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Abstract: The energy management system is established in
the microgrid system for optimally integrating the Distrib-
uted Energy Resources (DERs) and generating the power
distribution grids. At last, diverse mechanisms have been
highly concentrated on cost reduction and at the same time,
both the technical indices and economic factors are consid-
ered. Thus, this research work suggests a new heuristic
algorithm termed Modified Sandpiper optimization algo-
rithm (M-SOA) for optimal integration of DER-like Photo
Voltaic (PV), wind turbines, and Energy Storage Systems
(ESS) into microgrids. Here, the techno-economical optimi-
zation with ISOA is designed for determining the optimal
capacity of PV, Wind Turbine, and ESS via the multi-objective
function concerning measures like network power losses,
voltage fluctuations, Electricity Supply Costs, initial cost,
operation cost, fuel cost, and demand side management.
Finally, the optimal energy management is done on
distributed energy resources, and this developed model
experiments on the IEEE-33 bus network. Throughout the
result analysis, the developed M-SOA obtains 3.84 %, 0.98 %,
5.72 %, and 4.63 % better performance with less latency than
the AGTO, BOA, WOA, and SOA. Finally, the result evaluation
is done for minimizing the Electricity Supply Costs, initial
cost, operation cost, and fuel cost and maximize energy
efficiency.
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Notation table

STp Solar cell temperature

Noct General operating cell temperature

SUN The intensity rate has been taken based on the solar
radiation

STamb Ambient temperature

a2 and ys Statistical data

Nov The energy efficiency of the solar cell

p, Arand Le Air density, area secured by the turbine blades, and
turbine blade length

QApch Self-discharging rate

Mess Discharging or charging efficiency of ESS

pwéi The discharging or charging power

Atteos The period for discharging or charging

Nconv The efficiency of the DC/AC converter

Ecap Capacity of ESS

Ugand o4 Lognormal distribution

DSTMa Maximum distance

Bcap Battery capacity

Fp Energy consumption is computed per mile

Tarvi Arrival time

Toeprt Departure time

Tourtn Time duration

qspr Charging rate

OCwr Optimal capacity of wind turbine

OCpy Optimal capacity of PV

OCess Optimal capacity of ESS

BLpy Bus location of PV

BLwr Bus location of wind turbine

Bless Bus location of ESS

ATSH Charging duration of EV

ATERr Charging duration of ESS

1 Introduction

In developed countries, nearly 40 % of the total energy is
consumed by commercial and residual usage (Martinez
Cesefia et al. 2020). This will further increase the energy
demand in the buildings in the future generation due to the
electrical usage of household heating, urbanization, popu-
lation growth, and raising penetration of Electric Vehicles
(EVs) (Cai and Kong 2017). To resolve these issues, most of the
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works have been focused on developing Microgrid aided
future electrical power systems for enhancing performance.
A microgrid is considered a Low Voltage (LV) power network
comprising shared energy sources like fuel cells, micro-wind
turbines, energy storage devices, and PV (Mohamed et al.
2022). In addition, the energy efficiency in the microgrid has
enhanced with the appropriate Direct Current (DC) distri-
bution without being dependent on the utilization of tradi-
tional AC-aided distribution (Bourhim et al. 2021). Microgrid
development is steadily observed to be a general mechanism
to help entities by reducing grid reliance and energy costs as
well as enhancing sustainability and also for obtaining
higher resilience (Erdogan, Kucuksari, and Cali 2022). On the
other hand, there are more limitations occurred in the
development of microgrids like the requirement of capital
investment. Microgrid operation is considered to be chal-
lenging because of requiring certain implementation of
robust control schemes containing the ability to combine
diverse disparate technologies. The main perspective of
designing the microgrid is focused on techno-economic
optimization (Gao, Jia, and Marnay 2019). Such imple-
mentation involves the comparison of operational and cap-
ital investments over the economic gain on the technological
investment like Thermal Energy Storage (TES), wind tur-
bines, Energy Storage Systems (ESS), solar PV, and Fuel-Fired
Generators (GEN). For generating the established economic
decision, this evaluation has to consider the complete
demand data, parameters related to project financing, reg-
ulations, investment cost, utility tariff information, and local
weather scenarios (Tsai et al. 2020).

With the analysis of the recently developed research
works, it has shown that the expanded computations were
done through these present works, yet the interpretation of
the optimization constraints and objective functions without
considering the economic and technical parameters reduces
the accuracy rate and efficiency of the optimized outcomes
(Murty and Kumar 2020a). Moreover, these conventional
models do not establish a particular mechanism for control-
ling the unmanageable discharging and charging of ESS and
EVs for attaining the optimal operation condition of the power
system, which has also resolved the problem of economic
power dispatch (Shaheen and El-Sehiemy 2021). It is unable to
find the conventional research works on the power system
to develop a comprehensive model that contains the ability to
determine the optimal configuration belongs to the microgrid
and at the same time, it has to assure as the energy man-
agement mechanism for coordinating the grid-implemented
DERs along with the support of centralized power plant
(Queen, Moses Babu, and Thota 2021).

Various optimization algorithms are presented for
handling optimization issues and also solving the objectives
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of a single optimization problem (Venkatasubramanian,

Jately, and Azzopardi 2021). These heuristic approaches

are utilized for resolving the heuristic issues having more

technical constraints that have various difficulties
because of raising the non-linearity problem. For better
utilization of RESs over the economic condition, it is highly
significant to make the optimal sizing of microgrid com-

ponents (Shekari, Golshannavaz, and Aminifar 2017).

Based on the variant of the optimization approach, su-

premacy in the microgrid performance and the complete

usage of RESs can be provided (Jahid et al. 2020). There-
fore, many optimization algorithms are focused on uti-
lizing the microgrid performance in recent research
works (Kolhe 2009). Various developed works have
considered the techno-economic evaluation independent
of considering the effects of Demand Response (DR)

(Alhasawi and Milanovic 2012). In addition, the effective

advantages of the DR program are not mentioned in their

evaluation which is highly essential for performing the
efficient microgrid operation. The dispatching of optimal

energy having fused energy sources is observed to be a

challenging task based on the aspect of load as well as

generation uncertainties that are required to be included
in the evaluation for enhancing the system scheduling

(Lopez-Lorente et al. 2021). Furthermore, the comparative

testing of techno-economic advantages belonging to

diverse combined power systems is not established based
on the seasonal load variation and also with the DR pro-
gram (Taheri 2022). Hence, novel research towards the
techno-economical optimization for microgrid perfor-
mance is focused on in this research work, particularly on

PV, Wind turbines, and ESS.

