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Abstract: To control water quality and seawater desalina-
tion dosage, modeling the coagulation process of saltwater
is crucial. With a focus on the features of seawater coagula-
tion with a long lag, a machine-learning sequence-based
modeling approach is suggested. The link between influent
and effluent turbidities, flow rates, flocculant and coagulant
dosages, and other parameters is modeled using structured
units such as a gate recurrent unit encoder and a linear
network decoder. The model’s validity is confirmed by
numerical experiments based on real operating data, which
also offer a solid foundation for managing flocculant and
coagulant assistance reduction.

Keywords: desalination, pretreatment, coagulation and sedi-
mentation, sequential modeling, machine learning

1 Introduction

A viable technological solution widely acknowledged as
one of the most effective approaches to address severe
freshwater scarcity caused by the unequal distribution of
water resources worldwide is desalination (Soleimanzade
et al. 2022). Desalination technology reduces severe fresh-
water scarcity by increasing water availability, diversi-
fying sources, and improving water quality. It benefits
ecosystems by lowering the demand for freshwater sources
and enhancing climate resilience. Desalination fosters social
fairness by ensuring that vulnerable populations can access

clean water. Sustainable techniques are vital for reducing
environmental damage and ensuring long-term water
security. When confronted with the issue of elevated energy
usage, conventional desalinationmethodsmust look for novel
approaches. This study aims to improve the economics and
energy efficiency of the desalination process by optimizing
the water quality control of coagulation and sedimentation
processes by introducing a machine-learning sequence
model. Turbidity, pH, alkalinity, temperature, coagulant
dosage, and settling time are standard parameters used in
water quality management during coagulation and sedi-
mentation operations. This is done through the use of a
thermal/membrane-coupled technology.

The high-energy consumption of conventional technol-
ogies limits the advancement of seawater desalination
technology (Abba et al. 2023a). Conventional desalination
processes use a lot of energy, which is expensive and
causes environmental problems. Thermal distillation and
reverse osmosis (RO) demand a lot of energy, which could
burden electricity infrastructure and increase greenhouse
gas emissions. This increases operating costs, making desa-
linated water more expensive than typical freshwater
sources. Balancing water security with energy-intensive
desalination’s environmental and economic costs is a cri-
tical challenge for sustainable water management. While
RO for membrane methods andmulti-stage flash (MSF) and
low-temperature multi-effect distillation (MED) for thermal
methods are mature, they are nevertheless constrained by
increased energy consumption (Abba et al. 2023b). Thermal
energy is used in the MED system to heat seawater and
produce vapor, which condenses into freshwater. This
thermal energy, generally derived from waste heat or solar
sources, is the primary source of freshwater generation in
MED systems.

In contrast, electric energy is primarily employed for
auxiliary functions in MED systems, mainly for power
transfer pumps. These pumps move seawater through sev-
eral stages of the distillation process without immediately
contributing to freshwater production. In a thermal/mem-
brane-coupled desalination system, the cooling water of the
MED system contributes to the feed seawater for RO. This
uses MED waste heat to preheat seawater for RO, which
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increases energy efficiency. With heat and membrane tech-
niques coupling, the thermal/membrane-coupled desalination
technology has emerged in recent years, providing new
opportunities to increase energy consumption efficiency
(Salem et al. 2022). Using a machine-learning sequence
model in the desalination process improves energy efficiency
and economics by optimizing operational parameters, esti-
mating energy consumption, and discovering process optimi-
zation opportunities.

Several researchers have achieved some progress in
seawater desalination, but there are still obstacles to over-
come (Bonny et al. 2022). While the system’s economy has
been somewhat enhanced by hot-film coupling technology,
more innovation and optimization are still required to help
it better fit the intricate and ever-changing desalination
environment (Hai et al. 2023). Hot-film coupling technology
improves the economic sustainability of seawater desali-
nation by increasing the energy efficiency and lowering
operating expenses. It excels because of its excellent heat
transmission, minor construction, and compatibility with
various desalination processes, including RO. Overall, it
increases cost-effectiveness by optimizing the energy con-
sumption and operating efficiency. The direction of increasing
system efficiency and cutting costs is the primary emphasis
of current academic research in the field of seawater desa-
lination (Mahdavi-Meymand and Sulisz 2023). Integrating
thermal and membrane techniques, particularly in thermal/
membrane-linked desalination technology, offers a fresh
avenue for technological advancement (Zouli 2023). The dif-
ficulties are still present, though. Current research is still hot
and challenging regarding energy consumption concerns,
system stability, and application under various climatic situa-
tions (Habieeb et al. 2023).

