9

Research Article

Naga Sarada Somanchi, Ravi Gugulothu* and S. V. Tejeswar

Experimental investigations on heat transfer enhancement in a double pipe heat exchanger using hybrid nanofluids

https://doi.org/10.1515/ehs-2023-0065 Received May 30, 2023; accepted August 25, 2023; published online October 6, 2023

Abstract: Heat exchanger (HE) is an instrument that facilitates the operation of HE between two fluids that are at various temperatures. Double-pipe HEs are used in many organizations because of their low installation, design, maintenance costs, flexibility, and their suitability for high pressure applications. Heat transfer (HT) augmentation techniques (passive, active or compound techniques) are used in heat exchangers to reduce the HT surface area, to increase HT capacity and to reduce pumping power. Passive augmentation techniques are much cheaper and do not involve any external power input. They aim to improve the effective surface area, the residence time of the HT fluid and its thermal conductivity by the usage of nanofluids. Nanofluids are used for cooling applications in organizations, transportation, nuclear reactors, electrical and electronic devices and for biomedical applications. Hybrid nanofluids have higher thermal conductivity, low PD and frictional losses and pumping power as compared to the mono nanofluids. In this present work, experiments are conducted in a double pipe HE using TiO2, and SiC-water nanofluids by varying the volume concentration and cold fluid mass flow rate ranging from 17.5 to 34.5 lpm by making constant hot fluid mass flow rate. Further, experiments are conducted using TiO₂-SiC/water hybrid nanofluids. Influence of nano and hybrid nanofluids on the overall HTC and friction factor are experimentally investigated. From the experiments, TiO₂-SiC/water hybrid nanofluid with nanoparticle ratio TiO₂:SiC = 1:2 is found to be optimum as the heat transfer enhancement is more with less improvement in friction

*Corresponding author: Ravi Gugulothu, Department of Mechanical Engineering, JNTUH College of Engineering Hyderabad, Hyderabad,

Telangana, India, E-mail: ravi.gugulothu@gmail.com

Naga Sarada Somanchi and S. V. Tejeswar, Department of Mechanical Engineering, JNTUH College of Engineering Hyderabad, Hyderabad, Telangana, India, E-mail: nagasaradaso@gmail.com (N.S. Somanchi), tejeswar254@gmail.com (S.V. Tejeswar)

factor. The overall heat transfer, and friction factor enhancement is 22.92 %, and 11.20 % higher respectively when compared with base fluid for TiO₂:SiC = 1:2.

Keywords: heat exchanger; hybrid nanofluids; heat transfer enhancement; over all heat transfer coefficient; friction factor

1 Introduction

Throughout the world shortage of energy and fossil fuels, optimization and consumption of energy are very important nowadays (Gugulothu et al. 2017). Energy utilization is one of the most effective technologies to minimizing the energy losses in heat exchangers to enhance the thermal efficiency of heat exchangers. Because, heat exchangers have many industrial applications due to their compact size, robustness, and high heat transfer rate, so development of heat exchangers is one of the most important challenges (Gugulothu, Sanke, and Gupta 2019; Khan et al. 2021). In terms of thermal performance and fluid flow characteristics recent pioneers achieved higher values by development of heat exchangers (Gugulothu et al. 2023a). Heat exchanger is a device which can transfer heat energy between two fluids at various temperatures (Ahmed et al. 2021a). Passive heat transfer techniques are one of the most suitable methods to enhance the heat transfer in heat exchangers (Kurnia et al. 2022). In recent years many efforts have been devoted studies on forced and free convection, as well as convection heat transfer in heat exchanger processes, few of them are listed in this research paper (Kimura et al. 1983).

Abbasian Arani et al. (2012) achieved to investigate the impact of TiO_2 -water nanofluid on HT characteristics and PD in a double tube HE with volume concentrations fluctuate from 0.002 % to 0.02 % under turbulent flow regime (8000 < Re < 51,000). They concluded that Nu and thermal performance factor of the TiO_2 -water nanofluid enhances with Re and vol. concentration due to the increase in thermal conductivity, mixing effects of nanoparticles near the wall and Brownian motion of nanoparticles. Hussein (2017)

experimentally attempted the thermal achievement of AlN-ethylene glycol nanofluid in a double pipe HE for volume concentrations fluctuate from 1 to 4 % under laminar flow conditions (500 < Re < 1750). Their results show that with an improvement in volume concentration, friction factor and Nu increased significantly. At the highest volume concentration, the friction factor enhanced by 12.5 % and the Nu enhanced by 35 %.

Sajadi et al. (2011) experimentally explore the turbulent HT behavior of TiO2-water nanofluid in a circular pipe for vol. concentrations ranging from 0.05 to 0.25 %. The convective HTC enhanced by 22 % at 0.25 % volume concentration due to enhanced thermal conductivity and chaotic movement of nanoparticles which accelerated the energy exchange process in the fluid. The maximum improvement in pressure drop was about 25 % at a volume concentration 0.25 %. Han, He, and Asif (2017) carried out an exploratory study with Al₂O₃-water nanofluid in the double pipe HE for volume concentrations 0.25 % and 0.5 % at inlet temperature's 40 °C and 50 °C under turbulent flow conditions (20,000 < Re < 60,000). The maximum improvement of the HTC at 40 °C was 19.6 % and at 50 °C was 29 %.