The main contributions of the developed Demand Side
management system in Microgrid are given as follows.

— Design an efficient microgrid system with the support of
techno-economic optimization for demand side man-
agement and also for conserving the optimal capacity of
PV, Wind turbines, and ESS.

— Implement a hybrid optimization algorithm named
M-SOA integrated with the techno-economic optimi-
zation considering the multi-objective function con-
cerning network power losses, voltage fluctuations,
electricity supply costs, initial cost, operation cost, and
fuel cost by tuning the parameters like PV capacity,
wind turbine capacity, ESS capacity, PV bus location,
wind turbine bus location, and ESS bus location.

— Examine the developed demand side management sys-
tem in microgrid with the comparison over the con-
ventional heuristic algorithms with the convergence
analysis along with the analysis over the power loss,
supply, and voltage fluctuations.
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The rest of the sections of the developed model are described
as follows. In Section 2, the conventional works on techno-
economic optimization in microgrids are discussed. In Section
3, the system components are modeled and in Section 4, the
demand side management for techno-economic optimization
in a microgrid is discussed along with multi-objective func-
tion. In Section 5, the developed M-SOA for techno-economic
optimization in a microgrid is described. In Section 6, the
results obtained are given and in Section 7, the conclusion
about the implemented model is given.

2 Literature survey
2.1 Related works

In 2020, Rezaeimozafar et al. (2020) proposed a novel
two-layered heuristic framework for reducing operational
expenses along with power losses and voltage fluctuations
that occurred in the microgrids. When observing the outer
layer, the capacity and size of the DERs included with the EV,
RES, and ESS were acquired simultaneously. Similarly, the
inner layer used for performing the scheduled operation
belongs to ESSs and EVs with the support of the Integrated
Coordination Model (ICM). This acted as the fuzzy interface
that was incorporated for solving the multi-objectivity
considered with cost function implemented according to
the electricity response, the charge state of ESS and EVs, and
hourly demand response. Demand response was developed
within the ICM for evaluating the impact of electricity costs
for optimal energy management. For resolving the heuristic
issue as well as load-flow equations, a fusion of optimization
algorithms was used for deployment correspondingly. One-
day experiment outcomes were used for revealing the
effectiveness of the developed model based on the analysis of
voltage fluctuations, electricity supply cost, and power loss
that has enhanced the energy efficiency and stability of the
power system.

In 2020, Murty and Kumar (2020b) investigated the
benefits of techno-economic advantages, optimal capacity,
and energy dispatching in a remote area over Tamilnadu.
Microgrids containing fused energy sources with the Diesel
Generator (DG), Battery ESS (BESS), and wind turbine.
Diverse case studies were developed using fused energy
sources and a comparison among the advantages of techno-
economic was made for every case study. Eight diverse
configurations were designed for fused energy sources using
renewable fractions. The heuristic evaluation was done with
the support of the Hybrid Optimization Model for Electric
Renewable (HOMER) software. The effect of demand
responses was also confirmed based on the techno-economic
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merits and energy dispatching. The experimental analysis
was made for testing the optimal capacity belonging to fuel
cost, payback period consisting of seasonal load variation,
Cost Of Energy (COE), State Of Charge (SOC), operational
expenses, initial expenses, and emission penalty of green-
house gas. The simulation report has revealed the reduced
emissions of CO, using the hybrid optimization algorithm
when compared to the traditional isolated distribution sys-
tem using DG.

In 2021, Ishraque et al. (2021) analyzed the imple-
mentation and optimization of the developed off-grid fused
microgrid systems for diverse load dispatch mechanisms
with the evaluation of diverse cost evaluations, system
responses, and component sizes of the developed system.
This research work was comprised of optimization of sizing
in the fused microgrid systems comprised of diesel gener-
ator, wind turbine, solar PV, storage unit, and load profile
with the help of five dispatch techniques such as integrated
dispatch mechanism, load following, HOMER predictive
dispatch, cycle charging, and generator order. The involved
microgrids were considered for tuning to get the reduced
CO, emission, Levelized Cost Of Energy (LCOE), and Net
Present Cost (NPC). Here, the two microgrids were tested
based on the five dispatch approaches according to HOMER
software and consequently, the efficiency of the system
performance along with the availability study of the
microgrids was considered. The analysis reports have
assured the instruction of estimating the diverse probable
costs and component size for processing optimal operation
done in the developed microgrids using the diverse con-
straints related to loading dispatch. The experiments were
made to confirm the optimal dispatch mechanism which was
the load-following mechanism for providing consistent po-
wer system responses consisting of lower net power cost,
CO, emission rate, and operational cost. In addition, the
fused dispatch mechanism was declared as the poor dispatch
approach for the developed off-grid fused microgrid imple-
mentation comprising of higher operational cost, CO, emis-
sion rate, and LCOE.

In 2020, Bandyopadhyay et al. (2020)) presented a brief
heuristic model for tuning the grid converter, battery, and
PV belonging to the microgrid system with the consideration
of diverse objectives such as capital costs, payback period,
power autonomy, and energy autonomy. The developed
technique was incorporated with the development of a
holistic techno-economic microgrid framework according to
the parameters such as electricity tariffs, capital investment,
converter ratings, battery size, azimuth angle, and system
power of PVs. The implemented approach was applicable for
determining the optimum capacity of the BSS and PV system
to estimate the impact of meteorological scenarios over the
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relative capacity of the battery and PV. According to the
heuristic outcomes, thumb rules were obtained for per-
forming the optimal system sizing, which has supported
facilitating the microgrid design engineers at the time of
starting the implementation phase.

In 2021, Mathiesen et al. (2021) introduced an advanced
and faster approach for tuning the DER expenditure and also
for doing the dispatch schedule to take over the intra-hour
variability. A new collection of conditions functioned using
the intra-hour data for supporting the mixed-integer-linear-
program microgrid expenditure optimization. Variability
was described using the single fluctuations of worst-case
intra-hour, which has enabled the rapid optimizations when
correlated with other approaches considered for the evalu-
ation. This developed model has confirmed the optimality at
2% and also minimized the runtime by involving all time
steps explicitly.

