oplasty in rabbits. This study demonstrated the feasibility
of magnetic cell delivery approach for localized accumula-
tion of therapeutic cells in the injured arterial regions.

Stroke treatment

After cerebral ischemia and reperfusion, the oxida-
tive stress and inflammation may contribute to the
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post-ischemic brain injury, affecting patients’ outcomes.
Nanoparticles can be used for targeted delivery of large
payloads of antioxidant enzymes or reactive oxygen
species scavengers into the affected tissue. This approach
has been tested in mouse ischemic brain using platinum
nanoparticles (Pt-NPs), which themselves are potent
scavengers of superoxide anion (81, 82). Compared with
vehicle, treatment with Pt-NPs significantly improved
the motor function and greatly reduced the superoxide
production and the infarct volume, indicating that the
antioxidant properties of Pt-NPs can contribute to neuro-
protection following the ischemic stroke (81, 82).

In their recent paper, Yun et al. (83) generated various
nanoparticles (liposomes, polybutylcyanoacrylate
(PBCA), or PLGA) that contained active superoxide dis-
mutase (SOD), and were tagged with antibodies directed
against the N-methyl-D-aspartate (NMDA) receptor 1. In
a mouse model of cerebral ischemia, the nanoparticles
containing SOD showed protection against ischemia and
reperfusion injury when applied after stroke with a 50%—
60% reduction in infarct volume, reduced inflammatory
markers, and improved behavior in vivo.

Another treatment approach utilizing PEGylated-lipid
nanoparticles that go across the blood-brain barrier was
reported by Lu et al. (84). The nanoparticles encapsulat-
ing 3-n-butylphthalide were conjugated to Fas ligand anti-
body that selectively present on brain ischemic region.
Those nanoparticles effectively accumulated in ischae-
mic region of mouse brain, and resulted in significant
improvements in brain injury and in neurological deficit
after ischaemia, with the significantly reduced dosages vs.
free 3-n-butylphthalide. These studies show that targeted
nanoparticles containing protective factors may be viable
candidates for the treatment of stroke-induced ischemic
brain injury.

Thrombolysis

Rapid recanalization of an occluded artery is essential for
better outcomes in acute myocardial infarction or stroke.
The current fibrinolytic therapy can be rapidly adminis-
tered, but does not achieve a high reperfusion rate and is
associated with considerable side-effects (85). Addition-
ally, many patients are ineligible for systemic thrombo-
lytic therapy, e.g., due to delayed admission to the hospital
after symptom onset, or because of recent surgery, bleed-
ing, etc. Development of delivery systems for rapid throm-
bolysis, characterized by a strong fibrinolytic effect and
low bleeding risk, is therefore one of the most urgent tasks
in cardiovascular medicine.
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Thrombin represents the most important target of
direct anticoagulants within the coagulation cascade. Two
recent publications from the group of Wickline (86, 87)
investigated the effects of the nanoparticle-bound potent
thrombin inhibitor, d-phenylalanyl-1-prolyl-l-arginyl-
chloromethyl ketone (PPACK) in a mouse model of acute
arterial thrombosis due to the photochemical injury of
the carotid artery. PPACK-perfluorocarbon nanoparticles
outperformed both heparin and uncomplexed PPACK in
inhibiting thrombosis, and formed a local clotting barrier
that continued to manifest clot inhibition even as systemic
effects rapidly diminished (86). Administration of PPACK-
liposomes prior to the injury significantly delayed the time
to arterial occlusion as compared to free PPACK. Systemic
anticoagulant profiles revealed a rapid return to control
levels within 50 min, whereas the antithrombin activity
was maintained at the injury site (87). The establishment
of a potent and long-acting anticoagulant surface over a
newly forming clot with the use of thrombin targeted nan-
oparticles that do not require systemic anticoagulation to
be effective offers an alternative site-targeted approach to
the management of acute thrombosis.

Current thrombolytic therapy by infusion of tPA is
characterized by several drawbacks, including low effi-
cacy combined with a high risk of bleeding complications
(85). Therefore, several innovative strategies aiming at tar-
geted and/or local applications of plasminogen activators
have been designed. The possibility of magnetic-targeting
of tPA for local thrombolysis was investigated by Ma et al.
in a rat embolic model (88). Polyacrylic acid-coated mag-
netite nanoparticles bound to tPA (tPA equivalent of 0.2
mg/kg) were administered intraarterially under guidance
with the external magnet moving back and forth along the
iliac artery. tPA-NPs restored the iliac blood flow within
75 min to 82% of that before the clot lodging, whereas
equivalent amount of free tPA exerted no improvement
on hemodynamics. The authors concluded that magnetic
tPA-NPs allow reproducible and effective target thrombol-
ysis with <20% of the regular dose of free tPA.

Recently, a novel drug delivery nanosystem was
described comprising tPA, basic gelatin and zinc acetate
(89). Within this nanosystem, tPA activity was reduced
in vitro to approximately 50% of free tPA and was fully
recoverable by the application of low frequency ultra-
sound. In a swine acute myocardial infarction model,
plasma tPA activity after intravenous injection of nano-
particles was approximately 25% of free tPA and was
recovered completely by transthoracic ultrasound appli-
cation, with significantly higher tPA activity near the
affected coronary artery than in the femoral artery region.
In comparison to treatment with free tPA (0.447 mg/kg),
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which recanalized the occluded coronary artery in only
1 of 10 swine, nanoparticles containing the same dose of
tPA with ultrasound activation achieved recanalization in
9 of 10 swine within 30 min, suggesting that this nanosys-
tem bears promising potential for improved thrombolysis.