Madhesh et al. (2014) studied on HT and rheological properties of Cu-TiO₂/water hybrid nanofluids flowing throughout the tubular HE for volume concentrations fluctuate from 0.1 to 1%. Singh (2009) made investigations on the thermal conductivity and mechanical effects of SiCwater nanofluids from 1% to 7% volume concentrations for HT appliances. With addition of nanoparticles thermal conductivity and viscosity increased, maximum thermal conductivity improvement was 28 % at 7 % volume concentration and this enhancement was attributed to variety of mechanisms including clustering, agglomeration, micro convection & Brownian motion. Hamid (2017) explore the thermal conductivity of TiO₂-SiO₂ hybrid nanoparticles distribute in EG/water for vol. concentrations fluctuate from 0.5 to 3 %, and at the temperatures 30 °C, 50 °C, 70 °C. They concluded that thermal conductivity of nanofluid improved with concentration due to collision between nanoparticles and it increased with temperature because of Brownian motion, as Brownian motion is a strong function of temperature.

Mushtag Ismael Hasan, Salman, and Thajeel (2018) made an innovative study on the thermal accomplishment of double pipe HE using Al₂O₃, and TiO₂-water nanofluids for parallel and counter flow arrangements. They proved that the HTR improved with an enhancement in vol. concentrations from 0.05 to 0.3% due to the increment of thermophysical properties of nanofluids, which also accelerated the thermal accomplishment of the HE. Also, counter flow arrangement provided best performance when validated

with parallel flow arrangement for both the nanofluids. Pankaj Pandey et al. (2017) explored the HTR in shell and tube HE by using Al₂O₃-SiC based hybrid nanofluid for 0.1 %, 0.2%, and 0.3% vol. concentrations. Experimentally they concluded that, Al₂O₃-SiC based hybrid nanofluid enhanced the HTC by 5 % and increased with the increase in volume concentration and Re. Arsan et al. (2018) experimentally investigated the thermal performance of shell and tube HE using magnesium-aluminum/water hybrid nanofluids for the vol. concentrations 5 %, 10 %, 15 %, 20 %, and 25 %. They concluded that HTR enhanced with the flow rate due to occurrence of atomization in molecules and with volume concentration it enhanced due to increase in thermal conductivity and decrease in thermal resistance. Bobbo et al. (2012) experimentally studied on the HT capability of SiC-ethylene glycol nanofluid for the volume concentrations 0.1 %, 1 %, and 5 %. They observed that thermal conductivity enhancement was more than proportional to the enhancement of nanoparticle concentration and increment in dynamic viscosity is small at low nanoparticle concentrations upto 1%.

Sneha Ponnada et al. (2019) experimentally investigated the SiC-distilled water in a circular tube for the vol. concentrations 0.04-0.1% under turbulent flow conditions. They concluded that the enhancement of HTR ranged from 3.38 % to 36.74 % and the enhancement of friction factor ranged from 2.1 % to 13.5 % with the enhancement of particle loading. Suresh et al. (2012) experimentally studied the HT and PD characteristics using Al₂O₃-Cu/water hybrid nanofluids through a circular tube at 0.1 % volume concentration for various mass flow rates. They concluded that the enhancement in Nu for Al₂O₃-Cu/water hybrid nanofluids were 10.94 % and for Al₂O₃/water was 6.09 %. Tareq Salameh et al. (2018) studied on HT enhancement in a concentric tube HE using TiO₂, and CuO-water nanofluids for the vol. concentrations of 0.05 and 0.2%. They concluded that the improvement of the HTC for CuO-water nanofluid was 62 % compared to base fluid and CuO-water nanofluid maintained higher HTC values than TiO2-water nanofluid for both volume concentrations. The HT enhancement ratio for CuO-water nanofluid was 1.4 and for TiO₂-water nanofluid, it was 1.25 for 0.2 % volume concentration.

Yang et al. (2005) experimentally studied the HT performance of graphite -synthetic oil nanofluids in a horizontal tube HE under laminar flow conditions at 2 wt% and 2.5 wt% nanoparticle loading. They concluded that nanofluids enhanced the heat transfer coefficient by enhancing the thermal conductivity of overall system and the movement of particles in stream lines. Kristiawan et al. (2019) numerically investigated to enhance the heat transfer using microfin structure and nanofluids (TiO₂/water) by varying various nanoparticle concentrations ranging from 0.005 to 0.1. They found that the maximum performance evaluation criteria 1.2 at Reynolds number 380 in the presence of 0.01 % volume concentration, at same volume concentration heat transfer also enhanced. They concluded that the excellent performance and economic point of view, the combine techniques are recommended. Kristiawan et al. (2020) experimentally investigated further using microfin structure and TiO₂/water with various volume concentrations ranging from 0.05 to 0.3 vol.% concentrations to study the thermal performance, friction factor and developed a correlation. They observed that the pressure drop 73 %, 77 %, and 80 % higher than the plain tube.

Purnama et al. (2015) experimentally studied the properties of high purity cobalt ferrite nanoparticles by carrying annealing time period during the synthetic process. Successfully they demonstrated the magnetic properties of cobalt ferrite nanoparticles which depend on their relative particle sizes. Vijaya Kumar Reddy et al. (2017) experimentally investigated to enhance the heat transfer coefficient using hot and cold working fluids as well as ZnO, MgO, and CuO nanofluids for various volume concentrations ranging from 0.05 to 0.1 %. They found that the enhanced overall heat transfer coefficient in the presence of CuO nanofluid than the MgO, and ZnO, this enhancement is 62 % higher than the base fluid.