In 2020, Nagapurkar and Smith (2019) developed a new
approach for evaluating the environmental as well as the
techno-economic performance of the small microgrid.
When assuring an uninterrupted power supply, the
microgrid was comprised of seven different components
like H, tanks, electrolyzers, fuel cells, biodiesel generators,
lead acid batteries, wind turbines, and solar PVs. Initially,
the brief mathematical frameworks were used for hourly
energy production for every component that was evaluated
after implementation. Then, the configurations containing
the minimum LCOE were computed based on the electricity
dispatch mechanism with the support of a Genetic Algo-
rithm (GA). The result obtained from the individual
microgrid was validated based on the exhaustive search
algorithm that was useful for scanning the complete
implementation for determining the minimum LCOE con-
figurations. The microgrid size was constantly increasing
for meeting the power requirements and also, novel mini-
mum LCOE configurations were computed with the support
of GA for evaluating the economies of scale impact over the
robustness.

In 2020, Ganjeh et al. (2020) proposed a new multi-level
optimization based on the techno-economic technique
along with the recent time-varying price model to enhance
the involvement in the coalition system and also for
reducing the energy cost of home microgrid and finally,
evaluate the reliability and voltage stability of the grid. The
developed model has considered the apartments of certain
units that included thermal as well as electrical energy
generators and energy storage devices and also can share
the energy among the upstream network. The developed
approach has utilized an algorithm for smart discharging
or charging of both EVs and energy storage for enhancing
energy efficiency. The efficacy of the developed algorithm
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was evaluated based on come thermal and electrical loads
configurations and also IEEE bus networks were enclosed
for ensuring the efficacy of the coalition system among the
microgrids on a huge scale.

In 2021, Yu et al. (2021) analyzed the effects of the devel-
oped demand response program considering the outcomes of
microgrid planning that were included with the investigation
on the utility grid’s emission generation, NPC, COE, best
configuration, and sizing were done. The optimization out-
comes have demonstrated that the implemented demand
response program was comprised of a positive impact on the
environmental, economic, and technical perspectives of
microgrids. The COE and NPC were minimized along with the
component size which has led to reducing the initial cost.

In 2023, Rizvi, Pratap, and Singh (2023) presented the
development of demand-side management for minimizing
the dispatch of optimal power and cost of operation. Here,
the microgrid was fused with the natural gas network to
resolve the renewable energy. Especially, the electric
network has been incorporated with a new hybridization of
two optimization approaches grasshopper and flower polli-
nation algorithms to ignore the congestion in a gas network.
At last, the designed scheme was experimented with using a
seven-node with the 33-bus IEEE test system.

In 2023, Dey, Dutta, and Marquez (2023a) developed an
intelligence-technique-based DSM for the reduction of the
overall cost of using the MG structure. Additionally, there
are seven diverse cases are reviewed which cover various
electricity market pricing strategies, DSM programs, and
grid participation. Thus, the simulation results of the
designed method have been obtained using the DSM scheme
regarding cost savings.

In 2023, Dey, Basak, and Bhattacharyya (2023b) intro-
duced a bi-level optimization approach to reduce the oper-
ating costs of a low-voltage microgrid system. Based on the
initial optimization of DSM was utilized to the reorganize
level load model (Rodezno et al. 2023). Here, the distributed
generator scheduling ideas and the restructured load
demand models were for reducing the microgrid system’s
generating costs.

2.2 Problem statement

Some techno-economical optimization approaches on
microgrids are listed in Table 1. GA-PSO (Rezaeimozafar et al.
2020) minimizes the electricity supply cost, voltage fluctua-
tions, and power loss and significantly enhances the energy
efficiency and stability of the power system. It does not
handle the uncertainties in hourly updated information. The
hybrid Optimization Model (Murty and Kumar 2020b) tries
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to reduce emissions, operation reserve, and reduced energy
demand and guarantees grid resilience. The real-time
implementation of this model is costly. HOMER pro (Ishra-
que et al. 2021) ensures the performance regarding the LCOE,
NPC, and CO, gas emissions and ensures an uninterrupted
supply of electrical power. It suffers from processing the
real-life Barishal and Chattogram distribution network via
the considered distribution line in the Simulink study. PSO
(Bandyopadhyay et al. 2020) performs better by deriving
trade-offs among various objectives such as simple payback
period, power autonomy, self-sufficiency, and lifetime capi-
tal cost and examines the effect of feed-in tariffs and the
electricity pricing tariffs on optima sizing of battery and PV
systems. It suffers from higher payback periods. Mixed-
integer-linear-program (Mathiesen et al. 2021) incorporates
the intra-hour variability into the microgrid and reduces the
runtime and maintained the optimality. It does not explore
purchases on utility on power demand charges. In the Genetic
Algorithm (Nagapurkar and Smith 2019), the economies of
scale impacts are examined on sustainability and verify the
power requirements and achieve a lower carbon footprint. It
does not explore the social cost of carbon on a utility-scale
microgrid. Multi-level optimization (Ganjeh et al. 2020) in-
creases the performance owing to grid reliability and voltage
quality and the network efficiency is enhanced regarding
reliability indices, voltage quality, thermal dumped energy,
and total cost. It faces complications regarding the generality
of the designed model. K-means clustering (Yu et al. 2021)
maximizes the flexibility of the system via techno-economic
analysis of an off-grid microgrid and efficiently alters the load
profiles for economic reasons. The results are affected by the
uncertainties of renewable energy sources. Thus, there is a
need on designing a new techno-economical optimization
approach using a microgrid.

3 Modeling of system components:
solar cell, wind turbine, and
energy storage systems

3.1 Solar cell

Based on the considerations in (Rahbari et al. 2017), the
resultant power obtained from the solar cells gets affected by
factors like solar cell temperature STp which is given in Eq. (D).

Noct - 20°

STC = STamb + 08

x SUN (€]

Here, the term SUN denotes the intensity rate taken
based on the solar radiation, ST, represents the ambient
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temperature that is considered to be °C and the general
operating cell temperature depicted by Noct. For generating
the pattern from solar radiation, the beta possibility distri-
bution function is given as shown in Eq. (2).

