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Abstract: In this article, we theoretically analyze the one-
dimensional model of a piezoceramic energy harvester
that uses piezoelectric transduction in the 3-3 mode to con-
vert ultrasonic pressure waves into electrical energy. Our
approach to this problem is new because we did not use
impedance approach which is a common method in many
other articles. Nonetheless, our solution accounts for loss
of acoustic environment. Our goal here is to extract max-
imum power from output load. Based on our simulations,
the frequencies that the acoustic strength peaks are as same
as frequencies that the pressure at receiver side peaks, and
between these frequencies, the resonance occurs at a fre-
quency that the pressure at the receiver side has a maximum
peak. We propose two boundary conditions for radiating
acoustical waves. In this article for a square shape transducer
with a thickness of 2.1 mm and length of 1.46 cm, the resistive
output load gave the most power, in which its value for free-
fixed and free-free boundary conditions are 13.75 W and 17.37
W respectively, and at output resistances of 8.51 Ω and 13.11 Ω
respectively. The required acoustic strengths to produce these
powers for free-fixed and free-free boundary conditions are

×424.944 107
m

s

3

2 and ×129.977 108
m

s

3

2 . The resonance fre-
quencies are 9.13545 MHz and 14.3617 MHz respectively, and
the pressures at receiver side in the distance of 5 cm from
transmitter transducer are 623.968 MPa and 1382.39 MPa
respectively.

Keywords: ultrasonic waves, piezoceramic square element
transmitter and receiver, energy harvesting, biomedical
implanted devices

1 Introduction

Over the past few decades, the demand for wireless sen-
sors, implantable electronics, and other low-power con-
sumption devices has been growing rapidly. In many cases,
these sensors or devices are used in places where sup-
plying power through wires is difficult or inappropriate.
As a result, their lifetime is greatly limited by the energy
autonomy of the batteries usually embedded as power
sources. As a substitute for traditional power supply, har-
vesting ambient energy (Dezhara 2024, Dezhara 2022) or
transmitting energy wirelessly (Wang et al. 2007 Apr,
Taalla et al. 2019, Tseng et al. 2020, Wu et al. 2020) is an
effective way to power them. In comparison to the other
methods of wireless transfer, such as inductive coupling,
energy transfer based on the propagation of acoustic waves
at ultrasonic frequencies is a recently explored alternative
that offers increased transmitter–receiver distance, reduced
loss, and the elimination of electromagnetic fields (Shahab
2014). As this research area receives growing attention, there
is an increased need for fully coupled model development to
quantify the energy transfer characteristics, with a focus on
the transmitter, receiver, medium, geometric, and material
parameters (Shahab 2014). Acoustic waves are one kind of
common environmental energy. Acoustic waves include
longitudinal, transverse bending, hydrostatic and shear
waves with frequencies ranging from less than 1 Hz to
more than 10 kHz (Sherrit 2008). In comparison with trans-
versal waves, longitudinal waves have the advantage of
propagating in fluids (Roes et al. 2013) and their transmis-
sion ability through biological tissues has been widely used
in medical treatments, such as high intensity focused ultra-
sound therapy (Roes et al. 2013, Humphrey 2007). The idea of
using acoustic waves to transmit and harvest energy was
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proposed as early as 1958 by Ozeri and Shmilovitz (2010).
Harvesting certain longitudinal ultrasonic energy to power
implantable devices is a preferred technology due to its
power transfer efficiency, compactness, and electromagnetic
immunity (Ozeri and Shmilovitz 2010, Yang et al. 2013).
Recently, ultrasonic wireless energy-harvesting technolo-
gies have been proposed (Piech et al. 2020). Compared to
electromagnetic waves, ultrasound can realize a longer
travel depth and a better spatial resolution in the tissues
(Jiang et al. 2020). Furthermore, according to the U.S. Food
and Drug Administration’s regulation, the safety threshold of

ultrasoundwaves in the human body is 720
mW

cm2 (Pritchard and
Carey 1997), which is dozens of times greater than that of radio

waves (10
mW

cm2 ) (Lin 2006). These two factors enable ultrasonic
wireless energy-harvesting technology’s unique advantages in
biomedical applications in contrast to other wireless power
transmission technologies, such as electromagnetic. The goal
of this article is to quantify the electrical power delivered to
the load (connected to the receiver) in terms of the source
strength. In this article, we first derive the electric field and
displacement of a rectangular piezoceramic element using one-
dimensional piezoelectricity constitutive law. Here we neglect
the displacement in the x or y direction just because of the low
aspect ratio; thus, the transverse displacement is calculated.
After an introduction to the piezoelectric behavior of piezo-
ceramic rectangular elements, we open the discussion of ultra-
sonic wave propagation in the nonlinear form in viscous fluid
with a known shear and bulk viscosity as a prototype medium
of body tissue of humans. Then we discuss the coupling
between the mechanical and electrical parts of piezoelectric
(piezoceramic) and derive the electrical damping as well as
energy injection lock coefficient (the coefficient that is respon-
sible for reactive power (Dezhara 2022)) and calculate the
output power versus frequency in MATLAB. In summary, the
article is structured as follows: Section 2 introduces analytical
bases on ultrasonic piezoelectric energy harvesters. Section 3
gives the formulas to describe the ultrasonic link between
sender and receiver transducers. Section 4 gathers output solu-
tions for three load cases, namely, resistive, inductive and capa-
citive loads. Section 5 discusses about efficiency. Finally, a
numerical example and conclusions close the work. As useful
support for the reading of the manuscript, two appendixes are
also provided.

2 Basics of ultrasonic piezoelectric
energy harvesters

In this section, we analyze the constitutive laws of piezo-
ceramic using a one-dimensional model of piezoelectricity,

and also the ultrasonic wave propagation in viscous fluid
will be analyzed.

2.1 Piezoceramic (piezoelectric)
constitutive laws

This subsection reports the constitutive laws governing the
piezoceramic element shown in Figure 1. The analysis is
done using the one-dimensional model for law aspect ratio
(less than 0.1) and the result of the analysis, i.e., displace-
ment and electric potential, is applied to the boundary
conditions in the following subsection, which deals with
sound waves in a viscous fluid. The constitutive laws are
as follow (Yang et al. 2015, Erturk and Inman 2008, Safaei
et al. 2019):

= −T c S e E ,ij ijkl kl kij k (1a)

= +D e S ε E ,i ikl kl ik k (1b)

where T is the mechanical stress, S is the mechanical
strain, D is the electric flux density, E is the electric field
intensity, e is the matrix for indirect piezoelectric effect, c

E

is the stiffness matrix at constant electric field, and ε :S

permittivity at constant strain.
The Newton second law in mechanic and third law of

Maxwell (electric Guess law) in electromagnetic for charge
free medium are expressed, respectively, as follows:

= =T ρu D¨ , 0,ij j i i i, , (1c)

where ui is displacement in specific direction, and ρ is
density of piezoceramic disk, and “,” sign is derivative
with respect to displacement. We now introduce compact
matrix notation. This notation consists of replacing pairs of
tensor indices i j, or k l, by single matrix indices p or q,

Figure 1:Model of square piezoceramic elements. The distance between
two mid-plane of transducers is +L h2 (not shown), where L is the
distance between transducers and h is half of the thickness of
transducers.
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where i j k l, , , take the values 1, 2, 3 and p and q take the
values of 1, 2, 3, 4, 5, 6 according to:

i j k l

p q

, or , : 11 22 33 23 31 12 1d

or : 1 2 3 4 5 6 1e

( )

( )

Thus,

→ → →c c e e T T, , .ijkl pq ikl ip ij p (1f)

Note that the matrices are symmetrical, and therefore,
values for index 32 are the same as 23 and that for 13 are
the same as 31. So we obtain:

= −T c S e E ,p pq

E

q kp k (1g)

= +D e S ε E .i iq q ik

S

k
(1h)

According to equation of (1e). For the strain tensor, we
introduce Sp as follows:

= = =S S S S S S, , ,1 11 2 22 3 33 (1i)

= = =S S S S S S2 , 2 , 2 .4 23 5 31 6 12 (1j)

In th following analysis for simplicity, we dropped the
superscript of E in c

pq

E and that of S in ε
ik

S .