Another novel and extremely promising nanomedi-
cal strategy of targeted tPA delivery to stenotic arteries
employing hemodynamic forces was recently described
by Korin et al. (90). Since occlusions in blood vessels
result in local increases in shear stress leading to platelet
activation and clotting, the authors designed micro-aggre-
gates of PLGA nanoparticles coated with tPA. These micro-
aggregates are not affected by physiologic flow conditions
with shear stress values up to 70 dyn/cm?, but exposed to
abnormally high shear stress in the regions of vascular
occlusion/stenosis, undergo break up followed by local
drug release. As compared with free drug, the shear-acti-
vated tPA-coated nanoparticles induced rapid dissolution
of arterial thrombi induced by the exposure of mouse mes-
enteric arteries to ferric chloride, with complete clearance
of occluding thrombi within 5 min after application (90).
Moreover, upon infusion of lethally large fibrin clots, the
immediate application of the shear-activated tPA-coated
nanoparticles increased survival by 80%. The doses of
shear-activated tPA-nanoparticles required for clot disso-
lution were about 100-times lower than the doses required
for achieving comparable effects with free drug (90). This
strategy, utilizing a universal hemodynamic phenomenon
of shear stress increase upon reduction in vessel diame-
ter should result in a broad applicability for all occlusive
vascular conditions, including e.g., treatment of stenotic
atherosclerotic plaques, pulmonary emboli, and ischemic
stroke.

Myocardial infarction

Regeneration of the infarcted heart is one of the most
important therapeutic goals in cardiovascular medicine. In
search for a suitable nanotechnological platform for regen-
erative and anti-remodeling drug delivery, Paulis et al. (91)
investigated the penetration of different paramagnetic lipid
nanoconstructs (micelles, 15 nm in size, or liposomes, ca.
100 nm in size) in the infarct region. The authors showed
that both in acute and chronic myocardial infarction set-
tings, micelles permeate the entire infarct area, and can
thus represent a good system for the delivery of cardiopro-
tective drugs and for non-invasive monitoring of the infarct
size by MRI (91). Several recent publications have further-
more tested whether nanoparticulate drug- or gene-delivery
is capable of stimulating the regeneration of ischemically
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damaged hearts. Binsalamah et al. (92) utilized chitosan-
alginate nanoparticles loaded with proangiogenic and
cardioprotective placental growth factor (PIGF). The
intramyocardial injection of these constructs provided a
sustained slow-release PIGF therapy, resulting in decreased
scar formation, improved left ventriculat function and
an anti-inflammatory systemic cytokine profile. Similar
approach was tested by Chang et al. (93), who utilized PLGA
nanoparticles conjugated with insulin-like growth factor-1
(IGF-1). Single post-MI intramyocardial injection of these
nanoparticles resulted in prolonged retention of IGF-1 in
the myocardium, which was sufficient to prevent cardio-
myocyte apoptosis, and to reduce infarct size and improve
left ventricular function at 21 days after MI.

Gene therapy represents yet another possibility to
improve patients’ outcomes following MI. Zhang et al. (94)
applied externally controlled magnetic nanobeads con-
jugated to adenoviral vectors-encoded human vascular
endothelial growth factor (VEGF) gene. Following intra-
venous administration, the nanobeads were accumulated
in the myocardial region by external epicardial magnet,
resulting in a good transduction efficiency and a strong
VEGF gene expression in the ischemic zone of the heart.
This led to improved left ventricular function, increased
capillary and arteriolar density and reduced the collagen
deposition in infarcted region, indicating that magnetic
targeting enhances local transduction efficiency, and
supports cardiac repair. Gene silencing was also tested
in a recent study by Liu et al. (95) as a promising tool for
regulating gene expression following MI. Oligo-arginine-
conjugated dendrimer loaded with siRNA against angio-
tensin 2 type 1 receptor (AT1R) prevented the receptor
upregulation in vivo and improved the recovery of cardiac
function after the ischemia-reperfusion myocardial injury.
These studies demonstrate the enormous potential of
nanoparticle-based technology for improved clinical
therapy of MI and ischemic CVD.

Plaque stabilization

Atherosclerotic plaque stabilization is the aim of the
current pharmacologic strategies, including statin
therapy. As the experimental approaches to nanoparticle-
based treatment of different stages of atherosclerosis are
reviewed in detail elsewhere (10), this paragraph will only
briefly list some of the potential targets for lesion stabi-
lization. As an example, interventions with an inhibi-
tory effect on macrophages have thus far been tested in
ApoE-deficient mice utilizing pitavastatin-loaded PLGA
nanoparticles (96). As compared with pitavastatin alone,
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the nanoparticle-mediated delivery of pitavastatin to
circulating inflammatory monocytes prevented plaque
destabilization and rupture by inhibiting their inflamma-
tory activity and recruitment to the lesions. In a study by
McCarthy et al., the administration of magnetofluorescent
nanoparticles with light-activated therapeutic moieties
which allow phototoxic activation (97), allowed an effi-
cient focal ablation of inflammatory macrophages upon
irradiation of the plaques. Such nanoparticles inducing
focal toxicity confined to macrophages, without affecting
endothelial or smooth muscle cells (SMCs), could have a
durable plaque-stabilizing effect.

Another vital target for plaque-stabilizing therapies
is represented by plaque neovascularization, as shown by
the studies of Winter et al. (98) who applied o, 3, integrin-
targeting SPION for site-specific delivery of antiangiogenic
drug fumagillin in a rabbit model of atherosclerosis. These
studies demonstrated superior antiangiogenic activity
and reduced toxicity of o 3,-targeting, fumagillin-carrying
nanoparticles, as compared with systemic drug applica-
tion (98). Targeted nanoparticles for local drug delivery
can thus improve the therapeutic effect of current phar-
macologic compounds for plaque stabilization.

Application of nanoparticles to preventin-stent restenosis

Stent implantation allows recanalization of stenosed
vessels, but is often related with complications, such
as stent thrombosis and restenosis. Stent thrombosis
is induced by the disruption of the endothelial mono-
layer and necessitates lengthy dual-antiplatelet therapy
(DAPT). Stent implantation additionally results in an
excessive SMC proliferation, which in the longer term can
cause restenosis and vessel occlusion (99, 100). To prevent
this process, drug-eluting stent (DES) containing anti-pro-
liferative drugs are used. In clinical trials, DES has been
shown to significantly reduce restenosis as compared to
bare metal stents (101, 102). However, drug-induced inhi-
bition of SMC proliferation also inhibits the re-establish-
ment of a healthy endothelium, thus increasing the risk
of stent-related thrombosis (103-105). Therefore, new
stent systems targeting SMCs without adverse effects on
endothelial cells are urgently needed. Several nanotech-
nological approaches to this issue have been reported,
some of which are discussed below.