_ I(a+p) 1y 4 p1
FSUN.GB) = e < SUN < (- SUNT - @
Bz(l—ﬂQX(%)—l @3)
- <‘113—X#B> @

Here, the terms f and a are correspondingly the parameters
related to beta distribution, which are computed in Egs. (3)
and (4), respectively. The standard deviation and mean of the
solar radiation acquired through the statistical data are
indicated by o2 and ys, respectively. Finally, the resultant
output power belonging to the solar cell is computed in
Eq. (5).

Pwy, = Pwyy, X [qpv x (ST - 25)] (5)

Here, the term 1, indicates the energy efficiency of the solar
cell.

3.2 Wind turbine

The output power obtained through the wind turbine is
computed based on three parameters such as air mass
direction, wind speed, and turbine location as mentioned in
(Rahbari et al. 2017). At the same time, the wind speed con-
tains a huge impact on the turbine output and thus, the
Weibull possibility distribution function is employed for
generating the arbitrary wind speed variation (Abedini,
Moradi, and Hosseinian 2016) that is depicted in Eq. (6).

FU.LA) = G)(%)” x e(%) ©)

Here, the term [ indicates the shape parameter and A rep-
resents the scale parameter. The kinetic energy for the
airflow is considered with the wind speed v and mass M that
is shown in Eq. (7).

KIEy;, = %Muz 0]
aMm dLe
M = pArLe — T pArE = pArv ®

Next, the generated power through the wind turbines is
determined in Eq. (9).
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Table 1: Features and challenges of traditional techno-economical optimization approach using microgrid.

Author (citation)  Methodology

Features

Challenges

Rezaeimozafar et al. GA-PSO -

(2020)

Murty and Kumar  Hybrid optimiza- -

(2020b) tion model

Ishraque et al. HOMER pro -
(2021)

Bandyopadhyay PSO -
et al. (2020)

Mathiesen et al.
(2021)

Mixed-integer- -
linear-program

Nagapurkar and
Smith (2019)

Genetic algorithm -

It minimizes the electricity supply cost, voltage
fluctuations, and power loss.

It significantly enhances the energy efficiency and
stability of the power system.

It tries to reduce emissions, operation reserve,
and reduced energy demand.

It guarantees grid resilience.

It ensures the performance regarding the LCOE,
NPC, and CO, gas emissions.

It ensures an uninterrupted supply of electrical
power.

It performs better by deriving trade-offs among
various objectives such as a simple payback
period, power autonomy, self-sufficiency, and
lifetime capital cost.

It examines the effect of feed-in tariffs and elec-
tricity pricing tariffs on the optimal sizing of bat-
tery and PV systems.

It incorporates the intra-hour variability into the
microgrid.

It reduces the runtime and maintained the
optimality.

The economies of scale impacts are examined on
sustainability.

It verifies the power requirements and achieves a
lower carbon footprint.

It does not handle the uncertainties in hourly
updated information.

The real-time implementation of this model is
costly.

It suffers from processing the real-life Barishal
and Chattogram distribution network via the

considered distribution line in the simulink study.

It suffers from higher payback periods.

It does not explore purchases on utility on power
demand charges.

It does not explore the social cost of carbon on a
utility-scale microgrid.

It faces complications regarding the generality of
the designed model.

The results are affected by the uncertainties of
renewable energy sources.

Ganjeh et al. (2020) Multi-level - Itincreases the performance owing to grid reli-
optimization ability and voltage quality.

- The network efficiency is enhanced regarding
reliability indices, voltage quality, thermal dum-
ped energy, and total cost.

Yu et al. (2021) K-means - It maximizes the flexibility of the system via
clustering techno-economic analysis of an off-grid
microgrid.

- It efficiently alters the load profiles for economic
reasons.

PWying = dK(Ii# = % % V= % PArv? )

This kinetic energy is utilized for acquiring the trans-
mission power through the wind turbine blades. Here, the
terms p, Ar and Le are correspondingly denoted for air
density, area secured by the turbine blades, and turbine
blade length.

3.3 Energy storage systems

The optimal scheduling performed for ESS causes increasing
frequency stability and power balance (Atia and Yamada

2016). ICM is involved in deriving the optimal discharging
and charging patterns belonging to the storage system. The
specifications considered for the ESS are given in Table 2
(Delfino et al. 2019; Jarraya et al. 2019).

Table 2: Specifications considered for the ESS.

Terms socC
SOC1 upper limit (%) 90
SOC lower limit (%) 20
Self-discharge rate (%Energy/month) 5
Efficiency (%) 95
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Then, the SOC for the hourly ESS is acquired in Eq. (10).
SoCess (tt) =

PWChr Attchr
(S0Cggs (tt —1) x (1 - apen)) + <(ESE{Z§Z)ESS)>, Chr

PWE§§‘AH€§§‘>
,Dch

(S0Css (£ —1) x (1 - apen)) + (

MEss
Ecap
(10
Pwg + Pva (tt) + PWwing (tt)
pwé%slr; (tt) = + PWpqri (tt) — Pwp (tt) — Pwig (1) a1

nConv
Here, the term ap, denotes the self-discharging rate, ngs

indicates the discharging or charging efficiency of ESS, pwéﬁ
depicts the discharging or charging power, Attg is used for
representing the period for discharging or charging, ncony
shows the efficiency of the DC/AC converter, and Ecap rep-
resents the capacity of ESS.

3.4 System model

The DSM act as a significant role in handling renewable
power generation and load. The core concept of this DSM is
to reduce the emission rate, electricity cost, and peak de-
mand. The critical key issues in the existing approaches are
not well examined in the microgrids (Mbungu et al. 2023) to
reduce the electricity cost. Owing to the stochastic behavior
of wind and solar energies, it affects the accuracy rate of the
system. Therefore, in this research work the latest hybrid
ISOA algorithm is integrated into the microgrid system for
reducing fuel cost electricity supply costs, initial costs, en-
ergy efficiency, and operation cost.