2.2 Displacement and electric potential of
transmitter

Here, the AC voltage is applied to the electrodes of the
piezoceramic disk. We will derive the acceleration of the
vibrating disk and relate the pressure at the receiver trans-
ducer to this acceleration (in the next section).

The nonvanishing strain and electric field components
are as follows:

= = −S u E ϕ¯ , ¯ ,33 3,3 3 ,3
(2a)

where the time-harmonic factor has been dropped and the
comma means derivative with respect to displacement.
If we assume sinusoidal function for u3 and ϕ such
as = =u u ωt u jωt¯ cos ¯ exp3 3 3R( ) ( ( )) and = =ϕ ϕ ωt¯ cos( )

ϕ jωt¯ expR( ( )). The nontrivial stress and electric displace-
ment components are as follows:

= = +

= +

= −

T T e u e ϕ

T c u e ϕ

D e u ε ϕ

¯ ¯

¯ ¯

¯ ¯ .

11 22 13 3,3 31 ,3

33 33 3,3 33 ,3

3 33 3,3 33 ,3

(2b)

By substituting equation (2b) into equation (1c), we obtain:

+ = −c u e ϕ ρω u¯ ¯ ¯ ,33 3,3 33 ,3

2
3 (2c)

− =e u ε ϕ¯ ¯ 0.33 3,3 33 ,3
(2d)

Equation (2d) can be integrated to yield:

= + +ϕ

e

ε

u C z C¯ ¯ ,
33

33

3 1 2 (2e)

where C1 and C2 are integration constants. By substituting
equation (2e) into second and third equation (2b), we
obtain

= +T c u e C¯ ¯ ,33 33 3,3 33 1 (2f)

= −D ε C ,3 33 1 (2g)

+ =c u ρω u¯ ¯ ¯ 0,33 3,3
2

3 (2h)

where

= +c c k¯ 1 ,33 33 33

2( ) (2i)

=k

e

ε c

,33

2 33

2

33 33

(2j)

where k33 is the electro-mechanical coupling factor of the
piezoelectric material. The general solution to the displace-
ment equation (2h) and the corresponding expression for
the potential are as follows:

= +u B ζz B ζz¯ sin cos ,3 1 2( ) ( ) (2k)

= + + +ϕ

e

ε

B ζz B ζz C z C¯ sin cos ,
33

33

1 2 1 2( ( ) ( )) (2l)

where − ≤ ≤h z h and B1 and B2 are integration constant,
and also we have:

=ζ

ρ

c

ω

¯
.2

33

2 (2m)

As mentioned earlier, the time harmonic factor is dropped
and ū3 and ϕ̄ are in the phasor form. The expression for the
stress is as follows:

= − +T c B ζ ζz B ζ ζz e C¯ cos sin ,33 33 1 2 33 1( ( ) ( )) (2n)

= −S B ζ ζz B ζ ζzcos sin ,33 1 2( ) ( ) (2o)

= = −S

u

z

T

c

e C

c

d ¯

d ¯ ¯
.33

3 33

33

33 1

33

(2p)

2.2.1 Boundary conditions (transmitter, free at both
sides)

Here, we assumed that the both sides of transmitter piezo-
ceramic square element is free to touch fluid, i.e., the stress
at both sides is zero. The boundary conditions between the
piezoceramic transmitter disk and the acoustic environ-
ment are as follows:

= ==− =+T T 0,z h z h33 33∣ ∣ (2q)
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− ==+ =−ϕ ϕ V¯ ¯ ,z h z h 0∣ ∣ (2r)

==ϕ̄ 0,z 0∣ (2s)

where h2 is the thickness of the piezoceramic disk. By
applying boundary conditions in equations (2k) and (2l):

− + =c B ζ ζh B ζ ζh e C¯ cos sin 0,33 1 2 33 1( ( ) ( )) (2t)

+ + =c B ζ ζh B ζ ζh e C¯ cos sin 0,33 1 2 33 1( ( ) ( )) (2u)

+ =
e

ε

B ζh C h V2 sin 2 .
33

33

1 1 0( ) (2v)

To solve the aforementioned equations, add and also sub-
tract the first two equations from each other. The third
equation will remain intact.

+ =c B ζ ζh e C¯ cos 0,33 1 33 1( ) (2w)

=c B ζ ζh¯ sin 0,33 2 ( ) (2x)

+ =
e

ε

B ζh C h V2 sin 2 ,
33

33

1 1 0( ) (2y)

+ =
e

ε

B C 0.
33

33

2 2 (2z)

Thus, the aforementioned constants are as follows:

=
−

−
B

e V

c ζh ζh ζh2¯ cos 2 sin

,
e

ε

1

33 0

33

33
2

33

( ) ( )
(3a)

=B 0,2 (3b)

=
−

C

V c ζ ζh

c ζh ζh ζh

¯ cos

2¯ cos 2 sin

,
e

ε

1

0 33

33

33
2

33

( )

( ) ( )
(3c)

= − =C

e

ε

B 0.2

33

33

2 (3d)

By knowing these constants, we can express the boundary
conditions in the sound wave equation in terms of the
velocity of the piezoceramic solid–fluid interface, which
is the topic of the next section. The acoustic strength of
the transmitter transducer normalized to acoustic volume
velocity is calculated as follows:

= = =+
J

Q

cA

Au

cA

¨
,

z h

1

1 3 ∣ (3e)

=J

ω B ζh

c

¯
sin

,
1

2
1∣ ( )∣ (3f)

where A is the area of the transducers and Q
1
is acoustic

strength with dimension of L

T

3

2[ ], where L is length and T

is time dimension. Note that J in this case is J
1
and

=J J ωt¯ cos
1 1

( ). We use absolute value since J̄
1
should be

positive. It should be noted that the value of J̄
1
is maximum

exactly when =ζhsin 1( ) because in this case =ζhcos 0( )

and the B1 will also be maximum (the denominator of B1

becomes minimum). Thus, the resonance frequency can be
derived as follows:

=ζhsin 1,( ) (3g)

= ⎛
⎝ + ⎞

⎠ζh n π

1

2
, (3h)

=ζ

ρ

c

ω

¯
,

33

(3i)

=
+

=f

n

t

n, 0, 1, 2,…,
ρ

c

1

2

¯33

(3j)

where ρ is the mechanical density of piezoceramic and t is
thickness of it ( =t h2 ). As mentioned previously, the frequen-
cies that acoustic strength peaks are as same as frequencies
that pressure at receiver side peaks and resonance occurs at
frequency that the pressure has maximum peak. The antire-
sonance frequency for this case of boundary conditions
occurs when =ζhsin 0( ) . As a result, we have:

=ζh nπ , (3k)

= =f

n

t

n, 1, 2, 3,….
ρ

c̄33

(3l)

2.2.2 Boundary conditions (transmitter, free at front
side and fixed at back side)

Here, we assumed that the right sides of transmitter in
direction of receiver, piezoceramic square element is free
to touchfluid, i.e., the stress at right side is zero; however, the left
side is fixed (no strain condition) and there is a back layer with
suitable thickness at the left side that suppresses the acoustic
pressure. The boundary conditions between the piezoceramic
transmitter disk and the acoustic environment are as follows:

==−S 0,z h33∣ (3m)

==+T 0,z h33∣ (3n)