With a focus on controlling water quality during coagu-
lation and sedimentation, this study aims to investigate the
possible applications of machine learning in the desalina-
tion process. One innovative approach to modeling the sea-
water coagulation process is machine-learning sequence
models, particularly the gated recurrent unit (GRU) struc-
ture (He et al. 2022). We anticipate that by carefully exam-
ining the crucial elements of coagulation and precipitation
processes, we will be able to optimize the control approach,
cut down on resource waste, and accomplish more sustain-
able development – all of which will contribute to an even
better desalination system (Rashidi et al. 2022). GRU struc-
tural modeling is an excellent way to manage water quality
during desalination procedures. GRU models use a neural
network architecture to anticipate water quality changes,
optimize process parameters, detect anomalies, assist adap-
tivemanagement strategies, and provide data-driven decision

support. This allows operators to proactively maintain
desired water quality levels, reduce energy usage, and assure
regulatory compliance, eventually increasing the operating
efficiency and producing high-quality desalinated water.

In this work, we incorporate machine-learning sequence
modeling and thermal/membrane-linked desalination tech-
nology to address several issues in the desalination process.
Incorporating energy-using aspects from thermal and mem-
brane systems into energy-saving assessments improves the
energy efficiency and responsiveness to changing climates.
Hybrid solutions can be constructed by combining each sys-
tem’s capabilities, such as thermal systems’ high freshwater
production and membrane systems’ energy efficiency. This
approach optimizes desalination plants to run efficiently
independent of external circumstances, delivering consistent
freshwater production. Combining thermal and membrane
technologies in seawater desalination improves the energy
efficiency and climatic adaption. In particular, we manage
the water quality using GRU structural modeling to optimize
the coagulation and sedimentation processes (Ray et al.
2022). The benefit of this approach is that it enables us to
increase the stability and efficiency of the system by using
deep learning to more precisely understand the intricate rela-
tionships involved in the coagulation and sedimentation pro-
cesses. To more effectively utilize energy year-round and
better adapt to varying climatic conditions, we integrate the
energy-using features of both the thermal and membrane
systems in the energy-saving analysis and suggest two cou-
pling strategies that match the temperature of the feed sea-
water (Shim et al. 2023, Hai et al. 2023). Each coupling
approach has distinct advantages and disadvantages, such
as improved energy usage, but with possible issues like mem-
brane fouling or high-pressure pumping requirements.
Evaluating trade-offs is critical for implementing sustain-
able desalination procedures.

This thesis will begin with an introduction, then go
into the history of development and background of desali-
nation technology, and then provide a thorough explanation
of the potential applications of machine learning in desa-
lination. The research technique, which includes data
pretreatment, the use of the Seq2Seq model, and the GRU
structure, will next be covered. Then, the outcomes of the
experiments confirm the model’s validity. Subsequently,
we will examine the energy-saving analysis and the opti-
mization approach of dosage control in the seawater coa-
gulation process. We will summarize the findings and offer
a prediction for future lines of inquiry. We hope the study
presented in this thesis will provide fresh perspectives
and methodologies for advancing seawater desalination
technology.
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2 Methodology of this paper

2.1 Data preprocessing

Data pretreatment is a crucial phase in the machine-learning-
based modeling process, which can enhance data quality and
facilitate modeling (Yin and Lei 2022, Liang et al. 2023). Pre-
processing the data can increasemodel accuracy and decrease
training difficulties by considering the errors of different
kinds of equipment and the effect of random noise in the
data sampling process. Preprocessing data to account for
random noise and equipment flaws improves machine-
learning models’ overall accuracy and reliability. The
models may focus on essential patterns by cleaning and
normalizing the data before training, resulting in more
trustworthy predictions and less sensitivity to noise or erro-
neous inputs. Feature engineering preprocesses data by con-
verting raw input variables into relevant features better
suited for machine-learning algorithms. It helps to find
and choose important features by extracting meaningful
information, producing new features, and selecting the
most relevant ones to improve the model performance.
This technique enhances the model accuracy, reduces the
overfitting, and increases the interpretability by concen-
trating on the most significant features of the data. Data
preparation can be implemented through the use of the
following methods:
(1) Processing of outliers: Outliers will appear in the data

because of the instrument’s measurement mistake. To
select the outliers based on real circumstances, a threshold
may be set, and the outliers that fall below the threshold
can be eliminated.