Polymer liposome nanoparticles targeted to chondroi-
tin sulfate proteoglycans that encapsulated prednisolone
were tested in a study by Joner et al. in order to prevent
neointimal hyperplasia following bare metal stent implan-
tation in rabbit (106). These nano-constructs specifically
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targeted the sites of stent-induced injury (106), increased
the tissue concentration of prednisolone in stented arter-
ies by 100-fold as compared to contralateral nonstented
arteries, and resulted in significant suppression of in-stent
neointimal growth (106). This indicates that site-specific
targeting of anti-inflammatory drug-loaded nanoparticles
to the stented arteries can constitute a suitable method for
the prevention of in-stent restenosis.

Another approach was tested by Tsukie et al. (107),
who utilized a novel bioabsorbable polymeric nanoparti-
cle-eluting stent (NES) that provides more sustained deliv-
ery of therapeutic agents than the common dip-coated DES
(108). For this purpose, nanoparticles were produced con-
taining pitavastatin. In a pig coronary artery stent model,
the effectivity of in-stent stenosis inhibition by statin-NES
equaled that of polymer-coated sirolimus-eluting stents,
but was not accompanied by delayed endothelialization
as observed in the sirolimus group. These findings indi-
cate that inhibition of in-stent stenosis without delaying
endothelial healing is possible (107).

A promising strategy to increase the rate of stent
endothelialization was reported by Polyak et al. (109). In
this study, endothelial cells expressing luciferase were
preloaded with biodegradable polymeric superparamag-
netic nanoparticles in order to enable their magnetic tar-
geting to the steel surfaces of intraarterial stents. In the
presence of a uniform external magnetic field, magnetic
nanoparticle-loaded bovine aortic endothelial cells were
successfully targeted to stents implanted in rat carotid
arteries. Optical imaging confirmed significantly greater
luciferase expression at the stented arteries treated with
magnetically-labeled endothelial cells compared with
nonmagnetic controls. Nanotechnology thus offers mul-
tiple strategies for improving the safety profiles of stents
following cardiovascular interventions.

Tissue engineering and vessel endothelialization

Functionalized tissue-engineered vascular grafts do not
only possess potential for applications in peripheral and
coronary bypass surgery but are also attractive to the pe-
diatric surgery for congenital heart defects. Cell loading
with magnetic nanoparticles is one of nanotechnolo-
gic strategies that have been often applied to vascular
tissue fabrication. This technique allows the deposition
of loaded fibroblasts, SMCs and endothelial cells on the
luminal side of the tubular scaffolds by means of external
magnetic force as described by Ito, Perea and Gonzalez-
Molina (110-113). Moreover, the magnetic tissue fabrica-
tion (114), was recently tested in vitro for cardiac tissue
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engineering. Using cardiomyocytes labeled with magnetic
nanoparticles, the formation of a ring-shaped tissue that
possessed a multilayered cell structure and contractile
properties was achieved. These results indicate that mag-
netic tissue fabrication is a promising approach both for
vessel and for cardiac tissue engineering.

Clinical applications: state of the art

Comparing with the vast number of bench research
reports focusing on cardiovascular applications of nano-
technologies that have been published in the recent years,
the reported clinical trials are scarce (Table 1). Below,
several early cardiovascular imaging studies using mag-
netic nanoparticles and the few recent pilot trials involv-
ing nanosystems are highlighted.

Pilot studies — cardiovascular imaging

The majority of the clinical trials involving nanoparticles
dates back to the beginning of the previous decade (2001
2004). These studies, most of which originated from
the group of J.H. Gillard, utilized USPIO-based contrast
agents in order to detect and characterize atherosclerotic
plaques, based on the specific incorporation of USPIO by
activated macrophages [reviewed in (136)].

Early clinical studies using ferumoxtran (Sinerem/
Combidex) have shown that USPIO accumulate in ath-
erosclerotic plaques in aorta and pelvic arteries (115), as
well as carotid plaques (116, 117), resulting in areas of
focal signal loss on in vivo MR images that correspond
to accumulation of iron particles in ex vivo specimens.
A study by Kooi et al. (117) performed on 11 symptomatic
patients scheduled for carotid endarterectomy demon-
strated that USPIO accumulated predominantly in mac-
rophages in ruptured and rupture-prone atherosclerotic
lesions, whereas hardly any USPIO were taken up in stable
plaques (117).