− ==+ =−ϕ ϕ V¯ ¯ ,z h z h 0∣ ∣ (3o)

==ϕ̄ 0,z 0∣ (3p)

where =S u33 3,3. By applying boundary conditions in equa-
tions (2k) and (2l):

− =B ζ ζh B ζ ζhcos sin 0,1 2( ) ( ) (3q)

+ + =c B ζ ζh B ζ ζh e C¯ cos sin 0,33 1 2 33 1( ( ) ( )) (3r)

+ =
e

ε

B ζh C h V2 sin 2 .
33

33

1 1 0( ) (3s)
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Derive B1 from the first equation and plug it into the
second equation, then derive C1 and now we have B1 and
C1 in terms of B2. We can plug the aforementioned para-
meters into third equation and derive B2. Note that these
algebraic manipulation is admissible only if ≠ζhcos 0( ) :

=B B ζhtan ,1 2 ( ) (3t)

= −C

c

e

B ζ ζh2
¯

sin ,1

33

33

2 ( ) (3u)

⎜ ⎟− ⎛
⎝

⎞
⎠

=
e

ε

B ζh ζh

c

e

B ζ ζh h V2 tan sin 2 2
¯

sin ,
33

33

2

33

33

2 0( ) ( ) ( ) (3v)

+ =
e

ε

B C 0.
33

33

2 2 (3w)

Thus, the aforementioned constants are as follows:

=
−

B

V

ζh ζh ζh2 sin 4 cos

,
e

ε

c

e

1

0

¯33

33

33

33

( ) ( )
(4a)

=
−

B

V

ζh ζh ζh ζh2 tan sin 4 sin

,
e

ε

c

e

2

0

¯33

33

33

33

( ) ( ) ( )
(4b)

= −
−

C

V ζ

ζh ζh

2

2 tan 4

,

c

e

e

ε

c

e

1

¯

0

¯

33

33

33

33

33

33

( )
(4c)

= −C

e

ε

B .2

33

33

2 (4d)

The normalized acoustic strength of the transmitter trans-
ducer is calculated as follows:

= → =
+=+

J

Au

cA

J

ω B ζh B ζh

c

¨
¯

sin cos
.

z h

2

3

2

2
1 2∣ ∣ ( ) ( )∣ (4e)

Note that J in this case is J
2
and =J J ωt¯ cos

2 2
( ). Finding the

maximum value of the J̄
2
is more complex than J̄

1
; thus, we

will introduce a general method based on energy to find
the resonance frequency.

2.3 Resonance frequency of transmitter

We can consider thickness as a constant and sweep the
acoustic strength vs frequency to find the resonance, and
in this case, we use analytical approach as a verification
method for the optimum frequency we fined from gra-
phical method, i.e., sweeping. In this approach, we find
the extremum (minimum in this case) of the average
Lagrangian with respect to frequency.

2.3.1 Potential energy

The strain energy per unit volume stored in the piezo-
ceramic due to deformation is expressed as follows:

∫ ∫ ⎜ ⎟= = ⎛
⎝ − ⎞

⎠
U T S T d

T

c

e C

c

d
¯ ¯

,0 33 33 33

33

33

33 1

33

(5a)

∫= =
−

+

U

T dT

c c

T

¯

1

2¯
,

h

h

0

33 33

33 33

33

2 (5b)

∫ ∫= = =
−

+

−

+

U U A z

A

c

T z

A

c

I¯ d
2¯

d
2¯

,

h

h

h

h

0

33

33

2

33

1
(5c)

where ∫= −
+

I T zd
h

h

1 33

2 and Ū is energy stored in the piezo-
ceramic due to deformation. From (2n), we have

= + +I c B N c B N e C N¯ ¯ ,1 33

2

1

2
1 33

2

2

2
2 33

2

1

2
3 (5d)

− + −c B B N c e C B N c B C e N2 ¯ ¯ ¯ ,33

2
1 2 4 33 33 1 2 5 33 1 1 33 6( ) (5e)

where

∫=N ζ ζz zcos d ,1
2 ( ) (5f)

∫=N ζ ζz zsin d ,2
2 ( ) (5g)

∫=N zd ,3
(5h)

∫=N ζ ζz zcos d ,4 ( ) (5i)

∫=N ζ ζz ζz zcos sin d ,5
2 ( ) ( ) (5j)

∫=N ζ ζz zsin d .6 ( ) (5k)

These integrals easily can be solved by changing the variable,
assume =u ζz, and solve the aforementioned integrals1:

= +N ζ h

ζ

ζh

2
sin 2 ,1

2 ( ) (5l)

= −N ζ h

ζ

ζh

2
sin 2 ,2

2 ( ) (5m)

=N h2 ,3 (5n)

=N ζh2 sin ,4 ( ) (5o)

=N 0,5 (5p)

=N 0.6 (5q)

After substitution of these integral solutions into I1, we
have

⎟

= ⎛
⎝ + + −

+ −
⎞
⎠

U ζ hAc B B

Ac ζ

B B ζh

Ae C h

c

Ac B B ζh

¯
1

2
¯

¯

2
sin

2

¯
4 ¯ sin ,

2
33 1

2

2

2 33

1

2

2

2

33

2

1

2

33

33 1 2

( ) ( ) ( )

( )

(6a)



1 Note that ζ is constant here.
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It should be noted that we had dropped the sinusoidal term
in stress and strain, but we should consider it for calcu-
lating the average value of potential energy. We have

= =U U ωt U θ¯ sin ¯ sin2 2( ) ( ). The average value of U is:

∫= ⎛
⎝

− ⎞
⎠U

ωT

U

θ

θ

1
¯

1 cos 2

2
d ,

ωT

av

0

( ) (6b)

∫= −U

U

ωT

θ θ

¯

2
1 cos 2 d ,

ωT

av

0

( ( )) (6c)

=U

Ū

2
.av

(6d)

2.3.2 Kinetic energy

In contrast to potential energy, which is internal to the
system, the kinetic energy is due to a external agent, for
obtaining this energy, the newton second law for the trans-
mitter should be solved. Here, we just use the result of
section efficiency (section 5). According to this (efficiency)
section, velocity is: = − +x A ω ωt A ω ωt˙ sin cos1 2( ) ( ), where
A1 and A2 are as the same constants as derived in section
efficiency. The kinetic energy is expressed as follows:

⎜ ⎜ ⎟

=

=
⎛
⎝

+ −
⎛
⎝

−
⎞
⎠

−

T mx

m

A ω A ω A ω A ω

ωt

A A ω ωt

1

2
˙

1

2 2 2 2 2
cos 2

sin 2 ,

2

1

2 2
2

2 2
1

2 2
2

2 2

1 2
2

( )

( ))

(7a)

Similarly, the average value of kinetic energy is as follows:

⎜ ⎟=
⎛
⎝

+
⎞
⎠

T

m A ω A ω

2 2 2
.av

1

2 2
2

2 2

(7b)

2.3.3 External force work as a potential

The mechanical work done on transmitter piezoceramic is
caused by piezoelectric force Kv in which is denoted by V

and is assumed to be stored as a potential energy.

∫= − = −V Kv x Kvxd , (8a)

= − × +V KV ωt A ωt A ωtsin cos sin ,0 1 2( ) ( ( ) ( )) (8b)

=
−

− +V

KV A KV A

ωt

KV A

ωt

2 2
sin 2

2
cos 2 ,

0 2 0 1 0 2
( ) ( ) (8c)

=
−

V

KV A

2
.av

0 2 (8d)

Note that Kv is constant and comes out of the
integration.

2.3.4 Resonance frequency

We will find optimum excitation frequency and thickness
at constant excitation voltage. For doing this, we should
first take the average of the Lagrangian.

