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Abstract: Timely prediction of wind turbine states is valu-
able for reduction of potential significant losses resulting
from deterioration of health condition. To enhance the
accuracy of fault diagnosis and early warning, data collected
from supervisory control and data acquisition (SCADA)
system of wind turbines is graphically processed and used as
input for a deep learning mode, which effectively reflects the
correlation between the faults of different components of
wind turbines and the multi-state information in SCADA
data. An improved stacked autoencoder (ISAE) framework is
proposed to address the issue of ineffective fault identifica-
tion due to the scarcity of labeled samples for certain fault
types. In the data augmentation module, synthetic samples
are generated using SAE to enhance the training data.
Another SAE model is trained using the augmented dataset
in the data prediction module for future trend prediction.
The attribute correlation information is embedded to
compensate for the shortcomings of SAE in learning attri-
bute relationships, and the optimal factor parameters are
searched using the particle swarm optimization (PSO) algo-
rithm. Finally, the state of wind turbines is predicted using a
CNN-based fault diagnosis module. Experimental results
demonstrate that the proposed method can effectively pre-
dict faults and identify fault types in advance, which is
helpful for wind farms to take proactive measures and
schedule maintenance plans to avoid significant losses.
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1 Introduction

In recent years, as a highly promising clean and renewable
energy source, wind energy has become an essential
component in solving the world’s energy problems (Ahuja
and Kumar 2019). The global installation capacity of wind
turbines has been increasing year by year. However, wind
turbines (WT) inevitably experience faults during long-term
operation, and sudden shutdowns caused by WT faults can
result in significant economic losses and have a significant
impact on stable operation of power grid. Therefore, to
ensure that the WTs operate reliably and efficiently, and to
reduce the operation and maintenance costs of power sys-
tems, accurate and reliable fault warning and maintenance
based on the actual situation is a critical issue needs to be
urgently solved (Leahy et al. 2019).

Traditional maintenance strategies for WTs mainly adopt
two standard maintenance approaches, corrective mainte-
nance and preventive maintenance (Yiirtigen et al. 2020).
Corrective maintenance is performed when the turbine
experiences a fault, or when a fault is detected or diagnosed
in any of its components. At this point, the fault or even a
major accident has already occurred, requiring immediate
overhaul or replacement of the components, resulting in
unplanned downtime and maintenance costs (Nachimuthu,
Zuo, and Ding 2019). On the other hand, the goal of preventive
maintenance is to repair or replace components before fail-
ures, by performing regular inspections and small mainte-
nance operations, and replacing components based on
operating time. Therefore, this approach is also known as
periodic maintenance (Zheng, Zhou, and Zhang 2020).
Although this strategy can reduce the frequency of faults to
some extent, it comes with the cost of more frequent main-
tenance tasks and early replacement of components that may
not have reached the end of their useful life, resulting in sig-
nificant losses of human and material resources. Condition
monitoring technology continuously monitors the operating
status of each subsystem and component of the turbine by
collecting sensor information, detects potential early faults,
and timely plans and arranges appropriate maintenance
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measures before serious faults occur, to prevent secondary
damage to components or even catastrophic accidents (Bad-
ihi et al. 2022).

Wind farms have been seeking an efficient, accurate,
and cost-effective way to perform intelligent maintenance
on wind turbines. In order to achieve status monitoring and
maintenance of WTs, Supervisory Control and Data Acqui-
sition (SCADA) system has gradually been applied, which
can record all data during the operation of wind turbines
(Pliatsios et al. 2020). The characteristics of SCADA system
are real-time monitoring, data logging, remote access and
control, fault alarms & notifications, data visualization &
analytics, redundancy and reliability. Currently, wind farms
often use fixed threshold methods to start fault warnings
based on the SCADA system for maintenance and other op-
erations on WTs. Although some breakthroughs have been
made, this method fails to fully consider the relationships
between components in WTs and the importance of each
component to the turbine, and therefore cannot provide a
comprehensive and sufficient analysis and evaluation of the
turbine’s status, resulting in a relatively weak awareness of
early warning (He et al. 2020). Therefore, it is crucial to
effectively evaluate the operating status of wind turbines,
anticipate potential threats, and take measures to avoid
faults by fully utilizing the characteristics of SCADA system
data. This can help reduce the operation and maintenance
costs of wind farms, and is currently the most pressing issue
in the wind power industry, which requires further
research.