A clinical study from the group of ]J.H. Gillard con-
firmed the ability of USPIO-enhanced MRI to identify
plaque inflammation by accumulation of USPIO within
macrophages in stenotic carotid plaques (118). In that
study, areas of signal intensity reduction, corresponding
to USPIO- and macrophage-positive histological sections,
were visualized in 7 of 8 patients receiving ferumoxtran.
These data were subsequently validated on 30 sympto-
matic patients scheduled for carotid endarterectomy,
showing USPIO enhancement in 90% patients with
severe stenosis (119). A more recent study used USPIO
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to compare 10 patients with symptomatic and 10 with
asymptomatic carotid stenosis (137). In symptomatic
patients, significantly more focal areas of signal drop
were observed than in asymptomatic group, indicating
increased inflammatory infiltrates. Interestingly, focal
areas of signal reduction were also detected in some
asymptomatic plaques suggesting that USPIO-enhanced
MRI is capable of identifying inflammation within oth-
erwise morphologically “stable” plaques. Subsequent
USPIO studies, performed in 40 patients with carotid
stenosis (120), confirmed that the patients with asympto-
matic carotid atheroma contralateral to the symptomatic
disease showed more inflammatory activity than the com-
pletely asymptomatic cohort, despite a mean lower grade
of luminal stenosis (46% vs. 63%). These findings were
corroborated by a further study that compared the degree
of inflammation on USPIO-enhanced imaging between
asymptomatic carotid plaques in patients with coronary
artery disease (CAD) and in individuals with a carotid ste-
nosis who were completely asymptomatic in all vascular
regions (121). Patients with CAD had more inflammatory
activity within their carotid atheroma than did the com-
pletely asymptomatic cohort despite a mean lower degree
of luminal stenosis (59% vs. 65%). The authors concluded
that inflammatory activity may be a significant risk factor
in asymptomatic disease and USPIO-enhanced MRI may
prove a useful technique to improve the risk stratifica-
tion of patients with carotid stenosis. In 2013, a new study
from the group of J.H. Gillard was published, investigating
for the first time the feasibility of longitudinal sequential
MR imaging before and 36 h after USPIO infusion at 0, 6,
and 12 months, in 10 patients with a moderate asympto-
matic carotid stenosis (122). The patients, none of whom
received pharmacotherapy, remained asymptomatic
within the course of the study and there was no statisti-
cal difference in their USPIO uptake between the three
time points. Comparing the quadrant signal before USPIO
infusion, a good agreement over the l-year period was
observed. The quadrant signal detected after USPIO infu-
sion was in a good agreement between 0 and 6 months,
and in moderate agreement between O and 12 months,
suggesting that inflammation within the carotid plaque
is a changeable and dynamic process. Apart from impor-
tant information on quantitative reproducibility of the
technique, this study provided evidence that within the
6 months, USPIO nanoparticles were cleared out of the
atherosclerotic plaque. Importantly, no adverse effects
following multiple USPIO infusions were observed (122),
indicating that this technique is clinically safe and appli-
cable, also for the future longitudinal studies involving
pharmacologic interventions.
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The feasibility of USPIO-enhanced MRI to detect
inflammation following the ischaemic stroke was investi-
gated by Saleh et al. (123). In this clinical phase II study, 10
consecutive patients received ferumoxtran (Sinerem/Com-
bidex) infusion at the end of the first week after symptom
onset. Two follow-up MRI scans were performed, at
24-36 h and 48-72 h after infusion. USPIO-induced signal
alterations representing parenchymal enhancement were
different from conventional gadolinium-enhanced MRI
(Magnevist®, Schering), showed an increase over time,
and corresponded to the distribution of macrophages. The
authors concluded that increasing USPIO-enhancement
on Tl-weighted images indicates brain infiltration by
USPIO-laden macrophages, and may provide an in vivo
surrogate marker of cellular inflammation in stroke. More
recently, the utility of USPIO-enhanced MRI for estimating
macrophage infiltration into early ischemic stroke lesions
was examined in another study from the same group (124).
Patients with stroke received intravenous ferumoxtran fol-
lowed by four subsequent MRI scans. In 3 of 9 analyzed
patients, parenchymal USPIO enhancement was observed
on Til-weighted spin-echo images. USPIO-dependent
signal changes reflected the variable extent and distribu-
tion of macrophage infiltration in different lesion types,
indicating that USPIO-enhanced MRI may help tailoring
the anti-inflammatory therapy in patients with stroke.

As a further possible application, USPIO-enhanced
MRI was tested for prediction of expansion and rupture of
life-threatening aortic aneurysms (125). As their prognosis
currently relies on the measurement of aneurysm diam-
eter only, new techniques are urgently needed to assess
the rate of AAA expansion. The study was carried out in
29 stable patients with asymptomatic AAA, who received
MRI scans before and 24-36 h after administration of
ferumoxtran. The study demonstrated that the patients
with distinct mural uptake of USPIO had a 3-fold higher
AAA growth rate than those with no or nonspecific USPIO
uptake despite having similar aneurysm diameters. This
indicated that the uptake of USPIO in AAA is capable of
identifying cellular inflammation and can distinguish
between slow and rapidly progressive aneurysm expan-
sion, thus improving risk stratification in the patients.

Most recently, Yilmaz et al. (126, 127), tested the suit-
ability of USPIO-based MRI contrast agents for charac-
terization of myocardial infarct pathology as compared
with conventional gadolinium-based imaging. The
studies showed that the approved dose of ferucarbotran
(Resovist®, NIMINI-1 trial) did not allow improved visu-
alization of myocardial peri-infarct zone as compared
to gadolinium-based contrast agent Magnevist® (126).
In contrast, the administration of ferumoxytol (Rienso/
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Feraheme™, NIMINI-2 trial) in 14 patients with myocardial
infarction allowed a better characterization of the injured
myocardium and inflammatory macrophage accumula-
tion, as well as the extent and composition of the peri-
infarct zone, as compared with Magnevist® (127). Nearly
in parallel, another clinical study utilizing ferumoxytol
for USPIO-enhanced MRI to assess cellular myocardial
inflammation following acute myocardial infarction was
published (128). In line with the data of Yilmaz et al., this
study showed a strong USPIO accumulation in the infarct
tissue of patients with recent myocardial infarction, and
a less pronounced uptake in the peri-infarct and remote
myocardium. These findings indicate that a new genera-
tion of USPIO formulations with a favorable safety profile
(138) allows non-invasive detection and characterization
of the infarcted myocardium and rise hope for the rapid
development of nanoparticulate and easily functional-
ized contrast agents with superior clinical and prognostic
value.

Pilot studies —treatment monitoring
and cardiovascular biomarkers

Apart from providing prognostic information and aiding
disease diagnosis, nanoparticles can constitute a useful
tool for monitoring the treatment efficacy and act as bio-
markers for therapeutic interventions. Below, several clin-
ical feasibility studies are described that highlight these
important applications.