= − = − +L T π T U V ,av av av av av av( ) (9a)

where π is total potential of the system. Now we should
extremetize the Lagrangian as follows:

∂
∂

=
∂
∂

=
L

ω

L

h

0, 0.
av av (10a)

As mentioned earlier, the analytical method can be
used as a verification of the frequency derived from
sweeping the acoustic strength (at given thickness). By sol-
ving the aforementioned nonlinear equations numerically
in MATLAB, we can find the optimum resonance frequency
and even optimum thickness at which we have maximum
pressure at a receiver side.

3 Propagation of acoustic waves
between transducers

The most exact simplified sound wave equation in viscous
fluid without considering compressibility, which can be
considered as a model of human body tissue can be
described as follows2 (Kino 1987):

⎜ ⎟
⎛
⎝

+
′ ∂

∂
⎞
⎠
∇ −

∂
∂

=
μ

ρ c t c t

J1 Φ
1 Φ

,

0

2

2

2

2

2
(11a)

where Φ is the velocity potential, J is the the ratio of
acoustic source strength at the transmitter-fluid interface
to acoustic volume velocity, i.e., Q

cA

, Q is the acoustic source
strength, ′ = +μ μ μ

v

4

3
, μ

v
is the bulk viscosity, μ is the

shear viscosity, ρ
0
is the acoustic environment density

(i.e., humane body tissue density), and c is the sound velo-
city in the viscous fluid.

Note that the dimension of Q is L

T

3

2[ ]. The shear viscosity
dissipates energy by friction between adjacent layers of fluid,
while the bulk viscosity dissipates energy with the dilata-
tional-compressional motion of the fluid. By solving this non-
linear wave equation, one can obtain the velocity as a deri-
vative of the potential function Φ so that we will be able to



2 Note that we are not going into the detail of the derivation of this
equation because it is another subject and is beyond the scope of our
analysis.
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calculate the pressure at any distance from the source (sender
transducer). This pressure is sinusoidal and has an amplitude
with exponential decay with distance from the source.

By knowing the velocity potential, one can derive the
pressure according to the following differential equation
(Kino 1987):

⎜ ⎟
⎛
⎝

+
′ ∂

∂
⎞
⎠

+
∂
∂

= ′
μ

ρ c t

p ρ

t

μ J1
Φ

.

0

2 0
(11b)

Assume a one-dimensional model3. We assume the response
of equation (11a) as follows:

= −D jK z jωtΦ exp exp ,h 1 1R( ( ) ( )) (11c)

where K1 and R are the complex wave number and real
part of the time exponential term, respectively. D1 is the
amplitude of velocity potential. Equation (11c) in frequency
domain is given as follows:

= − ∠D jK zΦ̄ exp 0,h 1 1( ) (11d)

where the bar-sign means frequency domain. By substi-
tuting equation (11c) or (11d) into homogenized equation
(11a) and drop time harmonic real part terms, we obtain:

⎜ ⎟
⎛
⎝
− +

− ′
− +

⎞
⎠

=K D

μ

ρ c

K D jω

ω

c

D 0.1

2
1

0

2 1

2
1

2

2 1( ) (11e)

Note that we drop the exponential terms.

=
+

− = −

=
+

=
+

K

ω

c a b

a jb k jk

k

ωa

c a b

k

ωb

c a b

,

1 2 2 1 2

1 2 2

2 2 2

( )
( )

( )

( )

(11f)

where a and b are given as follows:

=
+ +

=
+ −

′

′

a

ρ ρ

ρ

b

ρ ρ

ρ

2

2
.

μ ω

c

μ ω

c

0

2 2

0

0

0

2 2

0

0

2

2

( )

( )

(11g)

Note that k2 and not k1 is attenuation constant, and k1 is
wave number. The nonhomogeneous solution of the differ-
ential equation (11a) in the time domain is given as follows:

=-
c J

ω

jωtΦ
¯

exp .hnon

2

1

2
R( ( )) (11h)

And the phasor form is:

= ∠-
c J

ω

Φ̄
¯

0.hnon

2

1

2
(11i)

Thus, the homogeneous plus nonhomogeneous solution in
the frequency domain becomes as follows:

= + -Φ̄ Φ̄ Φ̄ .h hnon (11j)

By applying boundary condition, we obtain

− =
=+

=+
z

u

dΦ̄

d
˙ ,

z h

z h3 ∣ (11k)

= + ==+u jω B ζh B ζh jR˙ sin cos ,z h3 1 2 1∣ ( ( ) ( )) (11l)

where we introduced R1 in which is arbitrary constant for
simplicity. Note that we dropped the cosine term in the
equation (11l). We can write equation (11l) as follows:

⎜ ⎟− = → = − ∠ ⎛
⎝

⎞
⎠

−
jKD jR D D

k

k

tan ,1 1 1 1
1 2

1

∣ ∣ (11m)

where =D
R

K
1

1

1
2∣ ∣

∣ ∣
. By knowing the velocity potential, we

can calculate the pressure at any distance (x) from the
transmitter transducer. According to equation (11b), we
have (in time domain) the following:

+
′

= +
′

× − +

+
′

−

p

t

ρ c

μ

p ρ c J cos ωt

ρ c ω D

μ

e ωt k x ϕ

ρ c J

μ ω

ωt

d

d
¯

cos

¯
sin ,

k x

0

2

0

2

1

0

2 2
1

1 1

0

4

1

2

( )
∣ ∣

( )

( )

(12a)

where = + ⎛
⎝

⎞
⎠

−
ϕ tan

π k

k1 2

1 2

1

and the third term on the right-

hand side is due to nonhomogeneous solution of
velocity potential. We assume the steady state solution as
follows:

= + + −
+ + − +

−

−

p C ωt C ωt C e ωt k x

ϕ C e ωt k x ϕ

cos sin cos

sin ,

k x

k x

3 4 5 1

1 6 1 1

2

2

( ) ( ) (

) ( )
(13a)

where x is distance from transmitter transducer. Note that
the transient solution is − ′

p e
t

0

μ

ρ c0
2

( ) in which we neglect our
calculations. By using superposition method and substi-
tuting equation (13a) into the differential equation (12a),
we can solve for constants C C C C, , ,3 4 5 6:

− +
′

=
′

C ω C

ρ c

μ

ρ c J

μ ω

¯
,3 4

0

2

0

4

1 (13b)

+
′

=C ω C

ρ c

μ

ρ c J̄ ,4 3

0

2

0

2

1
(13c)



3 Here, the origin ( =x 0) is in the mid-plan of transmitter transducer.
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+
′

=
′

ωC

ρ c

μ

C

ρ c ω D

μ

,6

0

2

5

0

2 2
1∣ ∣

(13d)

− +
′

=ωC

ρ c

μ

C 0.5

0

2

6
(13e)

Note that the dominance of each term in the aforemen-
tioned function determines near-field or far-field pressure
in acoustic domain. By solving the aforementioned equa-
tions, we obtain:

=
′

′ +
C

ρ c ω μ D

μ ω ρ c

,6

0

2 2 2
1

2

0

2 2

∣ ∣

( ) ( )
(13f)

=
′

C

ρ c

μ ω

C ,5

0

2

6
(13g)

=

⎛
⎝ + ′ ⎞

⎠
′ +

C

μ ω ρ c J

μ ω ρ c

¯

,

ρ c

ω

4

2

0

2

1

2

0

2 2

0
4

( ) ( )

(13h)

=
′

−
′

C

ρ c

μ ω

C

ρ c

μ ω

J̄ .3

0

2

4

0

4

2 1
(13i)

Note that for free-fixed boundary conditions, we should
use J̄

2
instead of J̄

1
. The steady-state response in phasor

form at distance L became4:

= − + − ∠ −

+ − ∠⎛
⎝ − − ⎞

⎠
= + − + −

+ − + −

− −

p C jC C k L ϕ k L

C k L ϕ k L

π

C C k L Y C k L Y

j C C k L Y

C k L Y

¯ exp

exp
2

exp cos exp sin

exp sin

exp cos ,

3 4 5 2 1 1

6 2 1 1

3 5 2 6 2

4 5 2

6 2

( ) ( )

( )

( ( ) ( ) ( ) ( ))

( ( ) ( )

( ) ( ))

(14a)

where = −Y ϕ k L
1 1 .