Previous research on evaluation of WT operating status
has mainly relied on SCADA system data, combined with
methods such as neural networks and Support Vector Ma-
chines (SVM) to identify the status of each component in
WTs, and combined with fuzzy comprehensive evaluation
and principal component analysis to achieve status moni-
toring of WTs. Tautz-Weinert and Watson (2017) utilized
SCADA data to detect faults and monitor the status of WTs
from five aspects: data trends, clustering methods, normal
behavior modeling, damage modeling, and expert system
evaluation. Ding et al. (Ding et al. 2013) first obtained a
monitoring model that is not affected by output power and
ambient temperature factors using linear regression, and
judged whether the generator is faulty by the change of the
residual. Du et al. (2016) used the self-organizing map
method to transform high-dimensional SCADA system data
into a two-dimensional mapping, and combined the
Euclidean distance and contribution proportion function to
detect anomalies in WTs. Pandit and Infield (2018) deter-
mined the anomaly of WTs based on the impact of faults on
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active power, combined with the monitoring method of
Gaussian process and the residual value of the actual active
power and power characteristic curve of the WT. Lebranchu
et al. (2019) proposed a multi-level strategy that combines
single WT and multiple WTs to create fault indicators that
are less affected by external factors, improving the perfor-
mance of fault detection.

As system data becomes increasingly complex and the
dimension of data increases, single data-driven methods are
no longer applicable, and various techniques that combine
or improve on existing methods have gradually emerged.
Ouyang, Kusiak, and He (2017) proposed a SVM method
based on data partitioning, data mining centers, and three
kernel functions to establish a power curve model. By fitting
the normal distribution curve to analyze the deviation
between the actual model and the normal model, fault pre-
diction was achieved. Abdusamad, Gao, and Muljadi (2013)
established a multivariate linear regression model, using
parameters in WTs other than generator-related tempera-
ture parameters as inputs and the generator-end tempera-
ture parameters as outputs, to build a state evaluation
system and analyze the status and faults of WTs. Zhu et al.
(2019) proposed an improved fuzzy comprehensive method
for assessing the gearbox status of WTs. Dynamic thresholds
and variable weights obtained through sample data filtering
and statistical analysis were used to evaluate the gearbox
status, which had higher prediction accuracy than tradi-
tional methods. Ren et al. (2019) proposed a WT gearbox fault
diagnosis method that combines variational mode decom-
position (VMD), multiscale permutation entropy (MPE), and
feature transfer learning (FTL). Variational Mode Decom-
position (VMD) is a signal processing technique used to
decompose a signal into a set of narrowband components
called modes. It adjusts the frequency range and bandwidth
of each mode to capture different components in the signal
effectively. Multiscale Permutation Entropy (MPE) is a
technique used to analyze the complexity and irregularity of
time series data at multiple scales. It is based on the concept
of permutation entropy, which measures the uncertainty or
disorder in the order of values in a time series. Feature
Transfer Learning (FTL) is a technique used in machine
learning to transfer knowledge learned from one domain to
another. It leverages pre-trained models on a source domain
and adapts them to perform well on a target domain, even
when the source and target domains are different. The
introduction of the covariance of fault features increases the
accuracy of the diagnosis. Sun et al. (2016) trained a predic-
tion model using different types of sample data and pro-
posed a generalized model for WT anomaly identification
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based on rotor speed, output power, and component tem-
perature. In addition, an anomaly level index was used to
quantify the anomaly level of WT parameters and combined
fuzzy comprehensive evaluation methods to detect
anomalies.

To obtain more sufficient fault warning time and higher
fault prediction accuracy, it is necessary to fully explore the
fault feature information contained in SCADA data. In recent
years, artificial intelligence technology has become a
research hotspot, among which neural networks are widely
used in WT state prediction due to their high adaptability,
nonlinear and function approximation capabilities. Ma et al.
(2021) used convolutional neural networks (CNN) to monitor
the state and diagnose faults of WT gearbox bearings. Fu
et al. (2019) proposed a WT gearbox belt fracture fault pre-
diction method based on long short-term memory (LSTM)
network, and results showed that fault diagnosis method
based on deep learning performed better than traditional
methods. Lei, Liu, and Jiang (2019) proposed an end-to-end
LSTM fault diagnosis framework for time-series signals and
used simulated SCADA data to identify actuator and sensor
faults. Liu et al. (2019) proposed a fault detection model that
combines deep autoencoders (DAE) and ensemble learning
based on SCADA data, which can adaptively extract fault
features and effectively detect faults.