The diagrammatic representation of the presented
techno-economic optimization in a microgrid with a
demand-side management model is shown in Figure 1. Here,
the Wind Turbine, ESS, optimal capacity of PV is determined
by the novel techno-economical optimization with ISOA
model using multi-objective function concerning metrics
like network power losses, voltage fluctuations, electricity
supply costs, initial cost, operation cost, fuel cost, and de-
mand side management. At last, the experiments on the
IEEE-33 bus network are conducted for achieving optimal
energy management which is done on distributed energy
resources.
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4 Demand side management for
techno-economic optimization in
microgrid with multi-objective
function

4.1 Demand side management

Demand-side involvement is a significant part of the
scheduling of optimal energy with superior security and
minimum cost (Zakariazadeh, Jadid, and Siano 2014).
Demand response is considered as the standard approach
for the demand side involvement that motivates the users
for adjusting their elastic loads based on the request of the
users or with the price signals. Generally, elastic loads
are categorized into curtailable and shiftable loads. The
advantages of demand response for the users have
included continuity and fewer expenses for electricity. In
addition, it contains the profits for microgrid operators in
terms of avoiding the expensive generators, optimal oper-
ations with the intention of cost savings, and minimal
purchasing of costly power through the load curve flat-
tening and the main grid. Generally, the demand responses
are categorized into two significant classes belonging to
Incentive-Based and Time-Based Rate (TBR) programs.
Here, the IB programs are modified based on user demand
with the consideration of penalty and incentive options,
and at the same time, the TBR program is modified based on
the consideration of variations in the electricity costs at
various times.

According to Amini and Moghaddam (2013), a single EV
probabilistic demand is designed for acquiring the hourly
demand of parking lots based on diverse kinds of EVs and
diverse driving modes. The specifications of EVs are repre-
sented in Tables 3 and Table 4 that is obtained from (Moza-
fara, Hadi Amini, and Hasan Moradi 2018). As battery life is
reduced by the full battery discharge, the Depth of Discharge
(DOD) is considered to be 80 %.

The Log-Normal distribution function is employed for
computing the routine mileage of the estimated EVs (Domi-
nguez-Garcia, Heydt, and Suryanarayanan 2011; Roe et al.
2030) that are shown in Eq. (12).

DST = e¥at7-¥) 12)

Here, the arbitrary variable is indicated by Y that
is having a mean value of 0 and a variance of 1. The
parameters of the lognormal distribution are given by u,4
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Utility grid
Micro grid
controller

2

Commercial & industrial

Residential

p

Electric vehicles

Generators

Renewable energy

>

&& Energy storage
e PV capacity
o Wind tafbine Tuned by Hybrid
capacity M-S0A
e ESS capacity
e PVbus

location
¢ Wind turbine

bus location
¢ Wind turbine

bus location

s
Achieved network power losses, voltage

fluctuations, electricity supply costs,
initial cost, operation cost, and fuel cost

Table 3: Specifications related to EV.

EV Type A B C D Mean

value
Battery cap (kWh) 35 16 18 12 18.54
Energy consumption Road 0.14 013 0.6 0.16  0.1397
(kWh/mile) City 0.182 0.168 0.21 0.21  0.1945

Freeway 0.21 0.194 0.242 0.242  0.2245
High traffic 0.213 0.196 0.245 0.245 0.2274

Market share (%) 38 9 255 275

Table 4: Charging rates of EV.

Charging/discharging 0.1 0.3 1.0

power (kW)

Charging mode Slow Slow Slow
charging charging charging

Figure 1: Structural view of the developed
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techno-economic optimization in a microgrid

with demand side management model.

and oy, respectively, which are determined based on

the

standard deviation and mean of the distance traveled with
the EVs according to statistics (Amini and Moghaddam
(2013); Jarraya et al. 2019). These formulations are made as

follows.

DSTs = 0.39 x DST
DSTp = 0.31 x DST
DST; = 0.22 x DST
DSTy = 0.08 x DST

Then, the maximum distance DSTV** is computed

13)

(14)

15

(16)

for

finding the traveling capacity of the EVs containing a fully

charged battery which is shown in Eq. (17).
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Bcap

DSTMaX —
Fp

)]

Here, the term Bcap denotes the battery capacity of the
EV in terms of kWh, and the energy consumption is
computed per mile that is indicated by Fp. For computing the
estimated energy demand belonging to EVs, four diverse
driving modes are considered in Eq. (18).

Ery = (Eev,s + Eev,p + Egv.6 + Epv,v) (18)
Epy,s = (DSTs x Epfs) - DSTs < DSV 19)
Epy,p = (DSTp x Epfp)) - DSTp < DSTV (20)
Epy,g = (DSTg x Epf ;) - DST < DSTV™ 1)
Epv,y = (DSTy x Epyfy;) - DSTy < DSTV™ (22)

Furthermore, the computation of respective SOC at
the time of relieving the parking lot is done by utilizing the
arrival time Ty, the duration of EVs availability over the
parking lot, and the departure time Tpepy. Then, the time
duration Tpy, IS acquired as in Eq. (23).

TArvl
TDeprt

TDurtn = TDeprt

.uArvl + (GArvl X Yl)
HUpeprt T (Opeprt X ¥3)
TArvl

(23)

Here, the term p denotes the mean value and o indicates the
standard deviation considered for arrival and departure
time according to historical data. The generally distributed
arbitrary variables are given by Y; and Y.

SOCgy = min [SocIm EV ]
Bcap
ni (24)
SOCpy
TDeprt Chr/Dch
+ (Bcap %

Then, the required SOC is computed with the determined
parameters and also with the charging rate ¢S that is given
in Eq. (24).

4.2 Derived multi-objective function

The developed M-SOA is used for optimizing the microgrid
constraints like optimal capacity as well as bus location of
PV, Wind Turbine, and ESS for meeting the demand side
management in the Microgrid system based on the concept
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of techno-economic optimization. The main objective of the
techno-economic optimization is to reduce the power loss,
voltage fluctuations, and electricity supply costs that are
shown in Eq. (25).