⎟⎜= ⎛
⎝
− + − − −

+ − + −
⎞
⎠

−
θ

C C k L Y C k L Y

C C k L Y C k L Y

tan
exp sin exp cos

exp cos exp sin
.1

4 5 2 6 2

3 5 2 6 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
(14b)

3.1 Reynolds number

We can define Reynolds number as follows:

=
′

ρ c

μ ω

Re .
0

2

(15)

This can be interpreted as inertia force (acceleration) to
viscous force (friction). Note that it is a nondimensional
number. If this term became small, then the pressure
decreases substantially with distance from transmitter

and the decaying term became dominant with respect to
steady terms in pressure function. We will calculate this
number in the numerical example section.

4 Receiver transducer

In this section, we express the mechanical and electrical
differential equations for resistive, capacitive, and induc-
tive loads and decouple them in the frequency domain so
that the electrical damping and output power can be cal-
culated. Figure 2 depicts the general circuit of the equiva-
lent electrical part of the receiver transducer, whereC0 and
I0 are internal capacitance of piezoceramic transducer and
the generated current, respectively, due to the deformation
of piezoceramic disk.

4.1 Resistive load

The second Newton law on the mechanical side and the
Kirchhoff current law on the electrical side with =X 0 are
as follows:

+ + + =

+ − =

mx C x k x Kv F

C

v

t

v

R

Kx

¨ ˙

d

d
˙ 0.

m s exc

0

(16)

Note that I0 is equal to Kẋ and Kv is the piezoelectric force,
where v and ẋ are velocity and load voltage, respectively.
C0 is

εA

t

, where A is area of transducer and t is thickness of
it. In frequency domain, equation (16) can be written as
follows:

− + + + =

⎛
⎝ + ⎞

⎠ =

mω jωC k x Kv F

R

jωC v jKωx

¯ ¯ ¯

1
¯ ¯,

m s

2

0

( )

(17)

where the bar sign means frequency domain. And =F pA¯ ¯ .
By simplifying the aforementioned equations and after
substitution, we have:

Figure 2: The equivalent electrical part of receiver transducer.



4 Note that instead of L, we should use +L h; however, we neglect
the h distance from mid-plane of the transmitter transducer.
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=
+

×
⎛

⎝
⎜− + + +

+

⎞

⎠
⎟ =

v

jKω

jωC

x

mω jωC k

jK ω

jωC

x ω F

¯ ¯

¯ ¯.

R

m s

R

1

0

2

2

1

0

( )

(18)

Therefore, the transfer function is given as follows:

⎟⎜⎟⎜

=
⎛
⎝

− +
⎞
⎠

+
⎛

⎝
+

⎞

⎠+ +

x

F

ω mω jω C

¯

¯

1
,

k

ω

K ωC

ω C
m

ω C

s

R

K

R

R

2
0

1

2

2
0
2

2

1

2

2
0
2

(19)

Now we calculate the input electrical power into the elec-
trical domain. Note that only the work of piezoelectric
force, i.e., Kv, contributes to electrical input power into
electrical domain.

∫= −P t

t

Kv x

d

d
d ,( ) (20a)

∫= −P ω jωK v x¯d¯,( ) (20b)

∫= −
+

= ⎛
⎝

⎞
⎠ +

∗
P ω jωK

jωKx

jωC

x

ω K

jωC

xx
¯

d¯
1

2
¯ ¯ .

R R

1

0

2 2

1

0

( ) (20c)

After simplifying and transforming the aforementioned
equation into standard form, we obtain:

=
⎛

⎝
⎜

+
−

+

⎞

⎠
⎟P ω

ω C

j

K ωC

ω C

x

1

2
˙ ,

K

R

R R

1
2

0

2

2
0

1
2

0

2

2

2

2 2

( ) ∣ ∣ (20d)

= − ′P c jc x

1

2
˙ ,e e

2( )∣ ∣ (20e)

=P C x

1

2
˙ ,e

2∣ ∣ (20f)

= − ′C c jc ,e e e
(20g)

=
+

c

ω C

,e

K

R

R

1
2

0

2

2

2

(20h)

′ =
+

c

K ωC

ω C

,
e

R

2
0

1
2

0

2
2

(20i)

=
+

v

x

jωK

jωC

¯

¯
,

R
0

1 (20j)

=
+

v

x

K ω

C ω

,

R

2 2 2

0

2 2
1

2

(20k)

= =
+

P

v

R

K x ω

C ω R

,

R

2 2 2 2

0

2 2
1 (20l)

=P

P

2
,RMS

(20m)

where RMS stands for the root mean square. Note that the
P in equation (20m) is P of equation (20l). Note that the x

can be replaced by the transfer function, i.e., equation (19).
ce is the electrical damping coefficient and ′c

e
is the energy

injection lock coefficient or simply lock coefficient (Dez-
hara 2022). The former is responsible for active power,
and the latter is responsible for the reactive power. It
should be noted that the flow of reactive power is always
from the electrical domain into the mechanical domain
even if the sign of ′c

e
is negative.5 Finally, we can put the

transfer function into the form

=
− + ′ + +

x

F k mω ωc jω C c

¯

¯

1
.

s e m e

2 ( )
(21)

And the resonance condition in which we can calculate the
resonance frequency of the receiver transducer from is
given as follows:

− +
+

= → ′ = −k mω

K ω C

ω C

c mω

k

ω

0 .s

R

e

s2

2 2
0

1
2

0

2
2

(22)

It is worth noting that this condition guarantees that the
mechanical displacement amplitude is maximum, and the
frequency that derived from it is also called natural fre-
quency of the receiver piezoceramic element. The active
electrical power in the resistor is given as follows:

= →
∂
∂

=P

ω

c x

P

c2
0.e

e

2

2 (23)

By applying the resonance condition

=
+

→ =
+

x

F

jω C c

x

F

w C c
¯

¯

¯

¯
.

m e m e( )
∣ ∣

∣ ∣

( )
(24)

And, finally, plugging (24) into (23), the following is
obtained

=
+

P

F c

C c

¯

2
.

e

m e

2

2

∣ ∣

( )
(25)

It should be observed that

∂
∂

= → + − + = → =
P

c

C c C c c c C0 2 0 .

e

m e m e e e m

2( ) ( ) (26)

This condition states that, at resonance, input electrical
power in the electrical domain is maximized, i.e., max-
imum peak when the electrical damping coefficient equals
the mechanical damping coefficient.



5 In this case, negative reactive energy flows into the mechanical part
and affect the mass and spring elements.
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4.2 Capacitive load

When the load reactance in Figure 2 has a negative value
(capacitive load), an analysis approach similar to those for
resistive load can be used, which yields to the following
equations:

+ ⎛
⎝ + ⎞

⎠ =C R

i

t

C

C

i Kx

d

d
1 ˙ ,0

0 (27a)

⎛

⎝
⎜⎜− + + +

+

+ +

⎞

⎠
⎟⎟ =mω C jω k

K jω R

jωC R

x F

1
¯ ¯,m s

jωC

C

C

2

2
1

0

0

( )
(28a)

=
⎛
⎝ + ⎞

⎠ +
c

K R

ω R C1

,e

C

C

2

2

2 2
0

20
(28b)

⎜ ⎟

′ =

⎛
⎝

+ ⎞
⎠

⎛
⎝ + ⎞

⎠ +

+

c

K R ωC

R ω C1

,
e

Cω

C

C

2
1

2
0

2

2 2
0

2

C

C

0

0

(28c)

where v is the load voltage and x is the displacement.