USPIO-enhanced MRI was first used to monitor the
effects of aggressive vs. mild lipid-lowering therapy on
macrophage burden in carotid plaques, in a randomized
controlled study performed by the group of J.H. Gillard
[ATHEROMA study, (130)]. Patients with moderate carotid
stenosis, who demonstrated intraplaque accumulation
of USPIO (ferumoxtran) on MRI at the baseline, received
either 10 mg or 80 mg atorvastatin daily for 12 weeks.
Twenty patients completed the treatment in each group.
A significant reduction from baseline in USPIO-defined
inflammation was observed in the 80-mg group at both 6
weeks and at 12 weeks. Moreover, aggressive lipid-lowering
therapy for 12 weeks was associated with significant reduc-
tion in USPIO-defined inflammation as compared to the
mild lipid-lowering treatment (130). This technique was
thus suitable to assess therapeutic response in an interven-
tional drug trial in humans, additionally facilitating enroll-
ment of the specific patient cohort in the trial. The results
of the long-term follow-up of the ATHEROMA trial were
published in 2012 (131), evaluating the ability of USPIO-
enhanced MRI to predict subsequent cerebrovascular
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and cardiovascular events. In those analyses, 62 patients
initially screened for enrollment to ATHEROMA trial were
examined for the occurrence of adverse cerebrovascular or
cardiovascular events following the initial USPIO-imaging.
Despite the small size of the study group and only 17 car-
diovascular/cerebrovascular events reported in total, an
association was observed (p=0.07) between the magnitude
of maximal USPIO-induced signal intensity loss within
carotid plaques and the risk of developing subsequent vas-
cular events (131). As the study lacked adequate statistical
power, future prospective studies with new generation of
USPIO-based contrast agents are urgently needed. Such
studies should incorporate long-term follow-up analyses
in order to estimate the usefulness of USPIO-enhanced
MRI for the assessment of future event risk in asympto-
matic patients with carotid atherosclerosis.

Cell-based therapies are another attractive option for
treatment of cardiovascular diseases. In this context, a
safe and reliable method of tracking the cells in vivo to
ensure the delivery of sufficient cell numbers to the dis-
eased region is critical for the therapy development (69,
139). In their recent paper, Richards et al. (132) report
the development of GMP-compliant method of labeling
peripheral blood mononuclear cells (PBMCs) with SPION,
and their successful tracking by MRI in humans. Labeling
of the mononuclear cells with ferumoxides (Endorem/
Feridex IV) did not affect their viability, migration or
cytokine release in vitro, and allowed their MRI identifi-
cation in vivo for at least 7 days. A phased-dosing study,
demonstrated that systemic delivery of up to 10° SPION-
labeled cells in humans is safe and does not affect any
hematological, biochemical, or coagulation variables.
Therefore, 12 healthy volunteers received 108-10° SPION-
labeled cells approximately 27 h after a local cutaneous
inflammation was induced in the thigh by intradermal
injection of tuberculin. Intravenously delivered SPION-
labeled cells were tracked to the inflamed skin at 24
and 48 h post-administration, as visualized by MRI and
confirmed using Prussian blue staining of inflamed skin
biopsies. The authors concluded that SPION-labeling is a
safe and feasible technique that has a major potential for
cardiovascular applications including monitoring of cell
therapies and tracking inflammatory cells by MRI.

Myocardial injury estimated by cardiac troponin
plasma or serum levels often goes unnoticed due to the
low sensitivity of the current generation assays. In 2009,
a pilot study was performed to evaluate the clinical value
of a new ultra-sensitive nanoparticle assay for cardiac tro-
ponin I (nano-cTnl; detection limit 0.0002 ug/L) based on
the sandwich antibody technique with chemical signal
enhancement of gold nanoparticles to which the secondary
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antibody was bound [PROTECT-TIMI 30 trial, (129)]. In this
study, blood samples from two cohorts were re-analysed:
50 patients with unstable angina and serial negative cTnl
using current generation troponin assay, and 50 patients
with definite myocardial infarction who had an initially
negative current generation cTnl result, but results of
sampling at 6—-8 and 18-24 h revealed increase in cTnl. In
the first cohort classified as UAP, 44%, 62%, and 82% of
patients had an elevated nano-cTnl result measured at O,
2, and 8 h with the nano-cTnI assay. In patients with defi-
nite myocardial injury but an initially negative cTnl, 72%
and 98% had a positive nano-cTnl score (>0.003 ug/L)
at 0 and 2 h. Thus, using a nanoparticle assay for cTnl,
myocardial injury was detectable in a substantial propor-
tion of patients previously classified as having unstable
angina pectoris. The emergence of a new generation of
troponin assays has the potential to improve the diagnosis
of myocardial infarction based on an enhanced analytical
performance at very low concentrations of troponin.

Pilot studies — disease treatment

In comparison to diagnostic applications, nanomedical
approaches to treatment of cardiovascular disorders in
humans remain limited. Two published pilot trials inves-
tigating the feasibility of nanoparticle-based drug deliv-
ery systems for treatment of angina pectoris and in-stent
restenosis are briefly described below.

Angina pectoris resulting from myocardial ischemia
affects about 50% of all patients with CAD. In a study by
Chu-fan et al. (133), prostaglandin E1 (PGE1), an endog-
enous vasodilatory mediator effective in the treatment of
critical limb ischemia, was tested in patients with angina
pectoris undergoing a percutaneous coronary interven-
tion (PCI). A randomized controlled trial utilizing PGE1
incorporated into lipid microspheres (lipo-PGE1) was con-
ducted in 79 patients. Intravenous administration of lipo-
PGE1 (20 pg/day for 5 days, starting at least 48 h before
PCI) was well tolerated, with no serious adverse events or
side-effects. With regard to the therapeutic effect, cardiac
troponin T and creatine kinase myocardial isoenzyme
concentrations were lower in the lipo-PGE1 group than in
the control group at 6 h, 12 h and 24 h after PCI. The inci-
dence of postprocedural myocardial injury was reduced in
the lipo-PGE1 group by ca. 20% compared with the control
group, indicating that lipo-PGE1 may improve patients’
outcomes following the elective PCI.