FF = arg min (pLs + VFL+ EsC + PN) (25)

‘[ OCpy,0Cwrt,0Cess, BLpy,BLwr,BLEss

Here, the terms OCpy denote the optimal capacity of
PV that is in the range 0f [0.002, 0.009], OCy indicates the
optimal capacity of wind turbine that is in the range of
[0.2, 0.8], OCgss represents the optimal capacity of ESS
that is in the range of [0.2, 0.8], BLpy describes the bus
location of PV that is in the range of [2, 33], BLy depicts
the bus location of wind turbine that is in the range of
[2,33] and BLgs describes the bus location of ESS that is in
the range of [2, 33]. Here, the penalty value is included for
avoiding the worst solution from the model and this
penalty value is indicated by PN. This penalty will be
added to the solution if the solution does not satisfy
objective constraints like demand-supply balance, bus
voltage limitations, and pricing constraints. The penalty
value is considered to be 0.1.

Power loss pLs is considered the first objective to be
reduced as shown in Eq. (26).

24 Nb Nb V2(tt) + V2(tt) + 2V; (tt) Vi (1)
Ls = Zi| k J 26
pes Tzllzlkzl 1 cos (8 (tt) - 8 (1t)) @6)

Then, the voltage fluctuation vFl is considered as the second
objective to be reduced as shown in Eq. (27).

24 Nb

Y Y-Vt

T=1 j=1

VFl = 27

At last, the electricity supply costs have to be reduced as
the third objective as given in Eq. (28).

21
EsC = Tz_l (Pwsy () x T (t6)) + ffenr — ffoen (28)
P (1) — %b PWe, (£8) + PWioss (t0) + PWg () )

j=1 _PWPV (tt) - PWWnd (tt) + PWESS (tt)

P Z ( ( >, PWpig (1) x ATChf) ) 30)
Chr = n=1
+ (Pwigs (EOATEEY ) x 1 (tt)

Ess

S Pupg (£) x AT
ﬁnch=§<<nzl (10 X872 ) (3D
TN+ (Pwess (E)ATR) x 7 (tt)

Ess
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Mgy chr
Pwpig (tt) = Y PWR5
m

(32)
Here, the charging durations of EV are given as AT<™, and
also for ESS is depicted by ATS™

Ess*

5 Development of modified
sandpiper optimization
algorithm for techno-economic
optimization in microgrid with
demand side management

5.1 Proposed M-SOA

The developed M-SOA integrated with the techno-economic
optimization considering the multi-objective function con-
cerning network power losses, voltage fluctuations, elec-
tricity supply costs, initial cost, operation cost, and fuel cost
by tuning the parameters like PV capacity, wind turbine
capacity, ESS capacity, PV bus location, wind turbine bus
location and ESS bus location of the microgrid. SOA is chosen
in the developed model since it can solve the multi-objective
problem and is also able to balance the exploration and
exploitation phase efficiently. However, this algorithm
shows a slight deviation in the convergence performance
due to the random update of the parameters. Therefore, a
new improvement is made in the SOA and the improved
optimization algorithm is named M-SOA for solving the
conventional problems. In the implemented M-SOA, the
additional variable Dp in the collision avoidance phase of the
conventional SOA is updated with the fitness-based concept
as shown in Eq. (33).

3 (33)

DB _ 0'5*< \ (Fitmin + Fitmax) >
Here, the term Fit,,;, denotes the minimum fitness value and
Fity.x indicates the maximum fitness value.

SOA (Kaur, Jain, and Goel 2020): This heuristic algorithm
is derived from the attacking behavior of the seabirds which
are observed to be highly sharp birds, which utilizes the
bread crumbs for hunting the fishes and are also very effi-
cient in generating the rain-like sound with the support of
their feet for catching the underground earthworms. These
sandpipers have excellent behaviors of migrating as well as
attacking characteristics. These behaviors are described as
follows.

DE GRUYTER

Exploration phase (Migration behavior): This algo-
rithm tests the set of sandpipers that propagates from one
place to another place at the time of migration. A sandpiper
has to meet the upcoming three constraints.

Avoid the collision: A supplementary variable Dy is
utilized for determining the new sandpiper’s location for
avoiding collision among their nearby sandpipers. This is
formulated in Eq. (34).

Dsp =Dy x Qgp(a) (34)

Here, the term 65}, denotes the present position of the
sandpiper, Bsp indicates the location of the sandpiper that
collided with the remaining sandpiper, a defines the present
iteration, and Dy represents the propagation of the sand-
piper among the searching dimension that is adaptively
computed in Eq. (33).

Convergence towards the optimal neighbor’s direc-
tion: Followed by avoidance of collision, the search agent
propagates in the path of reaching the best neighbor as
shown in Eq. (35).

ﬁsp = D¢ x <6Bst (@) - 6313 (a)> (35

Here, the term ﬁsp denotes the positions of the sand-
piper 6513 moving to the direction of the optimal fittest

search agent (sandpiper) 6 st and D¢ indicates the arbitrary
parameter that is a suitable exploration that is determined
as in Eq. (36).

D¢ =0.5x% Sy (36)

Here, the term S,,4 indicates the arbitrary number that stays
between [0, 1].

Position Upgrade based on the position of the best
search agent: At last, the sandpiper gets updated with their
position concerning the optimal sandpiper, and the distance
between the sandpiper and the optimal sandpiper is given in
Eq. 37).

- - —
Esp=Dgpp+ Ngp (37

Here, the term fgp is used for representing the gap
between the optimal fittest sandpiper and the normal
sandpiper.

Exploitation phase (Attacking characteristic): At the
time of migration, the sandpipers modify their angle and
speed of the attack continuously. It enhances the altitude by
utilizing their wings. Here, the sandpipers produce the spiral
characteristic for attacking the prey, which is observed to
perform in the 3D plane as shown below.
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Yy =Rd x sin(j) (38)
} Start
Z =Rd x cos(j) 39)
a =Rdxj (40) l
s—vxe" (1) Generate the sandpiper’s population

Here, the term Rd denotes the radius of every spiral turn, j
indicates the variable that lies in-between [0 < 1< 277], and the
constant parameters are correspondingly indicated by v and w
for describing the spiral shape and e denotes the logarithm hase.
Then, the improved position of the sandpiper is determined
as in Eq. (42) based on the computations made in Egs. (38)-(40).