From the pioneers study, it is observed that application of nanofluid in HT enhances the heat transfer performance and various nanofluids (Al₂O₃-water, CuO-water, TiO₂-water, MgO-water, Al₂O₃-Ag/water, Fe₃O₄-water etc...) are used under different conditions to improve the performance of HE. But the work done with hybrid nanoparticles TiO₂ & SiC with base fluid as water is limited. Hence in this work, experimental test conducted in a double pipe HE with TiO₂-

water, SiC-water, TiO2-SiC/water hybrid nanofluids. Extensive experiments have been carried out in a double pipe HE to discover the influence of nanofluids on heat transfer performance for various vol. concentrations. Because traditional working fluids possess lower heat transfer capacity. So nanofluids come up with a solution to the improvement of thermal conductivity (Ahmed et al. 2022b).

2 Experimental work

Schematic Diagram of Double Pipe HE is shown in Figure 1. The experimental setup given in Figure 2 embodies a heat exchanger, hot fluid tank, cold fluid tank, pumps for hot and cold fluids, U-tube manometer, thermocouples, and a Geyser. Hot fluid from the geyser flows through the inner pipe, while the cold fluid flows through the annular space between two pipes in opposite directions to obtain a counter-flow regime. The hot and cold fluid flow rate are regulated by means of the valves available on the respective pipes. Fluids after passing through the HE returned to the respective tanks and recirculated by using the pumps. Thermocouples are used to measure the temperature at hot fluid inlet & outlet and cold fluid inlet & outlet. A U-tube manometer is usefulness to quantify the PD over the test section and all temperatures are indicated by a digital temperature indicator. A mechanical stirrer and digital analytical balance are used for the preparation of nanofluids.

Experiments conducted with constant hot fluid flow rate of 14.5 lpm and for various cold fluid flow rates of 17.5, 21, 25, 29.5 and 34.5 lpm. Four types of working fluids Water, TiO2/water, SiC/water and TiO2-SiC/ water are used in the double pipe HE for experimentation. Length of the HE is 2.1 m. The inner and outer diameters of the inside pipe are 37.64 mm and 56.66 mm respectively. Inner diameter of the outer pipe is 74.74 mm. Hot fluid from the geyser flows in the inner pipe and cold fluid from the supply tank flows along the annular space between the inner and outer pipe. Power is supplied at 220 V and capacity of the geyser used is 20 L with 2 KW. Two centrifugal pumps with 1HP motor are utilized to circulate hot fluid and cold fluid along the inner pipe and annulus region of the HE respectively.

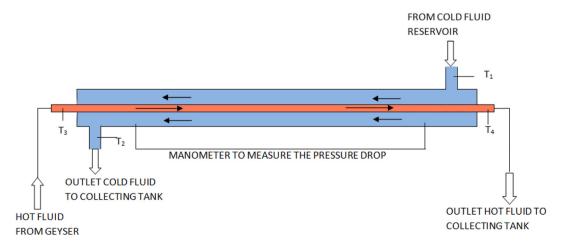


Figure 1: Schematic diagram of double pipe HE.

Figure 2: Experimental setup of double pipe

Figure 3 shows the geyser which can supply hot water. Figure 4 indicates the mechanical stirrer with electric motor that drives the metal rod with blades which is immersed in the nanoparticles and water mixture. Maximum operating speed of stirrer is 1550 RPM and motor wattage is 45 W. Figure 5 depicts the digital analytical balance, that is utilized to quantify the mass of nanoparticles. The accuracy of instrument is 0.001 g with the capacity of 220 g.

Digital temperature indicator: Temperature indicator process signals from thermocouple and display them on the screen. The temperature to be displayed is controlled by selector switch.

Figure 3: Geyser.

Figure 4: Mechanical stirrer.

Figure 5: Digital analytical balance.

3 Preparation of nanofluids

Two step method is adopted for the preparation of nanofluids. Initially mass of nanoparticles (TiO_2 and SiC) is measured with digital analytical balance. Then, measured amount of nanoparticles is added to the base fluid i.e. water. Further, surfactant SDBS 0.1% of nanoparticle concentration is added for uniform dispersion and stability improvement. Samples are stirred by mechanical agitator to ensure that the nanoparticles are properly mixed with the base fluid water. Figure 6 shows the various types of nanofluids at different volume concentrations.

Experiments are conducted with TiO_2 /water and SiC/water nanofluids with vol. concentrations fluctuate from 0.01 to 0.09 %. Later, similar experiments are conducted with TiO_2 –SiC/water hybrid nanofluids with nanoparticles ratio TiO_2 :SiC = 1:1, TiO_2 :SiC = 1:2, TiO_2 :SiC = 2:1 for 0.09 % volume concentration.

Figure 6: Nanofluid samples with different percentage volume concentrations.

4 Data reduction

Overall HTC is (Jena, Patro, and Shankar Behera 2013)

$$U = \frac{1}{\frac{1}{h_i} + \frac{r_i}{k_{ip}} \ln\left(\frac{r_{o,ip}}{r_{i,ip}}\right) + \frac{1}{h_o} \frac{r_{i,ip}}{r_{o,ip}}}$$
(1)

where, The heat transfer coefficient (Soma et al. 2014) $h = \frac{k \text{Nu}}{d}$ The Nusselt number (Soma et al. 2014) Nu = 0.023 $Re^{0.8}Pr^{0.33}$

Friction factor is (Ahmed et al. 2022a; Krishna Nitturi et al. 2023)

$$f = \frac{2\Delta P}{\rho_c V_c^2} \frac{D_h}{L} \tag{2}$$

Pressure drop is
$$\Delta P = \rho g (\Delta h) \frac{N}{m^2}$$
 (3)

Blasius correlation is (Gugulothu et al. 2023b; Wijayanta et al. 2020)

$$f = \frac{0.316}{\text{Re}^{0.25}} \tag{4}$$

where Reynolds number (Somanchi et al. 2014; Yaningsih et al. 2018) Re = $\frac{\rho v d_i}{...}$

Colebrook's correlation (Mellal et al. 2017)

$$f = \frac{1}{(0.782 \ln{(\text{Re})} - 1.51)^2}$$
 (5)

Deviation is 1.65 %, 0.29 %, 1.40 %, and 10.97 % for hot fluid, and 0.50 %, 0.15 %, 0.47 %, and 9.71 % in density, specific heat, thermal conductivity, and dynamic viscosity for cold fluid when compared with (Kaleru, Venkatesh, and Kumar 2022a; Kaleru, Venkatesh, and Kumar 2022b) base fluid properties equation.