(2) Average processing of slides: Sliding average processing is
applied to the original data to minimize the random noise
overlay on the initial data. Equation (1) displays the sliding
average’s mathematical expression (Ali et al. 2023). A
sliding average is used in data processing to smooth out
oscillations and variability, minimizing noise. By taking an
average value over a sliding window of consecutive data
points, this method provides a more consistent representa-
tion of the underlying signal, making it easier to discern
essential trends or patterns. Sliding average processing for
noise reduction offers simple and effective smoothing of
data fluctuations, revealing trends while retaining the
data structure. However, it may result in a loss of detail,
latency in response to changes, and a reduction in the
influence of outliers, lowering analysis precision.
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When the sliding window size is denoted by w, the
instant is indicated by t , the original data is represented
by ( )x k , and the smoothed processed data is denoted
by ( )y t .

(3) Processing for normalization: The convergence speed of
the model can be improved by data normalization,
which ensures that all variables are calculated on the
same scale (Ali et al. 2023, Ren et al. 2023). Min-max
normalization is applied to normalize the original data;
equation (2) provides the mathematical expression for
this technique (Nazeer et al. 2023, Zeng and Chu 2024).
Min-max normalization reduces numerical data to a spe-
cific range, usually 0 to 1, for simplicity and interpret-
ability. However, it may not handle outliers well and is
computationally expensive for large datasets compared
to alternative normalization techniques such as Z-score
normalization or decimal scaling.
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where y represents the normalized data, x x,max min repre-
sents the minimum and maximum values of the original
data, respectively, and x represents the original data.

2.2 Sequence-to-sequence model

The sequence-to-sequence model (Seq2Seq model) can
extract and parse complicated features from sequences
and is mainly used to describe sequence-to-sequence
form challenges. Tasks involving natural language pro-
cessing frequently use this model (Jiao et al. 2024). In a
Seq2Seq model, the encoder gathers input sequence infor-
mation and encodes it into a fixed-length vector, while the
decoder constructs an output sequence using this context
vector. The encoder summarizes the input’s content and
context, which the decoder then uses to construct output
tokens step-by-step. Together, they allow Seq2Seq models
to process and create sequences for tasks such as transla-
tion and prediction. Seq2Seq models excel at handling
issues in NLP tasks such as machine translation and text
summarization because they capture complicated links
between input and output sequences, can handle vari-
able-length inputs, and produce coherent outputs. Seq2Seq
models may not be suitable for sequence-to-sequence tasks
involving radically varied sequence lengths, large sequences,
complicated linguistic patterns, or long-range dependencies
in the data.
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Figure 1 depicts a typical model of this kind, which
primarily uses two separate networks, an encoder and a
decoder. The encoder compresses the input sequences and
converts them into feature vectors, which are then semanti-
cized to produce semantic vectors. After parsing the semantic
vector, the decoder produces a sequence with a given length.

Because the seawater coagulation process takes a long
time, the past inputs impact the effluent’s turbidity. The
mathematical description of the coagulation process gives
the effluent’s turbidity an essential parameter for process
optimization and control in seawater desalination plants.
Using mathematical models to forecast turbidity levels cor-
rectly, operators may modify coagulant dosages and treat-
ment operations in real time, ensuring ideal water quality
while minimizing energy use. This procedure can be repre-
sented mathematically, with the turbidity of the effluent
serving as the output and a series of past inputs as the input.

2.3 GRU

A gated recurrent unit (GRU) is a form of long short-term
memory (LSTM) network, which is primarily utilized in the
challenge of modeling sequence models (Yoon et al. 2022).
GRU is roughly equal to LSTM in terms of model-fitting

capabilities but has a more straightforward structure. In
recurrent neural networks (RNNs), GRU can helpwith lengthy
dependence issues and prevent computation-related pro-
blems like gradient vanishing. GRUs employ gated mechan-
isms and skip connections to mitigate gradient vanishing
during training for sequential data processing. The model’s
training efficiency can be increased, and the LSTM’s sluggish
training speed issue can be resolved using GRU.

The internal structure of the GRU is shown in the
encoder in Figure 1. rt is the update gate and zt is the reset
gate. The internal architecture of a gated recurrent unit
(GRU) allows the model to capture long-range dependen-
cies more efficiently than typical RNNs. GRUs accomplish
this by implementing gated mechanisms that control the
flow of information within the network, allowing them to
retain important details over longer sequences without
experiencing vanishing gradient difficulties. The update
and reset gates accept the current sequence input xt and
the previous temporal hidden state input −ht 1. The reset
gate is used to delete memories and control short-term
memories. The update gate is used to prevent long-term
memories and finally outputs a semantic vector containing
sequence features.