Osp(@ = (Eanx (Y +2+0) ) x Up(@ D)

Here, the term 6sp(a) helps to upgrade the search
agent’s position and secures the optimal solution. The
pseudocode of the developed M-SOA is depicted in Algorithm
1

Algorithm 1: Developed M-SOA

Population initialization 65,,
Get the parameters D

Determine the best search agent 6551
Compute the fitness of all search agents
While (a<Mx;) do
For every sandpiper do
Compute the additional variable D; with the adaptive concept
as in Eq. (33)
Update the sandpiper’s position based on Eq. (42)
End for
Update the value of parameters
Determine the fitness value after the position update
a—a+1
End while

N
Return Q s
End

The flowchart of the developed M-SOA is depicted in Figure 2.

5.2 Constraints to meet

Three constraints are considered as the objective constraints
and the optimal solution should satisfy these objective con-
straints or else a penalty will be added to it for removing the
particular solution for solving the objective problem. The
objective constraints are described as follows.

(@) Demand supply balance is depicted as follows.

A 4

Evaluate the fitness for each solution

A 4

Determine the parameters D,.

A

Update the random parameter D,

\ 4

Perform the exploration phase for
position update

A 4

Perform the exploitation phase for
position update

!

Until the

stopping

condition

l Yes

Return best optimal
solution

l

End

Figure 2: Flowchart of the developed M-SOA.

PWh,]' (tt) — PWe)j (tt)
Nb
= V] (tt) 1(2_:1 Vi (tt)ij cos (6] (tt) — & (tt) — ij)

43)
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Qwp,; (tt) — Qw, (tt)
Nb . (44)

= Vi (tt) 121 Vie (t)Zy sin (6; (tt) — Sk (tt) — Oi)
Here, the balance between the load demand and power
generation overall buses have to be managed. Since DERS
combined to be a system, then it can be written as in Eq. (45).

PW}U’ (tt) + Pva,j (tt) + PWWnd (tt) + Pkag (tt)
+ PWgs j (tt) — Pw, j (t1)

Nb (45)
= V] (l’t) kz_:l Vk (tt)ij CcoSs (6} (tt) - (Sk (tt) = ij)

(b) Busvoltage limitations: Here, the phase and magnitude
of the voltage play an important role in assuring stable

operation and thus, it is given as in Egs. (46) and (47).

VMY < (tt) < PMAX (46)

s <8 (tt) < M 47

(c) Pricing constraints: The energy prices are committed to
being in the limited range for reducing the expenses of
the customers and the permitted range is given in Eq.

(48).
% (tt) < qrio%MAX (¢p) (48)

Then, the lower bills are assured for customers to
motivate them to be actively involved in the demand
response program. This is given in Eq. (49).

24 24

Y Pwg(tt) x T (tt) S T Y. Pwpj (tt) x 7 (tt) (49)
=1 =)

When the condition (7 < 1) is satisfied, the distribution
network operator gets benefitted.

6 Results and discussions

6.1 Experimental setup

The proposed techno-economic optimization in microgrid
with demand side management model was implemented in

26 — 27 28 — 29 — 30 — 31
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MATLAB 2020a. The evaluation of the developed system was
made to analyze the performance of convergence along with
demand, power loss, and supply cost. The developed M-SOA
was compared with other algorithms like “Artificial Gorilla
Troops Optimizer (AGTO) (Singh et al. 2022), Butterfly Opti-
mization Algorithm (BOA) (Qazani et al. 2020), Whale Opti-
mization Algorithm (WOA) (Zhai et al. 2020), and SOA (Kaur,
Jain, and Goel 2020)”. Also, objective functions like power
loss, voltage fluctuations, and electricity costs were consid-
ered for analyzing the benefits of the developed model. This
implemented model has been simulated in the IEEE-33 bus

Table 5: Simulation parameters of the developed Demand Side Man-
agement in a Microgrid system with techno-economic optimization.

Parameter description Ranges

Energy resources {PV, wind turbine,

ESS}
No. of network buses Nb 33
Minimum voltage V™ 0.002
Maximum voltage M 0.009
Minimum phase angle §"™ 0.01
Maximum phase angle §"A* 0.08
The nominal output power of solar cell Npv 5MW
Solar energy efficiency np, 2%
Nominal operating cell temperature Noct 28°C
The intensity of solar radiation SUN 3W/m?
Ambiant temperature ST b 8°C
Self-price elasticity of the demand -0.1
The cross-price elasticity of the demand gy 0.001

Number of EVs(electric vehicles) at each time interval 7
Mev

Minimum charging/Discharging power of ESS Fy;y 0.2
Maximum charging/Discharging power of ESS Fyax 0.8
Number of charging stations Mgy 3
Minimum charging/Discharging duration of ESS and 0.5
EV Tvin

Maximum charging/Discharging duration of ESSand 0.9
EV Tiax

The minimum price of ESS PRE: 12
Maximum price of ESS PRER, 25
The minimum price of electricity PRy 144 $/MWh
Maximum price of electricity PRyax 167 $/MWh

32 . 33

| (. |
— 2 —3—4—5—6—7—8§— 09— 10 11 12 13
[

— 15 16 — 17 — 18

Figure 3: Architectural representation of the
IEEE-33 bus network.
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Figure 4: Cost function evaluation on the developed techno-economic optimization in microgrid with demand side management model for (a) 3 h,

(b) 6 h, (c) 9h, and (d) 12 hours.

network (Delfino et al. 2019), where the electricity supply is 5 x . . .
conducted through the centralized power plant associated
with bus 1. Here, the line diagram is given representing the
IEEE-33 bus network as shown in Figure 3. . di
S /\/\/\
3
23
6.2 Parameter initialization g
a
The parameter generated for the developed Demand Side 27
Management in a Microgrid system with techno-economic §
optimization is given in Table 5. gl
6.2 Cost function analysis 0 : : . .
5 10 15 20
Hours

The cost function analysis is performed for the developed
techno-economic optimization in microgrid with demand
side management model by comparing with the

Figure 5: Network demand analysis on developed techno-economic
optimization in microgrid model for 24 hours.
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Figure 6: Multi-objective analysis on developed techno-economic optimization in microgrid with demand side management model in terms of (a) power

loss, (b) supply costs, and (c) voltage fluctuations.

conventional heuristic algorithms for 24 h, in which 3 h, 6 h,
9h,and 12 h are given in Figure 4. Here, the developed model
has shown minimum convergence rate than the conven-
tional algorithms like AGTO, BOA, WOA, and SOA, respec-
tively that is lower power loss, voltage fluctuation, and
minimum pricing constraints are achieved through the
developed techno-economic optimization model in
microgrids.