In-stent restenosis remains a significant limitation
to the long-term patency of vascular stents. Drug-eluting
stents inhibit restenosis but are associated with increased
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risk of stent thrombosis (103). The only published
safety and dose-finding human trial utilizing nanopar-
ticle-based drug delivery system for in-stent restenosis
(SNAPIST-I trial) utilized a novel 130-nm, albumin-bound
particle form of paclitaxel (nab-paclitaxel) (135). Patients
with angina received nab-paclitaxel at 10, 30, 70, or 100
mg/m? intravenously after bare metal stenting of de
novo lesion in a single coronary artery. Data obtained
for all 23 enrolled patients indicated that no significant
adverse events were attributable to the nab-paclitaxel at
10 or 30 mg/m?, although moderate neutropenia, sensory
neuropathy and mild to moderate reversible alopecia
occurred at higher doses. At 2 months post-procedure, no
major adverse cardiac events were reported, whereas 4
target lesions required revascularization for restenoses at
6 months. The authors concluded that intravenous appli-
cation of nab-paclitaxel was well tolerated at doses below
70 mg/m?, suggesting that systemic nab-paclitaxel may be
used with any available bare-metal stent and at potentially
lower cost than DES (135). To date however, no evaluation
is available as to the clinical efficacy of nab-paclitaxel for
the suppression of coronary in stent restenosis.

Obstacles and considerations

Imaging

In spite of the promising results of the pilot studies in
humans, the marketing and the clinical application of
iron oxide-containing contrast agents are at the still-
stand. Although SPIO and USPIO have been approved
for clinical use in the past, currently they are scarcely
available (see Table 2), with the exception of the oral iron
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oxide contrast agent, ferumoxsil (Lumirem/Gastromark),
and ferumoxytol (Rienso/Feraheme), a novel intravenous
agent approved for iron replacement therapy in chronic
renal failure patients with iron-deficiency anemia.

The nephrotoxicity related to gadolinium-based con-
trast agents remains a concern. Because of the nanopar-
ticle accumulation occurring typically in liver, spleen,
kidneys and bladder, the retention of gadolinium can lead
to a delayed serious adverse reaction known as nephro-
genic systemic fibrosis in patients with impaired renal
function (140). Although SPION/USPIO had been reported
to have favorable safety profiles (141), the delayed toxic-
ity effects due to an increased inflammation and oxidative
stress cannot be excluded (142). New generation of iron
oxide-based contrast agents with superior safety profile
and targeting properties is thus needed for the future clin-
ical imaging of atherosclerotic plaques, myocardial infarc-
tion, and ischemic stroke (138).

Drug-delivery systems

Nanoparticle-based drug delivery systems are an attractive
platform to improve the efficacy and reduce the systemic
toxicity of cardiovascular drugs. For the purpose of thera-
peutic applications, novel nanoparticle formulations,
including drug-carrying liposomes, lipidots, and polyac-
crylates are currently being developed. In order to deliver
the therapeutic nanoparticles locally and to monitor the
treatment efficacy, additional modifications are required,
such as grafting of targeting-moiety and/or image contrast
enhancement, leading to the development of complex
multifunctional nanoparticles (Figure 2). However, manu-
facturing such intelligent, tissue- or cell-specific “thera-
nostic” nanoparticles necessitates additional production

Table 2 SPIO- and USPIO-based contrast agents tested in pre-clinical and clinical trials. Source: http://www.mr-tip.com/.

Product Trade name (EU) Trade name (USA)  Availability Marketed by (EU/USA)

Ferumoxides Endorem Feridex IV Discontinued in 2008 Guerbet/Berlex BayerHealthcare

Ferrixan (Ferucarbotran)  Resovist (Cliavist) Approved in EU 2001, Bayer Shering Pharma AG
production abandoned in 2009

Ferumoxtran-10 Sinerem Combidex Marketing authorization Guerbet/AMAG Pharma
withdrawn in 2007

Feruglose Clariscan NC100150, PEG- Development discontinued due  GE Healthcare

feron to safety concerns

Ferumoxil Lumirem Gastromark FDA-approved 1996, available Guerbet/AMAG Pharma
for sale

Ferumoxytol Rienso Feraheme FDA approved in 2009 for Takeda/AMAG Pharma

iron-replacement therapy; EU
marketing authorization in
2012
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steps and increases the costs of synthesis. Additionally,
much more detailed characterization methods, as well
as complex behavior in vivo must be considered, which
increase the regulatory hurdles and hinder the clinical
translation (143). Some of these considerations are dis-
cussed in detail below.

Nanoparticle characterization

Compared to the free drugs, nanosystems are extremely
complex constructs and the lack of their comprehen-
sive standardized characterization is a serious obstacle
to overcome before they can obtain the approval for use
in humans. Whereas high-sensitivity diagnostic nano-
systems for ex vivo determination of the urine or serum
biomarkers are likely to enter clinical practice in the near
future, in vivo drug-delivery systems must be subject to a
close toxicologic and pharmacologic scrutiny prior to the
application in patients.

Nanoparticle chemical composition is often the most
the critical feature that affects their toxicity. For example
silver nanoparticles are reportedly more cytotoxic than
gold nanoparticles (144, 145), but also dextran adminis-
tration has been associated with some side effects, such
as anaphylaxis, volume overload, pulmonary and cer-
ebral oedema, or platelet dysfunction (146, 147). Acute
renal failure is another rarely occurring but serious
complication of dextran osmotic effect (148). Therefore,
in patients with history of renal insufficiency, diabetes
mellitus, or vascular disorders, large volumes of dex-
tran-based drugs should be administered with particular
caution.