3 Testing of models

The model is trained with the Adam (Drogkoula et al. 2023)
optimizer with the loss function L1, and the training and
test sets are split using the random sampling technique.
Figures 2 and 3 display the model’s outcomes for the
training and test set data, respectively. With a coefficient
of determination (R2) of 0.98 on the test set, the model
demonstrates its ability to suit the coagulation and sedi-
mentation processes.

4 Enhancement of dosage
regulation for seawater
coagulation

Upon examining the statistical data from the original data,
it is evident that during the real manufacturing process, the
flocculant dosing frequency change trend and the flow rate of
the uncontrollable variable change trend are relatively close
(Gollangi and Nagamalleswara Rao 2023). Understanding the
relationship between the flocculant dosage frequency and the
flow rate of uncontrollable factors in the manufacturing pro-
cess is critical. It aids in the optimization of the dosing
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Figure 1: Structure of the widely used GRU encoder Seq2Seq model.
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strategy for effective water treatment, ensuring that floccu-
lants are given at a proper frequency to compensate for flow
rate variances and maintain constant water quality standards.
Strategies for mitigating the impacts of flow rate on the floccu-
lant dosing frequency include continuous monitoring, auto-
mated dosing systems,flow rate thresholds, adaptive algorithms,
and dynamic dosage control. These provide appropriate dosage
despite fluctuations, which improves the water treatment effi-
ciency. A positive correlation has been seen between the floccu-
lant dosage and the flow rate; as the flow rate increases, so does
the flocculant dosing frequency. Maintaining the flocculant
dosage frequency when the flow rate surpasses the threshold
guarantees that the water treatment efficiency remains stable.
Reducing the dosing frequency at lower flow rates conserves the
flocculant while maintaining quality standards. The dosage can
be adjusted based on the flow size; when the flow is large, the
initial dosing frequency is maintained; when the flow is small,

the dosage frequency is decreased. Reduced dosage based on
proposed criteria may result in ineffective treatment, insuffi-
cient pathogen elimination, and impaired water quality stan-
dards. Insufficient dosage can result in microbial regrowth,
increased turbidity, and significant health risks, particularly
in essential applications such as water treatment. This way,
you can guarantee that water’s turbidity meets production
standards while lowering the dosage to save production costs
(Chen et al. 2023, Ba-Alawi et al. 2023). Variations in flow size
can impact the effectiveness of flocculant dosage adjustment
in maintaining appropriate water turbidity levels. Smaller
flow sizes may result in flocculant overdose, causing exces-
sive treatment and potential water quality issues. In contrast,
larger flow sizes may result in underdosing, failing to treat
the water effectively, and potentially enabling turbidity to
exceed permitted limits. To achieve the best results in water
treatment, flocculant dosage must be balanced with flow size
fluctuations (Tables 1 and 2).

The analysis presented above was used to establish the
following dose control guidelines. The flow rate was mea-
sured using the 75% quantile (6196.40) as the threshold
value. If the flow rate was higher than this value, the floc-
culant dosing frequency was maintained; if not, it was
appropriately reduced, and the coagulant aid dosing
frequency was maintained. Managing the reduction of floc-
culants and coagulants is critical for managing effluent
turbidity since these chemicals play an important role in
aggregating suspended particles in water and assisting in
their removal via sedimentation or filtration processes.
Failure to maintain proper amounts of flocculant and coa-
gulant can result in poor particle removal, increasing the
effluent turbidity and potentially causing environmental
and regulatory compliance difficulties. An interval of 5,000
points from the original data set was chosen for testing, and

Figure 2: Model performance using training set data.

Figure 3: Model outcomes utilizing test set data.

Table 1: Model performance using training set data

Time (t/min) Effluent turbidity/NTU

Model output value Actual data value

0 2.40 2.40
500 3.83 3.74
1,000 9.40 8.59
1,500 2.43 2.31
2,000 2.31 2.31
2,500 2.10 2.10
3,000 2.49 2.49
3,500 1.89 2.08
4,000 2.31 2.31
4,500 2.22 2.22
5,000 1.60 1.60

Energy-saving analysis of desalination equipment  5



the reduction multiplier for the test was taken as 0.75, 0.85,
and 0.95, respectively. Figure 4 displays the predicted effluent
turbidity time series curve. This approach can reduce the
dosage by around 20% overall if a reduction multiplier of
0.75 is applied.