SCADA systems can monitor various operational
parameters of WTs. However, previous research has
analyzed a single data dimension or monitored multiple
parameters without considering variable correlations. As a
result, multidimensional data coupling information cannot
be fully utilized. To address this issue, a WT fault prediction
model based on improved Stacked AutoEncoder(ISAE)
framework was proposed. The advantages of ISAE are
effective feature extraction, hierarchy of representation,
dimensionality reduction, transfer learning, improved
generalization, fault diagnosis & prognosis, and real-time
prediction. In the proposed framework, data is firstly pre-
processed using grayscale imaging. To address the issue of
sparse data samples for certain fault types, a double-layer
Stacked AutoEncoder (SAE) architecture is proposed. A
state prediction model based on SAE is built to predict
multiple WT component failures. The particle swarm
optimization (PSO) algorithm is used to find the optimal
factor parameters to compensate for attribute correlation
information. Finally, CNN fault classifier is designed to
determine the state and achieve precise fault warning and
identification for WTs.
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2 Preliminaries

2.1 Normalization of SCADA grayscale
images

SCADA system collects and stores various state data of WTs,
which can not only monitor the operation of wind power
generation systems, but also detect abnormalities and stop
the machine in time to avoid faults. The long-term collection
and storage of operating state data also facilitates the anal-
ysis and prediction of wind turbine failures. Long-term data
gathering and storage in wind turbine operations provide
valuable insights by enabling historical analysis, identifying
failure trends, conducting root cause analysis, detecting
early warning signs, developing forecasting models, opti-
mizing performance, supporting decision-making, and
advancing research and development.

Due to the wide operating range of wind turbines, the
safety thresholds set for each monitored parameter in
SCADA system have a high margin. When SCADA system
issues an alarm, the WT failure is already severe and cannot
prevent the early failure from deteriorating further. The
Wind Turbine (WT) may fail to prevent early failure from
deteriorating further due to reasons such as lack of early
detection, limited monitoring, insufficient maintenance,
delayed response, cumulative effects, unexpected failures,
complex fault interactions, and aging and wear. To address
this, effective fault detection, regular maintenance, timely
responses, and predictive maintenance strategies are crucial
to enhance the WT’s reliability and prevent further deterio-
ration. Therefore, it is necessary to establish a comprehensive
WT fault prediction model that reflects the dynamic charac-
teristics of WTs to achieve early detection and prediction of
faults. Monitoring the dynamic characteristics of wind tur-
bines, such as vibration, acoustic emission, power curve, pitch
angle, rotor speed, temperature, wind speed, and SCADA data,
enables early detection and prediction of faults.

The correlation between different component failures
in WTs and the multi-state information in SCADA data
exhibit strong coupling. Wind turbine (WT) component
failures include isolated faults, but multi-state information
in SCADA data indicates continuous and dynamic operating
states. Repair or replacement of components is required,
whereas multi-state information optimizes performance
and eliminates unexpected failures, providing dependable
and efficient WT operation. To this point, the SCADA data is
graphically processed and input into neural networks as a
whole to reflect correlations and couplings among multidi-
mensional information, thereby improving the accuracy of
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fault warning. The min-max normalization method is not
suitable for grayscale image processing on SCADA data.
Grayscale image processing involves different techniques
like histogram equalization and contrast stretching, while
SCADA data requires specific normalization techniques
based on its characteristics. First, the min-max normaliza-
tion method (Perez et al. 2018) is used to perform grayscale
imaging processing on the SCADA data. Min-max normali-
zation, also known as range normalization, is a linear
transformation of the original data that maps the resulting
values to the range [0,1]. It efficiently scales grayscale images
derived from SCADA data to the [0, 1] range. It enhances
image contrast, ensures compatibility with machine
learning algorithms, and aids in numerical stability during
training. Normalizing the images allows for easier inter-
pretability and visualization of pixel intensities. The trans-
formation function is defined as follows:

2- Xmin

X =255 @

Xmax — Xmin

where x is sample data value before normalization, Xyax
represents the maximum value of sample data, and Xyin
represents the minimum value of sample data. Hence, the
original data is mapped to the range of [0, 255], forming
image data. 255 is the number of gray levels in the grayscale
image under standard format. To transform original data
into picture data, mapping it to the range [0, 255] involves
rescaling the data to [0, 1] using min-max scaling and then
multiplying by 255 to represent grayscale pixel intensities.
Normalizing an image from 0 to 255 involves dividing the
pixel values by 255 to scale them to the range [0, 1],
improving numerical stability for tasks like deep learning.
Data processed by grayscale normalization is more suitable
for neural networks that perform image processing, which
can accelerate convergence and improve training speed.