The density of nanofluid (Ahmed et al. 2021b; Gugulothu and Sanke 2022)

$$\rho_{\rm nf} = (1 - \phi)\rho_{bf} + \phi\rho_{p} \tag{6}$$

The specific heat of a nanofluid (Ahmed et al. 2021b; Gugulothu et al. 2022)

$$\left(C_{p}\right)_{nf} = \frac{\left(1 - \phi\right)\left(\rho C_{p}\right)_{f} + \phi\left(\rho C_{p}\right)_{np}}{\rho_{nf}} \tag{7}$$

The thermal conductivity of nanofluid is (Gugulothu and Sanke 2022)

$$k_{\rm nf} = \frac{k_{np} + (m-1)k_f - (m-1)(k_f - k_{np})\phi}{k_{np} + (m-1)k_f + (k_f - k_{np})\phi} k_f$$
 (8)

where m = 3 for spherical shaped nanoparticles.

Viscosity of nanofluid is (Gugulothu et al. 2022)

$$\mu_{nf} = \frac{\mu_f}{(1 - \phi)^{2.5}} \tag{9}$$

Results obtained from the experimentation were compared with correlations given by Vajjha (Gugulothu 2023) and Xuan and Li (Gugulothu 2023) for the validation. The correlations used for the comparison are.

Xuan and Li correlation (Gugulothu 2023)

$$Nu_{theory} = 0.0059 (1 + 7.6286 \phi^{0.6886} Pe^{0.001}) Re^{0.9238} Pr^{0.4}$$
 (10)

where Peclet number, Pe = $\frac{\rho_{nf}V_{nf}D_h}{k_{nf}}$ Vajjha correlation (Vajjha et al. 2010a) for friction factor

$$= f \left(\frac{\rho_{nf}}{\rho_{bf}}\right)^{0.797} \left(\frac{\mu_{nf}}{\mu_{bf}}\right)^{0.108} \tag{11}$$

where, f is taken from equation (4)

Pongjet Pomvonge equation (Gugulothu 2023a)

$$Nu_c = 0.0327Re_c^{0.755}Pr_c^{0.4}$$
 (12)

Nusselt number is calculated by Promvonge et al. (Gugulothu 2023)

$$Nu_c = 0.0135Re_c^{0.85}Pr_c^{0.4}$$
 (13)

5 Validation

As shown in the Figure 7, experimental values of overall HTC were compared to the values obtained from theoretically for base fluid/water. Figure 8 shows the comparison between

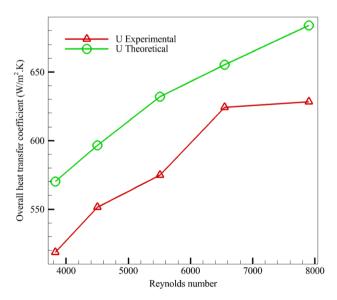


Figure 7: Comparison of experimental and theoretical values of overall heat transfer coefficient.

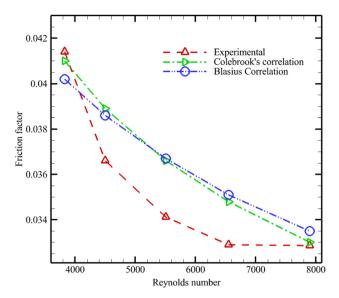


Figure 8: Comparison of experimental data with correlations of friction factor.

experimental and empirical correlation of friction factor for water. The investigational values are well in acceptance with the empirical values obtained from correlation. Throughout the range of Re, it is noticed that the experimental overall HTC and friction factor fell within the ± 10 % accuracy fluctuate of empirical and experimental values. Author found well agreement i.e. 2.01% minimum and 7.56% maximum than Blasius correlation, and 0.97% minimum and 7.27% maximum deviation for Colebrook's correlation when compared with experimental values.

6 Uncertainty analysis

Reynolds number (Kristiawan et al. 2020)

$$\left(\frac{\delta \text{Re}}{\text{Re}}\right)^2 = \left(\frac{\delta V}{V}\right)^2 + \left(\frac{\delta \rho}{\rho}\right)^2 + \left(\frac{\delta D}{D}\right)^2 + \left(\frac{\delta \mu}{\mu}\right)^2 \tag{14}$$

Nusselt number (Kristiawan et al. 2020)

$$\left(\frac{\delta \text{Nu}}{\text{Nu}}\right)^2 = \left(\frac{\delta h}{h}\right)^2 + \left(\frac{\delta d}{d}\right)^2 + \left(\frac{\delta k}{k}\right)^2 \tag{15}$$

Friction factor (Kristiawan et al. 2020)

$$\left(\frac{\delta f}{f}\right)^2 = \left(\frac{\delta \Delta P}{P}\right)^2 + \left(\frac{\delta \rho}{\rho}\right)^2 + \left(\frac{\delta \nu}{\nu}\right)^2 \tag{16}$$

The experimental uncertainty is computing using equations (14)–(16) in terms of Reynolds number, Nusselt number, and friction factor. The maximum uncertainty of Reynolds number, Nusselt number, and friction factor is

5.43 %, 7.19 %, and 6.03 % respectively, which shows good agreement within the limit i.e. <10 %.