=
+ ⎛

⎝ + ⎞
⎠

i

x

jωK

RC ωj

¯

¯
1

,
C

C
0

0
(29a)

=
+ ⎛

⎝ + ⎞
⎠

i

x

K ω

R C ω 1

,

C

C

2 2 2

2
0

2 2

2

0
(29b)

= =
+ ⎛

⎝ + ⎞
⎠

P i R

K x Rω

R C ω 1

,

C

C

2

2 2 2

2
0

2 2

2

0
(29c)

=P

P

2
.RMS

(29d)

4.3 Inductive load

The analysis can be done in the case of an inductive load.
The electrical side equations are given as follows:

= + +Kx C R

i

t

C L

i

t

i˙
d

d

d

d
,0 0

2

2
(30)

which, in the frequency domain, becomes

= + −jωKx ω jωC R C Lω i ω¯ 1 ¯ .0 0
2( ) ( ) ( ) (31)

The load voltage in the frequency domain is given as
follows:

= +v R jωL i ω¯ ¯ .( ) ( ) (32)

So, the transfer function is

=
− + + + +

− +

x

F
mω k jωC

¯

¯

1
.

s m

jωK R jωL

C Lω jωRC

2

1

2

0
2

0

( )

( )

(33)

On the basis of the real and imaginary parts of the transfer
function denumerator, we obtain

=
− +

c

K R

C ω L RC ω1
,e

2

0
2 2

0
2( ) ( )

(34)

′ =
− −

− +
c

K R ωC K ωL C Lω

C ω L RC ω

1

1
,

e

2 2
0

2
0

2

0
2 2

0
2

( )

( ) ( )
(35)

and, finally, according to (31), the output power is

=
− +

i

x

jωK

C Lω RC ωj

¯

¯ 1
,

0
2

0( )
(36a)

=
+ −

i

x

K ω

R C ω C ω L1
,

2 2 2

2
0

2 2
0

2 2( )
(36b)

= =
+ −

P i R

K ω Rx

R C ω C ω L1
,2

2 2 2

2
0

2 2
0

2 2( )
(36c)

=P

P

2
.RMS

(36d)

5 Efficiency

In this section, we derive a formula for efficiency of trans-
mitter and receiver. However, before that, we should
define efficiency as output electrical power to input power
due to deformation. In other words, we can define effi-
ciency just for direct piezoelectric effect (energy harvesting
effect) and not indirect effect.Wheneverwe have indirect effect
such as in transmitter, we should reverse the result and define
the efficiency as input electric power to output mechanical
power due to velocity and deformation. Otherwise it is value
became larger than one.

5.1 Transmitter

The differential equation governing the vibration of trans-
mitter transducer is as follows:

+ + =mx C x k x KV ωt¨ ˙ sin ,m s 0 ( ) (37a)

whereV0 is peak excitation voltage and the excitation term
in the aforementioned differential equation is piezoelectric
force induced on transmitter transducer. If we assume a
sinusoidal solution of = +x A ωt A ωtcos sin1 2( ) ( ), then by
substituting this solution into the differential equation, we
can derive constant of A1 and A2. The result is:

10  Aboozar Dezhara et al.



=
− −

− +
A

KV C ω k mω

k mω C ω

,
m s

s m

1

0
2

2 2 2

( )

( ) ( )
(37b)

=
−

− +
A

KV k mω

k mω C ω

.
s

s m

2

0
2

2 2 2

( )

( ) ( )
(37c)

Now consider the electrical peak input power to transmitter:

= − ×P t v t Kx t˙ ,( ) ( ) ( ) (37d)

= − +x t A ω ωt A ω ωt˙ sin cos ,1 2( ) ( ) ( ) (37e)

=v t V ωtsin .0( ) ( ) (37f)

Note that the minus sign in power equation is due to the
reverse direction of current into transmitter. After substi-
tution, we have

= −P t KωV A ωt KωV A ωt ωtsin sin cos .0 1
2

0 2( ) ( ) ( ) ( ) (37g)

After simplification, we have

= − +P t

KωV A

KωV A ωt A ωt

2

1

2
cos 2 sin 2 .

0 1

0 1 2( ) ( ( ) ( )) (37h)

The RMS input value of the power is given as follows:

= +P KωV

A A3

8 8
.RMS in 0

1

2

2

2

( ) (37i)

For deriving the output power of transmitter, it should be
noted that the electrical input power to transmitter is con-
verted to mechanical one. In other words, the electrical
input power causes the transmitter piezoceramic to
have displacement and velocity. Thus, we first should
calculate the sum of potential and kinetic energy func-
tion (the total energy) with respect to time and take a
derivative of it and at the end take the RMS of the output
power. From Section 2.3, we can obtain the total mechan-
ical energy of the transmitter.

⎟

⎜

⎜ ⎟

= +

= +
⎛
⎝

+

−
⎛
⎝

−
⎞
⎠

−
⎞

⎠

E U T

E t U ωt

m

ω

A A

A A

ωt A A ωt

¯ sin
2 2 2

2 2
cos 2 sin .

2 2 1

2

2

2

1

2

2

2

1 2

( ) ( )

( ) ( )

(37j)

After simplification and some algebraic manipulation:

⎟

⎟

⎜

⎜

⎜ ⎟

⎜ ⎟

=
⎛
⎝

+
⎛
⎝

+
⎞
⎠
⎞

⎠

−
⎛
⎝

⎛
⎝

−
⎞
⎠

−
⎞

⎠
−

E t

U m

ω

A A

m

ω

A A U

ωt

A A ωt

¯

2 2 2 2

2 2 2

¯

2
cos 2

sin 2 ,

2 1

2

2

2

2 1

2

2

2

1 2

( )

( )

( )

(37k)

Now we can take the derivative of equation (37k) to find
the output power of the transmitter transducer.

⎟⎜ ⎜ ⎟

=

=

+
⎛
⎝

⎛
⎝

−
⎞
⎠

−
⎞

⎠

P t

E t

t

P t ωA A ωt

mω

A A

ωU ωt

d

d

2 cos 2

2 2
¯ sin 2 .

out

out 1 2

3 1

2

2

2

( )
( )

( ) ( )

( )

(37l)

By taking the RMS of equation (37l), we have:

= +P

Z Z

4 4
,out RMS

1

2

2

2

( ) (37m)

where

=Z ωA A2 ,1 1 2 (37n)

⎜ ⎟=
⎛
⎝

−
⎞
⎠

−Z mω

A A

ωU

2 2
¯ .2

3 1

2

2

2

(37o)

The efficiency is:

=η

P

P

,
in RMS

out RMS

( )

( )
(37p)

=
+

+
η

KωV A A

Z Z2

3
.

0 1

2

2

2

1

2

2

2
(37q)

Note that according to the definition of efficiency for
indirect piezoelectric effect we should reverse the the ratio
of output mechanical power to the input electrical power
for transmitter transducer.

5.2 Receiver

We define the efficiency for receiver transducer as the
ratio of the output power in load resistor to the input
power deliver by pressure imposed on transducer by ultra-
sonic waves. It should be noted that the input power to the
receiver energy harvester is equal to the power consumed
in the mechanical and electrical dampers (refer to similar
article about efficiency from the first author (Dezhara
2023)). We have calculated the electrical damping coeffi-
cient for each load and also output power. Thus, we define
the efficiency in this case as follows:

( )
=

+
=

+
η

P

C c x

P

C c x˙ ˙

,
R

m e

R

m e

2

RMS

1

2

2

L L

( )∣ ∣ ( )∣ ∣
(38a)

where PRL
is the load resistor output power for each kind

of load we considered in Section 4. Note that square of
velocity in the denumerator is peak value and can be
written as ω x

2
0

2, where x0 is amplitude of displacement,
the parameter of x0

2 from denominator cross out with x0

2

of numerator, and as a result, there is no need to calculate
it or substitute it by transfer function derived in Section 4.