2.2 SAE

AE is a neural network model that learns a set of effective
features from a group of data through unsupervised
learning. Unsupervised learning is a type of machine
learning where the algorithm is trained on unlabeled data
without any explicit supervision or guidance. In contrast to
supervised learning, where the algorithm learns from
labeled data with known input-output pairs, unsupervised
learning seeks to find patterns, structures, or relationships
within the data on its own. The AE network structure can be
divided into two parts: an encoder network and a decoder
network, as shown in Figure 1. The encoder network
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compresses the input data into a lower-dimensional latent
space, capturing essential features, while the decoder
network reconstructs the original data from the encoded
representation, aiming to minimize the reconstruction
error.

g learns the valid feature of original data x to generate
latent variable z, and f attempts to reconstruct the original
data from z. The learning objective, also known as the loss
function or cost function, defines the goal that the neural
network aims to achieve during training. It quantifies how
well the network is performing on a specific task or problem.
The optimization objective, also known as the optimization
algorithm or optimizer, determines how the neural net-
work’s parameters (weights and biases) are updated during
the training process. The learning objective is to minimize
the reconstruction error, and optimization objective of the
network parameters can be described as:

f.&= argmim (x.f(g(0)) )
s

SAE is composed of two or more independent AEs. Each
AE consists of an encoder to compress data and a decoder to
reconstruct it. The AEs are trained independently in a layer-
wise manner during pretraining and then fine-tuned
together for the specific task. The SAE learns hierarchical
and abstract representations of the input data, allowing it to
perform complex tasks effectively. It increases the number
of hidden layers and learns various expressions of the
original data layer by layer, to better learn abstract feature
vectors with different dimensions and hierarchies from
complex high-dimensional input data. Therefore, SAE can
reduce the dimensionality of input data and has strong
ability to extract input feature values through learning. The
main differences lie in their architecture, where the ISAE has
a deeper stacked structure compared to the SAE’s simpler
structure. As a result, the ISAE can learn more complex and
hierarchical features, making it more suitable for chal-
lenging feature learning tasks with intricate patterns in the
data.

Input Output

Hidden
Layer

=IB

Encoder

&

:> Decoder
i

=)

Figure 1: Structure of AE network.
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3 Fault prediction framework
based in ISAE

3.1 ISAE model

The proposed ISAE consists of two SAE models, including a
data augmentation module and a data prediction module, as
shown in Figure 2. The data augmentation module is a
component commonly used in machine learning and deep
learning pipelines to increase the size and diversity of the
training dataset. It applies various transformations and
modifications to the existing data to create new instances
that retain the original label or target information. The data
prediction module is a component designed to predict
missing or future data points based on the information
available in the existing dataset. This module is often
employed in time series forecasting, sequence modeling, and
data imputation tasks. The Stacked Autoencoder (SAE) is
employed in the data prediction module to extract relevant
features from the enhanced dataset. The SAE, an unsuper-
vised learning algorithm, learns compressed and abstract
representations of the data during training. The extracted
features are then used in data prediction tasks, leading to
improved performance compared to using raw data directly.
In the data augmentation module, SAE is used to generate
simulated samples to address the problem of insufficient
sample sets. The data augmentation module aims to increase
the dataset size and diversify data by applying trans-
formations to the original data. While, the data prediction
module based on SAE models utilizes learned features from
the SAE to make predictions on new data. SAE can address
the issue of inadequate sample sets by using data augmen-
tation. The SAE is trained unsupervised on the available
data, and then it encodes the original samples into a latent
space. Random noise is added to the encoded data to
generate simulated samples, which are then decoded back to
the original data space. Since the decoding process of SAE is a
reconstruction process of an input sample, the reconstructed
data can be used to supplement the insufficient sample set.
SAE efficiently address the problem of insufficient sample
sets through unsupervised pretraining. They learn mean-
ingful representations from unlabeled data using layer-wise
pretraining. Each layer reconstructs the input data, helping
the SAE discover relevant patterns and hierarchies of fea-
tures. When dealing with an inadequate sample set, one
approach to supplementing the data is through data recon-
struction using techniques like the Stacked Autoencoder (SAE)
model. The process of rebuilt data can be utilized as unsu-
pervised learning, feature extraction, data augmentation,
supplementing the sample set, improving generalization and
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Figure 2: Network structure of the proposed ISAE.

handling class imbalance. In the data prediction module, SAE
is used again to extract features from the enhanced dataset.
The first SAE model is used to generate simulated data from
SCADA normalized grayscale images, with 1,200, 600, 200,
and 100 neurons in each layer. The second SAE model is used
to extract features from fault samples and predict samples,
with network fine-tuning using the back propagation (BP)
algorithm (Jiao et al. 2018). The benefits of backpropagation
(BP) are efficient training, flexibility, gradient-based opti-
mization, non-linear learning, automatic feature learning,
universal approximation, parallelizable, transfer learning,
adaptability, and robustness. The simulated data generated
by the first SAE and the original samples are used as inputs to
this model, with 1,200, 600, 200, and 100 neurons in each
layer. Finally, a CNN classifier is used as a fault diagnostic
tool to identify fault types. Convolutional Neural Network
(CNN) classifiers are highly effective in identifying fault
types due to their ability to automatically learn features,
translation invariance, support for large datasets, depth and
complexity, and potential for real-time detection.