Biocompatibility
and

i /[/f /j FIuorescentd;;e;
T

///“ radioisotope
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Particle surface charge, indicated by zeta potential,
has a strong influence on their stability in biologic fluids.
Nanoparticles with a zeta potential above (+) 30 mV are
usually stable in suspension, as the surface charge pre-
vents their aggregation. Surface charge additionally influ-
ences the biologic effects: in vivo studies have shown that
cationic liposomes can cause dose-dependent toxicity
and pulmonary inflammation (149). Size is another of the
critical factors that affect the behaviour of nanoparticles
(150). An inherent difficulty related to its standardized
characterization is that nanoparticle size can dramati-
cally vary between different dispersion media, depend-
ing on their ionic strength and protein content. Generally,
10-100 nm particle size is considered optimal for drug
delivery; the smaller size can cause undesirable effects
such as passing through the blood-brain barrier, and the
particles with diameter <5 nm are renally cleared which
dramatically reduces their circulation time. In contrast,
for delivery of drugs or imaging agents to atherosclerotic
plaques, the nanoparticle diameter should not exceed 100
nm, as larger nanoparticles do not penetrate the vessel
wall readily. Due to the small sizes of nanoparticles, their
surface area is large. This provides various possibilities
of surface modifications in order to stabilize and prevent
aggregation of nanoparticles, and to allow conjugation
of ligands or drugs. However, functionalization of the
nanoparticles with ligands or antibodies can additionally
contribute to their immunogenicity. Moreover, stability of
surface coatings within biological environment and the
possible side effects of degradation products must be con-
sidered. Nanoparticle agglomeration, which occurs due to
their large surface area-to-volume ratio, is a factor that may
affect their toxicity (151). Agglomeration is influenced by
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the particle composition, size and zeta potential, but also
extrinsic factors, e.g., temperature, as well as pH, osmotic
strength and the presence of serum in the dispersion
media. For clinical applications, nanoparticle agglomera-
tion may be a key factor limiting their use in patients, as
it affects the physicochemical properties, bioavailabil-
ity, and thus efficacy. As aggregated nanoparticles are no
longer nano-sized, they undergo a rapid recognition by
reticuloendothelial system (RES) and are cleared by the
liver or spleen. Moreover, their presence in circulation may
cause serious undesirable side-effects, such as clogging
blood or lymphatic vessels (152). Prevention of agglomera-
tion is therefore required for designing a stable, clinically
safe nanosystem. In this respect, PEGylation of nanoparti-
cles is considered a good solution to reduce their agglom-
eration and toxicity, and to increase their circulation time.
By creating a hydrophilic layer around the nanoparticles,
PEGylation provides a strong steric barrier to opsonin
adsorption (153), therefore preventing nanoparticle recog-
nition by the RES and increasing their circulation half-life.
The detailed and standardized characterization of the
above-mentioned physico-chemical properties in physi-
ologic fluids is the key issue to consider before any given
nanosystem can enter the preclinical in vitro and in vivo
testing. As different techniques for nanoparticle characteri-
zation are available (e.g., transmission electron microscopy,
Fourier transform infrared spectroscopy, dynamic light scat-
tering), each of them featuring its own advantages and limi-
tations, optimally the characterization data obtained with
several different measurement methods should be routinely
compared to ensure reliable results. Detailed characteriza-
tion can facilitate the prediction of nanoparticle effectivity
and toxicity in physiologic conditions and contribute to an
improved design of stable, non-immunogenic constructs.

Nanoparticle toxicity

Characterization of the biological responses elicited by
the nanosystems is critical for their future clinical applica-
tions. Although the concept of nanomedicine encompasses
a localized delivery of nanosystems to target organs or
tissues, their extended circulation time, as well as multiple
degradation products, may result in cyto- and genotoxicity
(154), as well as immunogenicity (155). Thus far, however,
the basic cause-effect relationships are either not clearly
demonstrated, or remain largely unexplored (156). Hence,
detailed studies are urgently needed to identify various
nanoparticle characteristics that can predict their toxicity.
Due to this fact, nanotoxicology has emerged as an impor-
tant area in the field of nanomedicine (152).
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As stated above, physicochemical properties that may
contribute to toxic effects of nanomaterials include chemi-
cal composition, charge, agglomeration state, particle size
and surface properties (55). Among the currently investi-
gated nanomaterials, the best safety profile i.e., the lowest
toxicity was reported for PLGA, which thus has the best
potential to be used in clinical applications. In the case of
liposomes, the features that can predict their systemic toxic-
ity are mainly related to their lipid composition and charge.
Those characteristics should thus be considered when
designing liposome-based drug-delivery systems in order
to minimize the potential side effects (149, 157). Silica and
titanium dioxide nanoparticles were reported to cross pla-
centa barrier in mice and cause neurotoxicity in fetus, but
these effects are abolished upon surface modification with
carboxyl and amine groups (158). Among the metal oxide
nanoparticles, iron oxide nanoparticles were reported to
be non-cytotoxic for endothelial cells in vitro at concen-
trations below 0.1 mg/mL (159). Nonetheless, upon intra-
venous administration, their accumulation in liver and/or
target tissue may potentially cause iron overload. Increased
amounts of free iron can affect iron homeostasis and induce
oxidative stress, leading to DNA damage and/or inflam-
mation (142). However, the recent clinical study by Sadat
et al. (122) provided evidence that USPIO nanoparticles are
cleared out of the atherosclerotic plaques within 6 months
post-application, and no adverse effects following multiple
USPIO infusions were observed, confirming that these parti-
cles are clinically safe and well tolerated (138).

Other considerations related to nanosystem toxicity
include their pyrogenicity and endotoxin contamination.
Depending on the chemical/biological components and
the production process, the final product may contain
bacterial endotoxins (160), which can cause inflammatory
response upon in vivo application, leading to the organ
damage. The FDA-recommended high-sensitivity bacterial
endotoxin test (limulus amoebocyte lysate assay) is com-
monly used in preclinical pharmaceutical development,
but most nanoparticles interfere with the assay (160, 161).
Alternate nanoparticle-compliant pyrogenicity tests are
therefore urgently needed to assure the sterility of nano-
particles produced for clinical use (160).

In general, the toxicity of any nanosystem should first
be evaluated in vitro on cultured cells, under conditions
that resemble or mimic the physiological state in order to
produce relabile data that predict in vivo responses (162).
Following these extensive initial tests to assess the effect
of nanoparticles on the components of blood, the first-
contact cells (e.g., endothelial cells in the case of intra-
venous application) and the target cells, the regulatory
toxicity studies in animals, usually rats and mice, should
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be performed. Due to their size, nanoparticles typically
remain in the circulation for considerable periods of time,
and their in vivo behaviour and interactions with cellu-
lar and extracellular substrates may induce undesired
effects, including hemolytic reactions, platelet and com-
plement activation, reactive oxygen species production
and genotoxicity. To assess acute single/repeated dose
toxic effects and estimate maximum tolerated dose of
nanosystems in vivo, animals should be monitored over
14 days for body weight, organ weight indices, as well as
behavioural, biochemical and histopathological changes.
Longer time span is necessary to evaluate nanoparticle-
mediated immunotoxicity and chronic toxicity. Moreover,
the determination of pharmacokinetics, biodistribution,
as well as the clearance rate and routes of degradation
products must be performed (163), which is usually done
by the detection of radiolabeled constituents in animal
tissues harvested at different time points. In case of
complex multi-component nanosystems, the expense and
the efforts required for these investigations are immense.