7 Results and discussion

Previously Vijaya Kumar Reddy et al. (2015) worked on this same experimental setup to study the enhancement of heat transfer using nanofluids (MgO, ZnO, and CuO) at various volume fractions in a double pipe made of steel inner and outer diameters are 0.625 and 0.815 inch with the length 1 m and found good agreement in validation. In the present work is carried out using TiO_2 /water, and SiC/water nanofluids, and further studied using hybrid nanofluids at various ratios.

Figure 9 represents variation of overall HTC for TiO₂-Water nanofluid in the Re ranging from 3600 to 8100. It noticed that overall HTC enhances with enhancement in Re and with enhancement in percentage volume concentration. For all volume concentrations of nanofluids and Reynolds number, overall HTC of TiO₂-water nanofluid is more in contrast to the water. For 0.01 %, 0.03 %, 0.05 %, 0.07 %, and 0.09 % TiO₂-water nanofluids, maximum enhancement of overall HTC is 0.35 %, 10.72 %, 16.55 %, 17.32 % and 20.94 % respectively.

For ${\rm TiO_2\text{-}Water}$ nanofluid, maximum improvement of overall HTC in contrast to water is 20.94 %, which is obtained at higher Re and at 0.09 % volume concentration. This can be due to increased thermal conductivity because of dispersed nanoparticles. Also, Brownian motion of the particles could be one of the mechanisms influencing enhanced HTC.

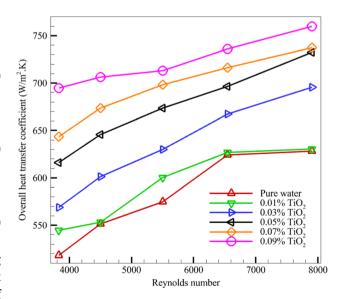


Figure 9: Overall HTC with Re for TiO₂-water nanofluids.

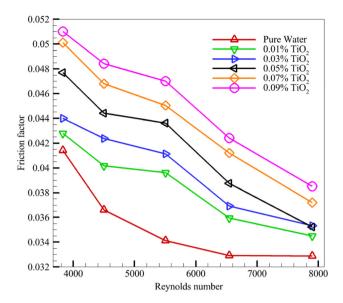


Figure 10: Friction factor with Re for TiO₂-water nanofluid.

Figure 10 represents the friction factor for TiO_2 -water nanofluid in the Re ranging from 3600 to 8100. It is observed that the friction factor decreases with enhancement in Re and enhances with enhancement in percentage volume concentration. For 0.01 %, 0.03 %, 0.05 %, 0.07 %, and 0.09 % TiO_2 -water nanofluid, increase in friction factor is 5 %, 7.5 %, 7.21 %, 13.21 %, and 17.16 % respectively.

Figure 11 represents variation of overall HTC for SiC-water nanofluid in the Reynolds range (3600–8100). It is noticed that overall HTC of SiC-water nanofluids increases with Re and with increase in percentage volume concentration. For all volume concentrations of SiC-water

nanofluids and Re, overall HTC of SiC-Water nanofluid is higher in contrast to the water. For 0.01%, 0.03%, 0.05%, 0.07%, and 0.09% SiC-Water nanofluids, maximum improvement in overall HTC is 4.84%, 16.12%, 21.93%, 22.2%, and 22.7% respectively. This may be because of improvement in thermal conductivity because of dispersed nanoparticles and brownian motion of the particles.

Figure 12 represents friction factor for SiC-water nanofluid in the Reynolds range (3600–8100). From the experimental results; it is observed that friction factor decreases with improvement in Re and improvement with improvement in percentage vol. concentration. For 0.01%, 0.03%, 0.05%, 0.07%, and 0.09% SiC-water nanofluids, increase in friction factor is 1.95%, 4.2%, 6.21%, 12.6%, and 15.033% respectively.

Figure 13 represents variation of overall HTC for hybrid nanofluids with nanoparticles ratio TiO_2 :SiC = 1:1, TiO_2 :SiC = 1:2, TiO_2 :SiC = 2:1 in the Reynolds range (3600–8100). From the experiment, it is noticed that overall HTC increases with Re. For all values of Reynolds number, overall HTC of TiO_2 –SiC/water Hybrid nanofluid with TiO_2 :SiC = 1:2 ratio is higher in contrast to the water and the maximum enhancement in overall HTC is 23.8 %. This may be due to their synergistic thermal effects and better overall hydrothermal characteristics compared to other fluids. The physical properties of the nanofluids are higher than the base water is the major reason for this enhancement.

Figure 14 represents variation of friction factor for hybrid nanofluids in the Reynolds range 3600–8100. From the experimental results, it is noticed that friction factor decreases with improvement in Re. For hybrid nanofluid

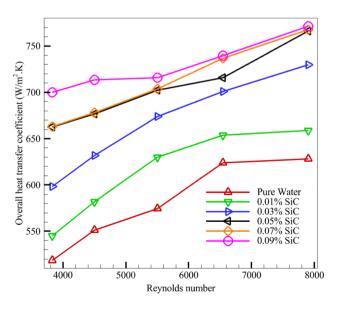


Figure 11: Variation of overall HTC with Re for SiC-water nanofluids.