3.2 SAE model based on semantic encoding
In the SAE model, the input layer is the basic feature vector

space. The input layer in the SAE model serves as the basic
feature vector space, representing the raw data and
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encoding essential features. It allows the network to learn
hierarchical feature representations in subsequent layers,
leading to improved data compression, reconstruction, and
generalization capabilities. By using the hidden layer as a
semantic layer, the input layer feature vector space can be
compressed, encoded and decoded, and the output layer is
the feature vector space restored after processing by the
hidden layer. During the encoding and decoding process,
additional constraints are imposed on the encoder and
decoder using the original data, so that the encoded data can
be restored to the original data as much as possible.

Given a feature set X, the attribute layer has H shared
attributes represented by ¥ = (ay, a,, ..., ag), the training
category is Y = (yy, y», ..., yx), and the testing category is
Z =(zy, Zy, ..., z1), where K and L represent the number of
samples in the training and testing sets, respectively. Let the
mapping matrix from the input layer to the hidden layer be
W, and the mapping matrix from the hidden layer to the
output layer be W', Wis the transpose matrix of W'. Let S be
the attribute vector corresponding to the data feature X,
WX =S, then the objective function of SAE can be expressed
as:

min | X - W WX|? = mvivn I X" - STX | +x || WX
- S| 3)

where k > 0 is a weight coefficient.

By learning the attribute knowledge from the training
samples (X, Y), a mapping from low-level features to attri-
bute values is achieved. The low-level features used as the
SAFE’s input are the raw or preprocessed data attributes that
directly represent the characteristics of the input data.
These low-level features are the initial representations of
the data that are fed into the SAE for learning and feature
extraction. The attribute sharing mechanism is used to
transfer the learned knowledge to sparse categories. The
attributed sharing mechanism is an effective approach for
transferring learned knowledge from a source domain to
sparse categories in machine learning tasks. It leverages
shared features and knowledge among different categories
to improve model performance when data is limited or
imbalanced in the sparse categories. When using SAE for
prediction, the middle layer of SAE represents the score
values of the relative attributes of the training images. The
mapping matrix W from visual low-level features to the
semantic shared attribute layer is obtained using SAE.
During the testing process, the trained mapping matrix Wis
used to map the low-level features of the testing images to
relative attribute score values, and the testing samples are
predicted accordingly.
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3.3 Attribute correlation

The proposed method quantitatively calculates the correla-
tion of WT monitoring data. The proposed method computes
the correlation of Wind Turbine (WT) monitoring data
quantitatively using statistical measures such as Pearson
correlation coefficient or Spearman rank correlation coeffi-
cient. It performs pairwise comparisons of different vari-
ables in the dataset and calculates correlation coefficients to
understand their relationships. The statistical analysis
includes properties such as wind speed, gearbox speed,
power, nacelle vibration, main bearing temperature, and
power factor. There is a certain semantic correlation
between the attributes in the shared attribute layer.
Combining these related attributes or introducing correla-
tion information can have a positive effect on prediction. The
positive effect of correlation information on prediction is
that it can significantly improve the accuracy and reliability
of predictions. Correlation refers to the statistical relation-
ship between two or more variables, indicating how they are
related or influence each other.

Assuming that there are N training samples in the data,
ay; represents the ith attribute value of the nth sample. If we
use R;; to represent the correlation between attributes a; and
aj;, the calculation formula can be expressed as:

(e -a)(ay g

v N '\2 TN \2
\/Zn:l (ani— @' )" 23l (anj— ")

where a;’ represents the mean value of the ith attribute in the

entire training sample. Based on the sign and magnitude of Ry,

we can determine whether the correlation between two at-
tributes is positive or negative, and the degree of correlation.

R @

3.4 Parameter optimization based on PSO

Let K and L be the number of samples in the training and
testing sets, respectively, so the total number of samples is
K + L. Let there be H relative attributes for each sample, and
the attribute matrix of the sample is represented as
H x (K + L), denoted as ¥ € R*®*D The correlation matrix of
the attribute relationship H x H is represented as RL € R™.
Based on the original attributes, and to introduce attribute
correlation while maintaining the original attribute
dimensions, new attributes are defined as:

¥ =A(Y"-RL) + ¥ ©)

where A and u are two weight coefficients, and A is a multi-
plicative factor used to adjust the attribute correlation
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information, while u is an additive factor used to preserve
the original attribute information. Then, the values of A and
u is calculated to compensate for attribute correlation and
improve classification accuracy. Since each set of weights
determines a ¥ which has an impact on ranking of attri-
bute values for the image attribute descriptions for each
category, it affects the process of using the new attribute
values as the training sample output to solve the mapping
matrix of SAE (Leke et al. 2017). Attribute correlation in-
formation is vital in data analysis and machine learning
tasks. It helps with feature selection and engineering, data
preprocessing, outlier detection, and model building. Cor-
relation analysis aids in identifying relationships between
attributes, guiding data visualization, and understanding
variable importance. The goal of this study is to find a
reasonable weight allocation that maximizes compensa-
tion for attribute information, allowing SAE to better solve
the mapping matrix.
The fitness function of PSO is calculated as:

Fitness = min | X - W'S|it + k| X - WS} (6)

The low-level features are used as the input to SAE, and
the updated attribute values after each parameter update
are used as the output of SAE. The objective function of SAE is
used as the fitness function in PSO, and the parameters A and
u are used to find W that minimizes the objective function of
SAE.