Ultrasonic energy harvseting  11



For instance, for resistive load, the efficiency for receiver
energy harvester is given as follows:

⎟⎜
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+ +
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=
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C ω R
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1
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C

K R0

2 2
1m

2
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In this simple case (resistive load), the maximum efficiency
for receiver energy harvester can be easily derived:

∂
∂

=
η

R

0, (38d)
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(38e)

We conclude that for resistive load, the maximum efficiency
of receiver transducer occurs when the load resistance is
equal to internal impedance (reactance) of piezoceramic
transducer. Note that this resistance is not the optimum resis-
tance for maximum power because generally for energy har-
vesters, maximum efficiency does not occurs at load that
maximize power (Dezhara 2023). The maximum efficiency
is obtained by substitution of (38e) into efficiency formula:

=
+

η

1

1

.
C C ω

K

max 2 m 0

2

(38f)

6 Design method

Here, we introduce an example to find excitation fre-
quency at constant excitation voltage and thickness by

designing maximum acoustic strength parameter to pro-
duce maximum pressure at receiver side. It should be noted
that both of pressure and acoustic strength peak at same
frequencies. The resonance frequency is defined as a fre-
quency that the pressure has a maximum peak at receiver
side. Note that the output power depends on area of the
transducer, and the more the area, the more the power at
constant pressure we have. The pressure varies with time
through sinusoidal function; however, for receiver, the phase
difference between pressure (excitation force) and load vol-
tage (i.e., Kv which is piezoelectric force) is always π

2
(In other

words, at maximum pressure, we have zero displacement,
and at maximum displacement, we have zero pressure.).

6.1 Numerical example

Let us assume to know the mechanical damping coefficient,
as well as the piezoelectric coupling factor between the
mechanical and electrical side of receiver transducer and
also mass of the transducer6. Furthermore, assume other
parameters for a commercial piezoceramic transducer and
the acoustic environment as listed in Tables 1–3.

Note that the value of K is calculated by equation (A14)
that will be derived in the appendix. In the afore-men-
tioned equation, the parameters of open circuit voltage
are obtained from the experiment and other parameters

Table 1: Material properties of PIC155 and geometric constants

Symbol Parameter Value Unit

ρ Density 7,800 kg

m3

ε

ε

T

33

0

Relative
permittivity

1,450 —

c
D

33
Elastic constant ×11.1 1010 N

m2

Coupling factor k33 0.69 —

Distance L 5 cm
Square length D 1.46 cm
Half of the thickness h 2.1

2

mm

Peak excitation voltage V0 10 V
Coupling factor K 2.16 N

m

Table 2: Properties of acoustic environment (distilled water at ∘25 C)

Symbol Parameter Value Unit (SI)

c Sound velocity 1,498 m

s

μ
v

Bulk viscosity ×2.47 10‒2 Pa s
μ Shear viscosity ×0.888 10‒3 Pa s

ρ
0

Density of fluid 997 kg

m3

Table 3: Mechanical parameters of transducers

Symbol Parameter Value Unit (SI)

m Mass (2.1 mm thickness) 3.49 g
ks

Mechanical stiffness (2.1 mm
thickness)

259,893,847 N

m

Cm
Mechanical damping 0.31 N s

m



6 The first two constants can be derived by analyzing the short- and
open-circuit transient response of the piezoceramic transducer,
respectively, and this task has been done in the Appendix of this
article.
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are known by calculations. The known input data are
arranged in Tables 1 and 2. Note that the value of K should
be calculated through open circuit voltage experiment
(Figures 3–12).

We also include the mechanical parameters (Table 3)
such as the stiffness of the transducers, which have impor-
tance in our calculations. It should be noted that the value of
stiffness is calculated using a structural model in MATLAB.

According to Figure 13, we can calculate the stiffness
(the ratio of force due to pressure over displacement), as

259, 893, 847
N

m
for the thickness of 2.1 mm. Note that based

on our finite element simulation in MATLAB, the displace-
ment of center of receiver transducer for the an arbitrary7

imposed pressure of 1.2 MPa is × −1.5764 10 mm5 .

Figure 3: Plot of acoustic strength vs frequency.

Figure 4: Plot of pressure vs frequency at constant distance between transducers, the resonance frequency is 9.13545 MHz, =L 5 cm.



7 Note that the result does not change if we impose another pressure
because the relationship between force and displacement for linear
elastic material is linear.
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6.1.1 Calculation of efficiency

Note that the maximum efficiency for resistive load based
on equation (38f) and for free-fixed transmitter (Table 4)
radiation ( =t 2.1 mm) is =η 99.3%

max
that occur at

=R 18.93Ω. It should be noted that for receiver, based on
Tables 5 and 7, the free-fixed boundary conditions shows
higher efficiency than free-free one. At the end, based on
Tables 4 and 6 the efficiency of transmitter at free-free
boundary condition is higher than free-fixed case.

6.1.2 Calculation of resonance frequency

Here, we plot the average Lagrangian for free-fixed boundary
condition, and as seen from the plot, it has a minimum at
frequency of 9.13545 MHz at constant thickness of 2.1 mm. The

Figure 5: Plot of output power vs resistive load for free-fixed boundary
condition.

Figure 6: Plot of output power vs capacitive load for free-fixed boundary
condition.

Figure 7: Plot of output power vs inductive load for free-fixed boundary
condition.

Figure 8: Plot of acoustic strength vs frequency.
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Figure 9: Plot of pressure vs frequency at constant distance between transducers, the resonance frequency is 11.7402 MHz, L = 5 cm.

Figure 11: Plot of output power vs capacitive load for free-free boundary
condition.

Figure 10: Plot of output power vs resistive load for free-free boundary
condition.

Figure 13: Deflection of receiver transducer (with 2.1 mm thickness) due
to imposed pressure of 1.19448 MPa on it vs displacement (in meter) by
finite element method in MATLAB.

Figure 12: Plot of output power vs inductive load for free-free boundary
condition.
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Table 4: Transmitter efficiency (free-fixed boundary conditions)

Parameter Value

Pin RMS( ) 0.5748 mW
Pout RMS( ) ×4.014 10 W8

η ×1.432 10 %‒10

Table 5: Receiver efficiency (free-fixed boundary conditions)

Resistive load Capacitive load Inductive load

=R 15.2Ω =R 8.71Ω = ×R 4 10 Ω3

— =C 2.1μF =L 0.1 mH

η = 99.29% η = 59.38% = ×η 2.26 10 %‒4

Table 6: Transmitter efficiency (free-free boundary conditions)

Parameter Value

Pin RMS( ) 0.8235 mW
Pout RMS( ) 1.151 W

η ×7.16 10 %‒2

Table 7: Receiver efficiency (free-free boundary conditions)

Resistive load Capacitive load Inductive load

=R 15.2Ω =R 8.71Ω = ×R 4 10 Ω3

— =C 2.1μF =L 0.1 mH

η = 98.81% η = 34.97% = ×η 3.78 10 %‒5

Figure 14: Extremum (minimum) of the Lagrangian with respect to frequency at thickness of =t 2.1 mm.

Figure 15: Extremum (minimum) of the Lagrangian with respect to thickness at frequency of =f 9.13545 MHz.
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reveres is also true, i.e., it also has minimum at thickness of
2.1 mm and constant frequency of 9.13545 MHz (Figures 14
and 15).