It should be noted that the range of variation of the
obtained operation data is minimal and impacted by the
actual production seasonal factors. This limits the model’s
validity, and additional temporal and seasonal operation
data are required to improve it. Seasonal variations can
impact the performance of dosage reduction control models
by changing the water quality and demand. To mitigate this,
seasonal trends are incorporated into the model, data are
updated regularly, and adaptive management mechanisms
are used. External influences such as weather and agricultural
cycles should be integrated to improve model robustness.
However, the dose reduction control approach presented
above ismerely an initial attempt, andmore research is neces-
sary to determine the complete optimum control technique
(Ullah et al. 2023, Yoon et al. 2023, Xie et al. 2024).

5 Energy-saving evaluations

Two coupling methods that match the temperature of the
feed seawater are developed to reduce consumption and
save energy. Reducing energy consumption in saltwater
desalination is critical due to its sizeable environmental
impact and high operating expenses. Energy-efficient opera-
tions help to combat climate change, promote sustainable
water management, and make desalinated water more
accessible and inexpensive to populations experiencing
freshwater scarcity. These methods combine the energy-
using characteristics of both systems, namely thermal and
membrane approaches.

Mode 1: Cooling water with the residual temperature
of MED is combined with feed seawater during the summer
months when seawater temperatures are high (Tcw >

15°C). This keeps the temperature of RO feed seawater con-
sistently at 30°C.

Mode 2: Using a hot film-linked heat exchanger, feed
seawater and MED-concentrated brine are heated to approxi-
mately 10°C using heat exchange during winter when sea-
water temperatures are low (Tcw ≤ 15°C).

5.1 Comparison between thermal/
membrane-coupled desalination and
thermal-/membrane-independent
operation modes for water withdrawal

The total water intake of the thermal/membrane-coupled
desalination system will be lower than that of the indepen-
dently operated RO/MED system during summer because
part of the feed seawater of the RO system comes from the
cooling water of the MED system; however, during winter,
the water intake of the two modes of operation will be

Table 2: Model outcomes utilizing test set data

Time (t/min) Effluent turbidity/NTU

Model output value Actual data value

0 1.53 1.84
250 2.40 2.40
500 4.10 3.89
750 2.91 2.91
1,000 3.41 3.62
1,250 3.93 3.91
1,500 2.91 2.84
1,750 2.46 2.31
2,000 10.20 10.20
2,250 1.81 1.72
2,500 1.48 1.48

Figure 4: Dose rate optimization test curve.

6  Xiaodong Zhang et al.



equal. Desalination technology and system design advance-
ments can improve water intake management in coupled
desalination systems by incorporating innovative intake
methods, such as subsurface intakes or seawater wells,
that reduce the environmental impact and energy con-
sumption during water intake. Taking the demonstration
project as an example, the independently operated 521 t/h
RO system + 520 t/h MED system is compared with the 1,041
t/h thermal/film-linked system (Priya et al. 2022, Shu et al.
2022, Jiang et al. 2021), and the yearly water intake of the
independently operated RO/MED system is determined to
be 33,303,500 t. The thermal/film-coupled seawater desali-
nation plant takes in 31,268,800 t of water annually. A 203.3
million t/year reduction in the annual water intake is pos-
sible with the thermal/film-coupled desalination system.
Thermal processes such as MSF distillation, energy-inten-
sive high-pressure pumping in RO systems, the need for
contaminant pretreatment, and energy-intensive brine dis-
posal and post-treatment processes all contribute to con-
ventional seawater desalination technologies’ high-energy
consumption. RO membrane design innovations aim to
lower the energy consumption. These include high-perfor-
mance thin-film composite membranes, enhanced surface
modifications, innovative materials such as graphene oxide
and carbon nanotubes, and optimal membrane architectures
and configurations. Using a thermal/film-coupled desalination
system can result in a 203.3 million t reduction in yearly water
consumption. It is possible to cut the annual water input by
2,034,700 t. Figure 5 compares the water intake in the thermal/
membrane-coupled desalination mode and the thermal/mem-
brane-independent operation mode.