3.5 Fault diagnostic module

A fault diagnostic module is constructed on top of the pre-
dicted SAE model to diagnose the predicted samples and
predict fault types and severity, providing decision-making
information for fault handlers. The fault diagnostic module
offers numerous advantages, including early fault detection,
improved system reliability, reduced downtime, cost sav-
ings, data-driven decision making, adaptability to complex
systems, continuous monitoring, predictive maintenance,
enhanced safety, and scalability. The fault diagnostic tool in
this study uses a two-layer CNN structure, with each layer
being a one-dimensional CNN model. The first layer of the
model is used to classify fault types, and the second layer
constructs different CNN classification models for each type
of fault to obtain more accurate classification results. The
working logic of the one-dimensional CNN is as follows: the
fault signal is directly input into the convolutional layer, and
the convolutional layer 1 slides the convolution kernel over
the entire input sequence to generate feature maps. Then,
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pooling layer 1 compresses each generated feature map to
obtain significant features. This process is repeated 5 times
with convolutional layers and pooling layers, and the output
feature maps are connected to the fully connected layer.
After activation by the activation function, the output is
input to the Softmax layer.

The purpose of the fault classification layer is to
construct a CNN model to determine the fault type of each
predicted sample. The CNN model learns hierarchical fea-
tures from the input data through convolutional and pooling
layers. The flattened features are passed through fully con-
nected layers, and a softmax activation function is used to
output probabilities for each fault class. During training, the
model minimizes aloss function to improve accuracy. First, a
new CNN; is constructed and the training parameters are
initialized, which can be described as:

[CNNy, Try] = Feedforward[6; Kiv; Fiv; Pwv; S Hiu] (7)

where 6 = {Wyy; biy; Wiy Byl Win is the weight matrix
connected to the Nth convolutional layer, b,y is the bias
vector of the Nth convolutional layer, Wj,, is the weight
matrix of the Mth fully connected hidden layer, and bj,, is
the bias vector of the Mth fully connected hidden layer.
Ky is the size of the Nth convolutional kernel, F;y is the
number of convolutional kernels in the Nth layer, Syy is
the step size of the Nth convolutional kernel, P,y is the
padding size of the Nth pooling layer, N € (0, 6); Hyy, is the
number of neurons in the Mth fully connected hidden
layer, M € (0, 4).

Then, based on the dataset, CNN; is trained by mini-
mizing the loss function to obtain the network parameters 6.
CNN; propagates forward from the input layer to the con-
volutional layer, then to the pooling layer, and finally the last
pooling layer is flattened into a one-dimensional vector. The
flattened one-dimensional vector is then propagated to the
fully connected layer.

Finally, the trained CNN; is used for fault classification.
The test sample S is used for testing, and the probability of
each sample is calculated using the trained network. The test
samples are classified into different fault types:

Type (m) = argmaxP (Y, (m) = b|S;(m); &; Tr;)  (8)

wherem=1,2,..,Mand b=1,2, ..., nrepresent the fault
types of the samples. Type(m) represents the type label of the
mth test sample.

For a certain fault type classified in step 1, further
determine the fault severity. For each type of fault, a CNN is
constructed, forming a set of CNN,, where CNN, , represents
the network constructed for fault type b.
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4 Experiment and analysis
4.1 Dataset

In this study, the SCADA data and fault logs of a wind farm in
a southern province of China were chosen to construct the
experiment dataset. The wind farm is equipped with 25 units
of 3 MW doubly-fed WTs, and the sampling interval of the
SCADA system is 10 min. The monitoring data of the WTs
include 68 dimensions, which record discrete information
such as the operating status of the units, the external envi-
ronmental status, and the operating time. Among them,
there are 52 dimensions that record the operating status of
the wind turbines, including information such as the power
generation, power, current, voltage, and information about
various components of the units, such as gearboxes, bear-
ings, and hubs. There are also 12 dimensions that record the
external environmental status, including information such
as wind speed, wind direction, and temperature. The date
and time of the collection of the 68 dimensions are also
recorded synchronously.