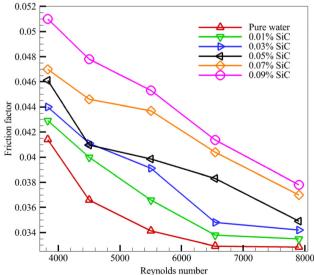


Figure 12: Friction factor with Re for SiC-water nanofluid.

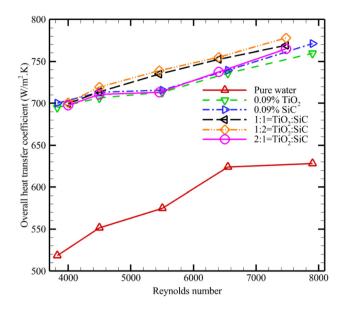


Figure 13: Overall HTC with Re for hybrid nanofluids.

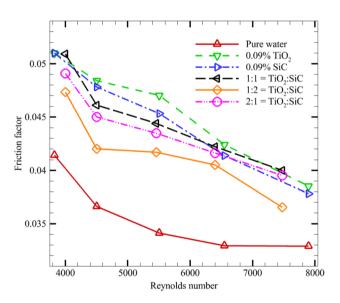


Figure 14: Friction factor with Re for hybrid nanofluids.

with TiO₂:SiC = 1:1 ratio, maximum enhancement of overall HTC is 22.41 % and respective increase in friction factor is 21.72 %. Maximum improvement of overall HTC is 21.77 % for TiO₂:SiC = 2:1 ratio Hybrid nanofluid and respective increase in friction factor is 20.2 %. For hybrid nanofluid with TiO₂:-SiC = 1:2 ratio, maximum increment of overall HTC is 23.8 % and enhancement in friction factor is 11.2 %.

Figure 15 illustrates the Nusselt number variation with Reynolds number for various correlations, Nusselt number rises with the rising of Reynolds number. This Nusselt number is computed with the help of equations (12) and (13).

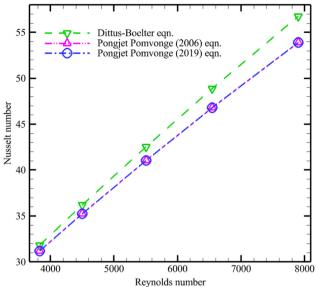


Figure 15: Nusselt number versus Reynolds number.

The minimum and maximum error between the Dittus-Boelter equation and Pongjet Pomvonge (2006 and 2019) equation are 1.92 and 5.06 at lower and higher Reynolds number respectively.

8 Conclusions

The HT characteristics using TiO_2 -water nanofluids, SiC-water nanofluids and hybrid nanofluids with nanoparticles ratio of TiO_2 :SiC = 1:1, TiO_2 :SiC = 1:2, TiO_2 :SiC = 2:1 are experimentally investigated in a double pipe HE. The conclusions drawn from the experimental investigations are.

- Experimental values of overall HTC using water as working fluid have shown 9.8 % maximum deviation with the correlations available in literature. Whereas, experimental values of friction factor have shown 7.56 % maximum deviation.
- Overall HTC improved with improvement in the mass flow rate of TiO₂-water and SiC-water nanofluids.
 Maximum improvement of overall HTC is 20.94 % for TiO₂-water nanofluid and 22.7 % for SiC-water nanofluid compared to water.
- Friction factor decreased with enhancement in the mass flow rate and increases with enhancement of volume concentration of TiO₂-water and SiC-water nanofluids. This is happen due to enhancement of dynamic viscosity enhancement. Maximum increase in friction factor for TiO₂-water nanofluid and SiC-water nanofluids are 17.16 %, and 15.03 % respectively.

- Overall HTC increased with enhancement in percentage vol. concentration of TiO2-water and SiC-water nanofluids. This may be due to the improvement in the effective thermal conductivity of nanofluids.
- Overall HTC improved with enhancement in the mass flow rate of hybrid nanofluid. Highest HTC increment is 23.8 % was noticed for hybrid nanofluid with TiO₂:SiC = 1:2 ratio followed by 22.7 % enhancement for SiC-water nanofluid with 0.09% concentration followed by 20.94 % enhancement for TiO2-water nanofluid with 0.09 % concentration.
- Friction factor decreased with improvement in the mass flow rate of hybrid nanofluid. Maximum increase in the friction factor for hybrid nanofluid with TiO₂:SiC = 1:2 ratio, TiO₂:SiC = 1:1 ratio and with TiO₂:SiC = 2:1 ratio are 11.2 %, 21.72 % and 20.2 % respectively.
- Within the selected range of flow (Reynolds number varying from 3600 to 8100), hybrid nanofluid with TiO₂:SiC = 1:2 ratio is found to be optimum as the heat transfer enhancement is more with less improvement in the friction factor.

Research ethics: Not applicable.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: All authors state no conflict of interest.

Research funding: None declared. Data availability: Not applicable.

Nomenclature

ΗE heat exchanger Reynolds number Re Nu nusselt number HTC heat transfer coefficient

HTR heat transfer rate

volume vol. PD pressure drop HT heat transfer

References

- Abbasian Arani, A. A., and J. Amani. 2012. "Experimental Study on the Effect of TiO₂-Water Nanofluid on Heat Transfer and Pressure Drop." Experimental Thermal and Fluid Science 42: 107-115.
- Ahmed F., A. Khanam, L. Samylingam, N. Aslfattahi, and R. Saidur. 2022a. "Assessment of Thermo-Hydraulic Performance of MXene-Based Nanofluid as Coolant in a Dimpled Channel: A Numerical Approach." Journal of Thermal Analysis and Calorimetry 147 (10). https://doi.org/10. 1007/s10973-022-11376-7.