The Reynolds number for free-fixed boundary condi-

tions is: = =×
+ × × × ×−Re 1523.25

π

997 1498

24.7 0.888 10 2 9, 135, 450

2

3( )
. As a

result, the Reynolds number is very large, and hence, the
the viscous force is a bit fraction of inertia force and the
steady terms in pressure are dominant. Thus, the pressure
does not decay in the near field.

7 Discussion

From the plot of acoustic strength vs thickness (Figure 3),
we see that the fixed-free boundary condition leads to
multi-resonance at different acoustic strengths. On the
other hand, the free-free boundary condition leads to reso-
nance and antiresonance. Now a question may arises here
is that where these two different behaviors come from?.
The answer to this curiosity is that the behavior of trans-
mitter under the free-free boundary condition is due to
constructive and destructive interference. These interfer-
ences stems from forward and backward traveling wave
from transmitter which causes constructive interference
and resonance and destructive interference and antireso-
nance. However, the transmitter behavior under free-fixed
boundary condition experience just radiation of forward
traveling acoustic wave and its backward radiation sup-
pressed by a layer with suitable thickness and that is
why we do not see any antiresonance under this boundary
condition. From mechanical design point of view, we
should ask ourselves that does the pressure at resonance
frequency cause mechanical failure in receiver trans-
ducer?. If you multiply the pressure by area of the receiver
transducer, it leads to a large force in the order of several
hundreds kilograms on small area of receiver especially
for the case of free-free boundary conditions. Calculation
of stress and strain due to this force is beyond the topic and
scope of our article; however, we are free to choose a less
excitation frequency and as a result less pressure peak for
the safety reasons.

8 Conclusion

We conclude that by the resistive load, we can extract
more power with even better efficiency with compared
to capacitive and inductive loads. We also conclude that
in the case of free-fixed boundary conditions in addition to

graphical method, the resonance frequency can be calcu-
lated by energy methods, i.e., Lagrangian.
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Appendixes

Here, we consider impedance matching for the receiver
side and also deriving some parameters analytically.

A.1 Impedance matching (receiver side)

The mobility similarity, rather than the impedance simi-
larity, of spring-mass system with electrical circuits as
according to Dezhara (2022), Beeby et al. (2006), Ottman
et al. (2002), Priya et al. (2017) is used in this article.

→ → →m C

C

R

k

L,
1

,
1

,

m s

(A1)

Figure A1 depicts the equivalent circuit of the PZT at the
receiver side. The term pA is an ac current source. The
Thévénin equivalent impedance can be calculated using
short circuit current and open circuit voltage (Figures A2
and A3, respectively) (Kim et al. 2007, Liang and Liao 2012,
Chen et al. 2018, Wang et al. 2011, Wang et al. 2022).
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In regarding to Figure A3, we have:
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where = −X mω
k

ω
1

s . For maximum power transfer:

=R R ,th (A5a)

= −X X .th (A5b)

Note that the optimum resistance and reactance
does not depend on the pressure imposed on receiver
transducer.

A.2 Mechanical damping coefficient and
short circuit piezoelectric element

The mechanical damping coefficient can be calculated
from logarithmic reduction law by measuring the consecu-
tive peaks of transient response of piezoelectric shorted
circuit in a oscilloscope.

=αt Iexp ,1 1( ) (A6a)

Figure A1: Receiver side transducer circuit.
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To calculate the value of α, we proceed as follows:
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If you solve the differential equation (A7), we have:
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we assumed that we have under damped oscillation, i.e.,
< 1

C

k m2

m

s

. So the value of α, which is the attenuation con-
stant is expressed as follows:
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If you equate the relations of (A6e) and (A9), we can calcu-
late the values of Cm as follows:
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Thus, we obtain:
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Note that the velocity is also decayed as −
e

t
Cm

m2 , and conse-
quently, the current decaying factor is the same as the
displacement decaying factor.

A.3 Piezoelectric Coupling Factor

Here, we propose two methods for deriving a formula
for calculating the value of the coupling factor between
the mechanical and electrical sides of piezoceramic
transducers.

A.3.1 Method 1 (analytical method)

The value of K can be found by the open circuit transient
response of the piezoelectric transducer. In other words,
we just give the transducer a initial conditions and solve
the transient equation of motion.
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By substituting (A12d) into (A12a), we have:
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By solving the aforementioned differential equation and
obtaining the nonhomogeneous and homogeneous solu-
tion, we have:
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Figure A3: Short circuit current.

Figure A2: Open circuit voltage.
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where = − ⎛
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C

m

4 2
s

K

C
m

2

0 is called natural damped fre-

quency of receiver piezoceramic. Note that with regard to
large value of ks with compared to Cm, we have under-
damped solution and the overdamped solution is not our
target. We seek the finial value of load voltage, which is its
DC value as times goes to infinity. We name the final value
of load voltage as ∞v . By solving equation (A12c) or by using
equation equation (A12d), we can find ∞v :

= − +∞ ∞v

K

C

x x v ,

0

0 0( ) (A12g)

where =∞
−

+
x

x Kv

k

K

C

s

K

C

2

0
0 0

2

0

. Now we resort to piezoelectric consti-

tutive laws of equation (1h) at the time of infinity:

= − = − ⎛
⎝
− ⎞

⎠
∞

T c S e E c S e

v

t

,
E E

3 33 3 33 3 33 3 33 (A12h)

= + = + ⎛
⎝
− ⎞

⎠
∞

D e S ε E e S ε

v

t

.
S S

3 33 3 33 3 33 3 33
(A12i)

From equation (A12i), we can write guess law as follows:

∫− = → = − ∞
D A q D

C v

A

d ,3 3

0 (A12j)

+ ⎛
⎝
− ⎞

⎠ = −∞ ∞
e S ε

v

t

C v

A

,
S

33 3 33

0 (A12k)

=C

ε A

t

,

S

0

33 (A12l)

After substituting relation of (A12k) into (26), we can find
strain along the (33) direction.

+ ⎛
⎝
− ⎞

⎠ =
−

→ =∞ ∞
e S ε

v

t

ε v

t

S 0.
S

S

33 3 33

33

3
(A12m)

By knowing the the value of strain, we can find stress in
(33) direction from equation (A12h).

= − = ⎛
⎝

⎞
⎠

∞
T e E e

v

t

,3 33 3 33
(A12n)

Now we should relate the stress force to piezoelectric force
( ∞Kv ).
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⎝

⎞
⎠

∞ ∞
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e
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,3 33
(A12o)

From equation (A12o), we can find a formula for K .

= =K

e

ε

C

c d

ε
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33

33

0

33 33

33

0 (A12p)

If we calculate the value of K based on the numerical
example parameters, we have:

= ×c 11.1 10 ,
E

33
10 (A12q)

= × −
d 360 10 for PIC155,33

12 (A12r)

= = × × −
ε ε1,450 1,450 8.855 10 ,

S

33 0
12 (A12s)

=
× × × ×

×
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−C

1,450 8.855 10 1.46 10

3.9519 10
,0

12 2 2

3

( ) (A12t)

=K 2.16
A.s

m
. (A12u)

A.3.2 Method 2 (experimental method)

In the second method, we use equation (A2f). Note that
everything is known except the parameter K . The magni-
tude is expressed as follows:

=
+ ⎛

⎝ − ⎞
⎠

V

K A p

C C ω C ω X

.

m

K

C ω

o.c

2

2 2 2

0
2

0

2 2
1

2
2

0

( )
(A13)

We can put the aforementioned equation in the fol-
lowing form:

⎜ ⎟−
⎛
⎝

+
⎞
⎠

+ + =K

p A

V

C ωX K C ω X C2 0.
m

4

2 2

o.c

2 0 1
2

0

2 2
1

2 2( ) (A14)

By solving the aforementioned equation symbolically in
MATLAB, we can find the acceptable values of K .
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