The SCADA data of the wind farm in 2017 were used for
training. Table 1 shows the fault frequency statistics during
the two years of operation of the wind farm. From Table 1, it
can be seen that the frequency converter system failure
frequency is relatively high during the operation of the wind
farm, and the data is also sufficient. For comparison, gearbox
failure with a relatively small number of samples is also
selected as the fault warning object in this study. Therefore,
we select these two types of failures as the fault warning
objects in this study.

4.2 Evaluation metrics

As the accuracy of the prediction models cannot be directly
compared, evaluation metrics are introduced to specifically
evaluate the accuracy and stability of prediction results.
Common evaluation metrics include: maximum absolute
error, mean absolute error (MAE), mean squared error

Table 1: Fault statistics of WTs.

Fault type Occurrence # Fault type Occurrence #
Converter system 499 Hydraulic system 25
Yaw system 623 Water cooling system 35
Lubrication 288 Gearbox 38
system

Generator 48 Safety chain 3
Encoder 155 Monitor 28
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(MSE), root mean squared error (RMSE), mean absolute
percentage error (MAPE), and median error (Tsai et al. 2017).
In this study, the sum of squares error (SSE) is used to
represent the size of the model error, the MSE is used to
represent the dispersion, the mean absolute error (MAE) is
used to measure the overall average level, and the mean
absolute percentage error (MAPE) is used to represent the
model’s volatility. The expressions for each evaluation
metric are:

SSE=3Y (v )’ &)
i=1
1 |n N2
MSE = a Y v -Y) (10)
i=1
1 2
MAE = = Y -y 11)
i=1
12lyi-y
MAPE = - Y=t (12)
nil Y

where y; is the actual sample value, y; is the predicted sample
value, and n stands for total number of samples.

4.3 Experimental results

In order to intuitively analyze the correlation between
attributes, a correlation diagram is used to visually
represent the strength of the correlation between attri-
butes. Taking the generator front bearing temperature as
an example, SCADA parameters related to it were
analyzed, and selected attributes included wind speed,
power, environmental temperature, nacelle temperature,
main bearing temperature, generator stator winding
temperature, generator speed, and gear oil pump pres-
sure. The results are shown in Figure 3. It can be seen that

|
&
2 |
% | wind speed
S 0.7} —%— power
= | —#— environment temperature
% 0.6k —#— nacelle temperature
© | —— main bearing temperature
g 0.5k | stator wind temperature
o || generator speed
L e gear oil pump pressure
o W ok e
03 1 1 1 1 1
0 80 160 240 320 400
Samples

Figure 3: Illustration of correlation coefficients.
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the proposed method embeds correlation into the attri-
butes and can effectively compensate for the information
of the original dataset attributes.

A frequency converter fault occurred on the 12th unit of
the wind farm on November 12, 2017, and the SCADA system
reported a A501 cabinet grid voltage filter fuse open/damage
fault at 11:25. The SCADA data was imported into the pro-
posed model for prediction, and the probability of the unit’s
state is shown in Figure 4, where Normal indicates that the
unit is in a non-fault state, and sampling frequency of data
point is 10 min. The time of the frequency converter fault
selected in this study is the first time the frequency converter
fault alarm was issued in the SCADA data fault log. The
SCADA reported fault position is about the 630-th data point,
and it can be seen that after about the 270-th data point, the
probability of the unit being healthy drops sharply, and at
the same time, the probabilities of the three types of faults all
increase. SAE model efficiently diagnoses frequency con-
verter faults by performing unsupervised feature learning
and supervised fine-tuning. It learns meaningful represen-
tations from raw data, enabling accurate fault detection
without manual feature engineering. At this time, it can be
judged that the unit is about to be in a fault state, but it is
unclear which type of fault it belongs to. After 350-th data
point, the probability of the frequency converter fault is in
the leading position, and it can be considered that the unit
will have a frequency converter fault. The model in this
study was used for frequency converter fault diagnosis,
predicting the occurrence of faults about 60 h in advance,
and accurately determining the type of fault about 46 h in
advance.

Gearbox alarms occurred multiple times in the SCADA
system of the 8-th unit of the wind farm on May 22, 2017. The
first warning time of the system was selected to be the time
when the high temperature of the gearbox bearing exceeded
the limit value. The SCADA data was imported into the model
for prediction, and the probability of the unit’s state is shown
in Figure 5. It can be witnessed that the model can judge that

1.0

0.8 | q
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B3 06F | 4
s Normal Jl {W \
© A o\
3, 04k ~ Yaw system fault WA A | i
o] ’ Converter fault /I |f N P A Al
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I \ |
2 ~~ 77 T —~ T
AT A\ W AN e A
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Figure 4: Example of converter fault prediction and identification.
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Figure 5: Example of gearbox fault prediction and identification.