Characterization of nanoparticle-based agents in an
animal system is an essential part of assessing both nano-
toxicology and in vivo efficacy, and a vital requirement
to fulfill before any nanosystem is approved for clinical
use by the regulatory bodies. However, the number of dif-
ficulties associated with these safety assessment studies
is enormous, as analyses of all individual constituents of
a complex multicomponent nanoparticle are required.
Nanotoxicologic characterization is thus an important
area that must undergo both extensive development and
prompt standardization to ensure nanosystems approval
for use in humans (156, 163).

Scale-up and GMP production

Another major hurdle to overcome in the process of nano-
system approval for clinical use is the GMP-compliant
production (164). Additionally, the research and develop-
ment methods often involve a low volume production and,
in case of some manufacturing technologies, scaling up
the process may pose serious difficulties. Apart from this,
the costs of synthesis must be considered, as well as the
batch-to-batch reproducibility (143). The latter issue is a
serious problem, and may lead to devastating clinical con-
sequences as recently reported for ferumoxytol (Rienso),
the whole batch of which had to be withdrawn from the
Swiss market due to one case of death and several cases of
drug-hypersensitivity. Therefore, the extensive batch char-
acterization and safety assessments are required, as well
as the chemical engineering and pharmaceutical efforts,
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to provide a platform for a large-scale production of high-
quality therapeutic nanosystems.

Administration route

Lack of effective delivery methods constitutes one of the
major obstacles hindering the development and clinical
application of therapeutic nanosystems (165). In terms
of patients’ acceptance, the best delivery route is usually
represented by oral administration, however, few vasculo-
protective nanoparticle formulations are thus far available
in this form [e.g., PLGA-curcumin (166, 167), heparin-
loaded nanoparticles (168, 169)]. Parenteral administra-
tion evades the problems related to gastrointestinal route,
i.e., the poor absorption, gastrointestinal intolerance and/
or non-compliance associated with oral preparations.
However, parenteral administration of nanodrugs com-
monly tested in animal studies is suboptimal, as it neces-
sitates a careful patient monitoring and can be expected
to have a very low acceptance in patients. Joint efforts of
bioengineers, toxicologists, clinicians and pharmacolo-
gists will be necessary to design and synthesize targeted
drug-delivery systems which will combine an improved
pharmacokinetics and biodistribution of the therapeutics
with the patient-accepted formulation.

Regulatory issues

During the approval process of any novel drugs, the can-
didates are closely scrutinized with regard to their safety
and efficacy in humans. Standard drugs are usually com-
posed of a single active agent combined with inactive
formulation aids. As the nanodrugs often represent multi-
component formulations, new considerations arise con-
cerning the regulated drug development and testing (143,
163). Thus far, due to the lack of clear guidelines and regu-
lations applicable to nanomedicines, the responsible reg-
ulatory agencies examine each nanoparticle-based drug
on a product-by-product basis. The in vivo behaviour of
the multi-component nanoconstructs can, however, differ
from the activities enticed by single-component system.
Precise new guidelines for nanoparticle characterization
are necessary, as well as uniform standardized methods
for testing the toxicity and efficacy of nanosystems in pre-
clinical animal models, in order to provide a transparent
regulatory frame for the pharmaceutical industry.

Taken together, whereas the implementation of novel
nanoparticle-based ex vivo diagnostic assays for cardio-
vascular biomarkers analysis can only be limited by the
complexity of production or the high costs, much more
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Figure 3 The bench-to-bedside translation steps for nanoparticle-based imaging and drug-delivery systems. Important considerations

related to each step are highlighted.

serious obstacles hinder the clinical application of nano-
particles for cardiovascular imaging or drug delivery
(Figure 3). As shown by the promising results of the pilot
clinical studies, imaging of atherosclerosis using USPIO-
enhanced MRI harbours tremendous potential to monitor
the disease progression and to influence prognosis, both in
asymptomatic population, as well as in subjects at risk of
future or recurrent cardiovascular events. Imaging nano-
systems composed of e.g., approved nanoparticle-based
contrast agents and a targeting moiety have a good chance
to pass the in vivo efficacy and toxicity tests favourably and
obtain the approval for clinical use. However, even then
substantial clinical research will be necessary to verify
the clinical utility and identify the category of patients in
whom this type of evaluation will translate into the biggest
clinical benefits. Although routine bedside application of
nanoparticle-based cardiovascular drug-delivery systems
still belongs to a distant future, interdisciplinary efforts
and collaborative research programs move cardiovascular
nanomedicine a step closer to reality.

From bench to bedside: conclusions

Despite multiple technical and regulatory constraints
that currently hinder the widespread clinical application,
the potential clinical impact of nanotechnology in terms

of managing strategies to ultimately reduce the occur-
rence of cardiovascular events is enormous. The trans-
lation of basic research studies into the clinical trials
represents one of the biggest challenges in this field.
Apart from safety and efficacy issues, legal and finan-
cial aspects must be considered to ensure a rapid and
secure implementation of the new techniques in clini-
cal practice. Moreover, the acceptance of the industry is
required in order to establish GMP-compliant production
and marketing. Extensive efforts in the field of cardio-
vascular nanomedicine together with promising results
of animal studies and early clinical trials rise hope that,
before long, safe nanosystems integrating a theranostic
component and a targeting moiety will be approved for
the diagnosis and therapy of cardiovascular diseases. As
the clinical experience remains limited, careful evalua-
tion of nanosystems’ safety, as well as the validation of
their diagnostic and prognostic value in clinical trials are
urgently needed.
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