- Ahmed F., A. Khanam, L. Samylingam, N. Aslfattahi, and R. Saidur. 2022b. "Assessment of Thermo-Hydraulic Performance of MXene-Based Nanofluid as Coolant in a Dimpled Channel: A Numerical Approach." Journal of Thermal Analysis and Calorimetry 147 (10).
- Ahmed, F., M. Fuad, F. Akter, R. Gugulothu, R. Kumari Jilugu, B. SyedAlam, and D. Kumar. 2021b. "Investigation of Entropy and Turbulence Characteristics of Water Based Al₂O₃, TiO₂, and Grapheme-Oxide Nanoparticles in a Triangular Rod Array." Materials Today: Proceedings
- Ahmed, F., M. Minaruzzaman Sumon, M. Fuad, R. Gugulothu, and A. S.. Mollah. 2021a. "Numerical Simulation of Heat Exchanger for Analyzing the Performance of Parallel and Counter Flow." WSEAS Transactions on Heat and Mass Transfer 16: 145-52.
- Arsan, R., M. Aravindh, N. Prabhu, and D. Ramalingam. 2018. "Experimental Investigation on Thermal Performance of Shell and Tube Heat Exchanger Using Hybrid Nanofluid." International Journal of Advance Research in Science and Engineering 7 (2).
- Bobbo, S., L. Colla, M. Scattolini, and L. Fedele. 2012. "Study on the Heat Transfer Capability of Silicon Carbide - Ethylene Glycol Nanofluid." Padova, Italy: NSTI-Nanotech.
- Gugulothu, R. 2023. "Experimental Investigations on Augmentation of Heat Transfer in Shell and Tube Heat Exchangers." A Ph.D. Thesis submitted at Department of Mechanical Engineering, University College of Engineering, Osmania University.
- Gugulothu, R., N. S. Somanchi, V. Kumar Reddy, and K. Akkiraju. 2017. "A Review on Enhancement of Heat Transfer in Heat Exchanger with Different Inserts." Materials Today: Proceedings Part A 4 (2):
- Gugulothu, R., N. Sanke, and A. V. S. S. K. S. Gupta. 2019. "Numerical Study of Heat Transfer Characteristics in Shell and Tube Heat Exchanger." In Numerical Heat Transfer and Fluid Flow, Lecture Notes in Mechanical Engineering, 375-83. Springer Publications.
- Gugulothu, R., and N. Sanke. 2023a. "Experimental Investigation of Heat Transfer Characteristics for a Shell and Tube Heat Exchanger." Energy Harvesting and Systems. https://doi.org/10.1515/ehs-2022-0147.
- Gugulothu, R., N. Sanke, N. S. S. Somanchi, V. Normalla, F. Akter, and B. D. Y. Sunil. 2023b. "A Numerical Study of Water Based Nanofluids in Shell and Tube Heat Exchanger." Energy Harvesting and Systems: 1–11.
- Gugulothu, R., and N. Sanke. 2022. "Effect of Helical Baffles and Water-Based Al₂O₃, CuO, and SiO₂ Nanoparticles in the Enhancement of Thermal Performance for Shell and Tube Heat Exchanger." Journal of Heat Transfer 51 (5): 1-26.
- Gugulothu, R., and N. Sanke. 2022. "Use of Segmental Baffle in Shell and Tube Heat Exchanger for Nano Emulsions." Journal of Heat Transfer 51 (3): 1-22.
- Han, D., W. F. He, and F. Z. Asif. 2017. "Experimental Study of Heat Transfer Enhancement Using Nanofluid in Double Tube Heat Exchanger." Energy Procedia 142: 2547-53.
- Hamid, K. A., W. H. Azmi, M. F. Nabil, and R. Mamat. 2017. "Improved Thermal Conductivity of TiO₂-SiO₂ Hybrid Nanofluid in Ethylene Glycol and Water Mixture." Materials Science and Engineering 257: 012067.
- Hasan, M. I., M. D. Salman, and A. L. Thajeel. 2018. "Enhancement of Thermal Performance of Double Pipe Heat Exchanger by Using Nanofluid." Journal of Engineering and Sustainable Development 22 (2):
- Hussein, A. M. 2017. "Thermal Performance and Thermal Properties of Hybrid Nanofluid Laminar Flow in a Double Pipe Heat Exchanger." Experimental Thermal and Fluid Science 88: 37-45.
- Jena, S., P. Patro, and S. Shankar Behera. 2013. "Multi-objective Optimization of Design Parameters of a Shell & Tube Type Heat