the unit has a fault at about the 100-th data point, and at
about 670-th data point, the probability of gearbox failure
surpasses the other two types of faults. Although the prob-
ability of yaw system failure slightly increases from 490-th to
600-th data points, the probability of gearbox failure is the
highest at about 690-th data point, effectively determining
the type of fault. It can be seen that even for cases with
extremely few fault samples, the data expanded by the
proposed SAE model effectively improves the misjudgment
problem of gearbox faults and improves the accuracy of the
model. SAE model improves the misjudgment problem of
gearbox faults by leveraging its unsupervised feature
learning capabilities. It automatically extracts fault-related
patterns from raw sensor data, reducing dimensionality, and
learning non-linear representations. The SAE’s transfer
learning approach enhances fault diagnosis accuracy, pro-
vides early fault detection, and increases robustness to noisy
data.

The proposed method optimizes the attribute parame-
ters using PSO based on the established attribute correlation.
The specific parameter settings of PSO are as follows: the
population size is 250, the number of generations is 20, and
the velocity range of the parameter A is [-2, 2], while
the position range is [-10, 10]. The velocity range of
parameter u is [-1, 1], and the position range is [-5, 5].
Figure 6 shows the distribution of particles in the first and
last generation of the PSO algorithm in the experimental
dataset. Initially, 250 groups of particles were evenly
distributed within the set position range. As the number of
iterations increased, the particles’ positions under the final
fitness value converged and did not appear at the set range
boundary. The particle distribution can be well-converged
with increasing generations, demonstrating that the overall
parameter setting of PSO is reasonable.

For analysis of the effectiveness of the fault prediction
algorithm, 25 sets of data were selected for each of the fre-
quency converter, gearbox, and yaw system faults (a total of
75 sets), and the proposed method was compared with the
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Figure 6: Particle distribution illustration.

methods in (Lebranchu et al. 2019; Lei, Liu, and Jiang 2019;
Liu et al. 2019; Sun et al. 2016). The results are shown in
Table 2. From the results, it can be found that the model in
(Lebranchu et al. 2019) has large errors, indicating that single
data-driven methods have limited performance as the
dimensionality of WTs fault prediction data increases. The
method in (Sun et al. 2016) uses a fuzzy comprehensive
evaluation method, which improves performance to some
extent. Compared with the first two methods, the methods in
(Lei, Liu, and Jiang 2019; Liu et al. 2019), and the proposed
method are all deep learning methods, and all indicators
have been greatly improved. (Lei, Liu, and Jiang 2019) uses
the LSTM model, which can capture the time series charac-
teristics of the signal well, but does not consider the corre-
lation between different attributes. (Liu et al. 2019) uses AE
as the basis for fault prediction but cannot solve the problem
of extremely imbalanced data, that is, the frequency of some
fault types is extremely small. The proposed method con-
siders the correlation between variables and utilizes multi-
dimensional data coupling information. The double-layer
Stacked Autoencoder (SAE) addresses sparse data samples
by performing unsupervised pretraining and feature
learning. It learns compact and meaningful representations
of the input data in an encoding layer, capturing essential
patterns and reducing the impact of sparsity. The double-
layer SAE is used to solve the problem of sparse data sam-
Ples, and the PSO optimization is used to compensate for the
correlation information of attributes, achieving the best
performance. This proves that the proposed method can
achieve accurate warning and identification of WT faults.

Table 2: Performance comparison of different models.

Model SSE MSE MAE  MAPE (x10°%)
Lebranchu et al. (2019) 457435 0.1577  0.3582 9.7210
Sun et al. (2016) 30.0501 0.2388 0.2174 7.0442
Lei, Liu, and Jiang (2019)  18.7665 0.0833  0.2082 1.7897
Liu et al. (2019) 16.4571  0.0628 0.1971 1.6258
Proposed method 10.5811 0.0452  0.1276 1.1743

DE GRUYTER

5 Conclusions

A deeplearning framework for wind turbine fault prediction
is proposed. Based on the SAE framework, the first SAE is
used to generate simulated signals to enhance the training
data and then the enhanced dataset is combined with the
original dataset to input into the second SAE for data pre-
diction and fault classification. The PSO is introduced to
enhance classification performance by incorporating
optimal attribute correlation information. Analysis of the
real SCADA data collected from different wind turbines in a
wind farm demonstrates that the proposed algorithm can
effectively predict faults in advance and identify the fault
types, which is beneficial for wind farms to handle the faults
in advance and arrange maintenance plans to avoid signif-
icant losses. The proposed method is highly effective in
predicting faults in major components of wind turbines, but
there is room for improvement in predicting faults in their
internal sub-components. The next step will be to conduct
targeted research in this area.
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