5.2 Comparison of thermal/membrane-
linked desalination mode and thermal-/
membrane-independent operation mode
electricity consumption

The primary forms of energy used in MED are thermal
energy and electric energy, which are used as auxiliary
energy to provide energy for the operation of the transfer
pump. The power consumption of the independently oper-
ated MED/RO system is equal to that of the MED part of the
thermal/membrane coupling system. Factors influencing
power consumption in independently operated MED/RO
systems include the energy necessary to heat saltwater in
the MED stage and high-pressure pumping in the RO stage.
Independently operated systems may use more energy
than thermal/membrane coupling systems due to the sepa-
rate energy-intensive distillation and membrane filtration
operations. Feed water salinity and temperature variations
can also affect power usage in both systems. The primary
energy source for RO is electric energy from the high-pres-
sure pump. The primary distinction in energy sources and
consumption patterns between RO and MED systems is
based on their operational mechanisms. RO systems use
electric energy for high-pressure pumping to force sea-
water through membranes.

In contrast, MED systems use thermal energy for dis-
tillation operations, frequently sourced from waste heat or
solar sources. RO systems use less energy per cubic meter
of water generated than MED systems, which use more
energy due to thermal distillation. As the membrane flux
rises with influent temperature, so does the high-pressure
pump’s power consumption, which falls as the flux increases.
The power consumption of high-pressure pumps in RO sys-
tems varies with membrane flow and influent temperature
variations. Increased membrane flux increases the pushing
force for water transport, requiring more pump energy,
whereas higher influent temperatures lower water viscosity,
potentially reducing pump energy consumption. However,
the precise effects depend on the system. Energy recovery
devices, variable frequency motors, enhanced membrane
materials, and pretreatment processes are among the strate-
gies used to optimize power usage in RO systems, mainly
when accounting for fluctuations in influent water tempera-
ture. These strategies improve the energy efficiency by recap-
turing energy, changing pump speeds, increasing membrane
efficiency, and decreasing fouling effects. The rise in influent
water temperature causes an increase in the membrane flow.
Figure 6 illustrates how thermal/membrane coupling tech-
nology significantly reduces the amount of electrical energy
consumed in winter since seawater is colder. Thermal/

Figure 5: Comparison between the thermal/membrane-connected
desalination mode and the independent operating mode of the thermal
membrane method for water extraction.
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membrane coupling technology improves energy efficiency
by using waste heat to preheat seawater, reducing energy
requirements during more frigid conditions.

After calculation, the annual power consumption of
the high-pressure pump of the independently operated
RO/membrane desalination is 15.141 million kWh. In com-
parison, the annual power consumption of the high-pres-
sure pump of the thermal/membrane-coupled seawater
desalination system is 13.747 million kWh. Adopting the
thermal/membrane-coupled seawater desalination tech-
nology can reduce the annual power consumption of
the high-pressure pump by 1.39 million kWh.

The yearly water extraction volume of the thermal/
membrane-coupled desalination process can be decreased
by 2.03 million tonnes annually based on the extraction
pump’s energy consumption ratio, computed using 0.067 2
kWh/m3. The extraction pump’s energy consumption ratio
(0.0672 kWh/m³) indicates the energy needed to extract one
cubic meter of water in desalination procedures. This ratio
represents the pump’s efficiency in energy consumption per
unit of water output, providing information about the
operational expenses and sustainability of desalination
operations. Lower ratios indicate more energy efficiency,
reducing the overall environmental effect and operational
costs of desalination. The computation above shows that it is
possible to save 0.13 million kWh in yearly power consump-
tion for the water intake pump and to lower the annual
water intake of the thermal/film-coupled desalination by
2.03 million t. In conclusion, the water production of the
thermal/film-coupled desalination technology in Bohai Bay
can save 1.53 million kWh annually on the electricity con-
sumption of the high-pressure pump and power intake pump.
The non-hourly electricity price of 0.785 3 yuan/kWh is used

to calculate the electricity price, which results in an annual
savings of 1,650,116.5 million yuan on electricity costs.

6 Conclusions

This work used a desalination plant as the research object
to present an efficient machine-learning sequence model-
based modeling approach for controlling coagulation and
sedimentation processes in water quality. Using a gated
recurrent unit (GRU) encoder and a linear network
decoder, a relationship model was built about the relation-
ship between effluent turbidity and other parameters. The
model’s validity was confirmed through numerical experi-
ments utilizing real-world operation data, and it served as
a foundation for managing the decrease of flocculant and
coagulant. Through energy-saving analysis, two coupling
approaches matching the temperature of feed seawater
are proposed by combining the energy consumption character-
istics of each system of thermal and membrane methods. The
notable annual reductions in power consumption and water
input achieved with the thermal/membrane coupling desalina-
tion method provide strong support for practical applications.
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