- Exchanger Using Genetic Algorithm." International Journal of Current Engineering and Technology 3 (4): 1379-86.
- Kaleru, A., S. Venkatesh, and N. Kumar. 2022a. "Theoretical and Numerical Study of a Shell and Tube Heat Exchanger Using 22% Cut Segmental Baffle." Journal of Heat Transfer 51: 2186-206.
- Kaleru, A., S. Venkatesh, and N. Kumar. 2022b. "Numerical and Experimental Study of a Shell and Tube Heat Exchanger for Different Baffles." Journal of Heat Transfer 52: 7805-21.
- Khan, M. Z. A., M. Aziz, and A. T. Wijayanta. 2021. "Prediction of Heat Transfer Enhancement of Delta-Wing Tape Inserts Using Artificial Neural Network." Case Studies in Thermal Engineering 27: 101322.
- Kimura, S., and A. Bejan. 1983. "The Heatline Visualization of Convective Heat Transfer." Journal of Heat Transfer 105: 916-9.
- Kristiawan, B., A. T. Wijayanta, K. Enoki, T. Miyazaki, and M. Aziz. 2019. "Heat Transfer Enhancement of TiO₂/water Nanofluids Flowing inside a Square Minichannel with a Microfin Structure: A Numerical Investigation." Journal of Energies, MDPI 12: 1-21.
- Kristiawan, B., A. I. Rifa'i, A. T. Wijayanta, and T. Miyazaki. 2020. "Enhancing the Thermal Performance of TiO2/water Nanofluids Flowing in a Helical Microfin Tube." Powder Technology 376: 254-62.
- Krishna Nitturi, L., K. Venkata Kusuma Soumya, R. Gugulothu, A. Kaleru, V. Vinay, and F. Ahmed. 2023. "Augmentation of Heat Transfer through Passive Techniques." Journal of Heat Transfer 52 (6): 4422-49.
- Kurnia, J. C., B. Chaedir, A. T. Wijayanta, and A. A. Sasmito. 2022. "Convective Heat Transfer Enhancement of Laminar Herschel-Bulkey Nonnewtonian Fluid in Straight and Helical Heat Exchangers with Twisted Tape Inserts." Industrial & Engineering Chemistry Research 61: 814-44.
- Madhesh, D., and S. Kalaiselvam. 2014. "Experimental Study on Heat Transfer and Rheological Characteristics of Hybrid Nanofluids for Cooling Applications." Journal of Experimental Nanoscience 10 (15): 1194-213.
- Mellal, M., R. Benzeguir, D. Sahel, and H. Ameur. 2017. "Hydro-thermal Shell Side Performance Evaluation of a Shell and Tube Heat Exchanger under Different Baffle Arrangement and Orientation." International Journal of Thermal Sciences 121: 138-49.
- Pandey, P. K., P. K. Lakhani, K. Kumar, P. Bohra, and R. Mishra. 2017. "Heat Transfer Analysis of Shell and Tube Heat Exchanger Using Al₂O₂/SiC Nanofluid." European Journal of Advances in Engineering and Technology
- Ponnada, S., T. Subrahmanyam, and S. V. Naidu. 2019. "An Experimental Investigation on Heat Transfer and Friction Factor of Silicon Carbide/water Nanofluids in a Circular Tube." Energy Procedia 158:
- Purnama, B., R. Rahmawati, A. T. Wijayanta, and Suharyana. 2015. "Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles." Journal of Magnetics 20 (3): 207-10.

- Sajadi, A. R., and M. H. Kazemi. 2011. "Investigation of Turbulent Convective Heat Transfer and Pressure Drop of TiO₂/water Nanofluid in Circular Tube." International Communications in Heat and Mass Transfer 38: 1474-8.
- Salameh, T., M. Tawalbeh, and M. E. H. Assad. 2018. "Experimental and Numerical Study on Heat Transfer Enhancements of Concentric Tube Heat Exchanger Using Water Based Nanofluids." International Conference on Renewable Energy 232-7.
- Singh, D., E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith, and J. M. Lopez-Cepero. 2009. "An Investigation of Silicon Carbide-Water Nanofluid for Heat Transfer Applications." Journal of Applied Physics 105: 064306.
- Somanchi, N. S., S. R. D. Rangisetty, S. P. K. Bellam, R. Gugulothu, and S. Bellam. 2014. "Experimental Investigations on Heat Transfer Enhancement in a Horizontal Tube Using Converging and Diverging Conical Strips." In Proceedings of the ASME 2014 Gas Turbine India Conference (GTINDIA2014). New Delhi.
- Suresh, S., K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar. 2012. "Effect of Al₂O₃-Cu/water Hybrid Nanofluid in Heat Transfer." Experimental Thermal and Fluid Science 38: 54-60.
- Vajjha, R. S., D. K. Das, and D. P. Kulkarni. 2010a. "Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids." International Journal of Heat and Mass Transfer 53: 4607-18.
- Vijaya Kumar Reddy, K., N. S. Somanchi, R. S. Rama Devi, R. Gugulothu, and S. P. Kumar. 2015. "Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Nanofluids." In Proceedings of the 17th ISME Conference (ISME-17). New Delhi: IIT Delhi.
- Vijaya Kumar Reddy, K., N. S. Somanchi, R. S. Rama Devi, R. Gugulothu, and B. Sudheer Prem Kumar. 2017. "Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Nanofluids." In Proceedings of the 17th ISME Conference (ISME-17), organized by Indian Institute of Technology Delhi, New Delhi, India.
- Wijayanta, A. T., I. Yaningsih, W. E. Juwana, M. Aziz, and T. Miyazaki. 2020. "Effect of Wing-Pitch Ratio of Double-Sided Delta-Wing Tape Insert on the Improvement of Convective Heat Transfer." International Journal of Thermal Sciences 151: 106261.
- Yang, Y., Z. George Zhang, E. A. Grulke, W. B. Anderson, and G. Wu. 2005. "Heat Transfer Properties of Nanoparticle-In-Fluid Dispersions (Nanofluids) in Laminar Flow." International Journal of Heat and Mass Transfer 48: 1107-16.
- Yaningsih, I., A. T. Wijayanta, T. Miyazaki, and S. Koyama. 2018. "Thermal Hydraulic Characteristics of Turbulent Single-phase Flow in an Enhanced Tube Using Louvered Strip Insert with Various Slant Angles." International Journal of Thermal Sciences 134: 355-62.