6.4 Network demand analysis
The implemented techno-economic optimization in micro-

grid with demand side management model is compared with
the conventional algorithms based on the constraint of

network demand that is shown in Figure 5. On observing the
graph, the highest demand occurred between 10 and
15h, which represents the reduction in the system
dependency based on the centralized power plant, which is
highly essential for decreasing the costs of the network
operation.

6.5 Multi-objective analysis based on power
loss, supply cost, and voltage
fluctuations

The objective constraints are considered for the analysis of
the developed techno-economic optimization in microgrid
with demand side management model by comparing with
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the conventional algorithms as shown in Figure 6. With the
consideration of power loss analysis, the proposed model
sudden variations in the power loss between the 10-20 h and
finally, get reduced the power loss. Similarly, the reduction
in the supply costs and voltage fluctuations takes place.

6.5 Different Scenarios-based power loss,
supply cost, and voltage fluctuations
analysis

The three constraints like power loss, supply cost, and voltage
fluctuations are considered individually in the first three
scenarios, and in the fourth scenario, all three objective
constraints are combined and involved for the analysis of
developed techno-economic optimization in microgrid with

demand side management model as in Figure 7. From this
analysis, it is shown that minimum rate of power loss and
supply costs that are achieved through the developed M-SOA
when compared to the conventional heuristic strategies.

6.7 Statistical analysis of implemented
model

The implemented techno-economic optimization in micro-
grid with demand side management model is taken for the
statistical analysis based on statistical measures like best,
worst, mean, median, and standard deviation as given in
Table 6. The developed model secures minimum mean cost
function when compared to the conventional techniques
AGTO, BOA, WOA, and SOA, respectively that is customer’s

EEAGTO [27]
45 [EEEB0A [28]
C—IwoA[29]
4 [ SOA [26]
Em-s0A
3.5
z s
2
S25¢
o}
§ 2
151
1t
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Scenarios

x10*

| | | | |
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B AGTO [27]
[EEEIBOA [28]
C—JwoA[29]
[ SOA [26]
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o

o

(a)

(b)

N
o
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- - N N w w
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Figure 7: Different scenarios-based power loss, supply cost, and voltage fluctuations analysis on developed techno-economic optimization in microgrid

with demand side management model.
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Table 6: Statistical Analysis of Developed techno-economic Optimization in Microgrid with demand side management.

Analysis constraints AGTO (Singh et al. 2022) BOA (Qazani et al. 2020) WOA (Zhai et al. 2020) SOA (Kaur, Jain, and Goel 2020) M-SOA
Analysis of 3h
Best 1.10 x 10"% 1.08 x 10" 1.11 x 10" 1.02 x 10% 99,371
Worst 1.22 x 10°% 1.22 x 10*% 1.26 x 10%% 1.21x10°% 114 x 10*%®
Mean 1.12 x 10"% 1.11 x 10" 1.12 x 10" 1.09 x 10°% 1.02 x 10*%®
Median 1.12x 10" 1.10 x 10"% 1.11 x 10" 1.10 x 10"% 99,371
Standard deviation 2898.2 3429.7 3058.1 2972.6 4643.2
Analysis of 6 h
Best 113 x 10" 1.06 x 10°% 1.06 x 10"% 1.02 x 10"% 97,157
Worst 1.25 x 10% 1.10 x 10"% 1.18 x 10"% 1.14E x 10°% 1.18 x 10*%®
Mean 1.15 x 10"% 1.08 x 10" 1.07 x 10" 1.04 x 10"® 1.01 x 10*%®
Median 1.13 x 10" 1.09 x 10°% 1.06 x 10% 1.03 x 10"% 99,066
Standard deviation 2938.7 1330.6 3476.6 3874.1 5101.2
Analysis of 9 h
Best 1.18 x 10"® 1.18 x 10" 1.18 x 10" 1.18 x 10"® 1.17 x 10*%®
Worst 1.18 x 10"% 1.18 x 10" 1.18 x 10% 1.18 x 10"® 1.18 x 10*%®
Mean 1.18 x 10" 1.18 x 10" 1.18 x 10" 1.18x 10"® 117 x 10*®
Median 1.18 x 10"% 1.18 x 10" 1.18 x 10" 1.18 x 10"® 1.17 x 10*%®
Standard deviation 39.323 8.9 18.139 15.177 61.661
Analysis of 12 h
Best 1.18 x 10°%® 1.18 x 10*% 1.18 x 10*% 1.18 x 10°% 117 x 10*%®
Worst 1.18 x 10% 1.18 x 10" 1.18 x 10*% 1.18 x 10"® 1.18 x 10*%®
Mean 1.18 x 10"% 1.18 x 10"% 1.18 x 10% 1.18 x 10"%® 117 x 10*%®
Median 1.18 x 10°%® 1.18 x 10*% 1.18 x 10*% 1.18 x 10°% 117 x 10*%®
Standard deviation 95.558 19.785 77.854 42.515 15.92

expenses on the operational cost have been reduced
through the developed model based on the proposed
M-SOA.

6.8 Time analysis of implemented model

The developed techno-economic optimization in microgrid
with demand side management model is evaluated based on
the time analysis as displayed in Table 7. The developed
M-SOA obtains 3.84 %, 0.98 %, 5.72 %, and 4.63 % better per-
formance with less latency than the AGTO, BOA, WOA, and

SOA, respectively. This shows that the developed model has
scored a better performance rate on reducing the objective
constraints with less time consumption.

6.9 Power loss, supply cost, and voltage
fluctuations analysis on implemented
model

The developed techno-economic optimization in microgrid
with demand side management model is analyzed based on
power loss, supply cost, and voltage fluctuations are mentioned
in Table 8.

Table 7: Time Analysis on developed techno-economic optimization in microgrid with demand side management.

Hours AGTO (Singh et al. 2022) BOA (Qazani et al. 2020) WOA (Zhai et al. 2020) SOA (Kaur, Jain, and Goel 2020) M-SOA

(sec) (sec) (sec) (sec) (sec)
3 3.5774 3.7498 3.5755 3.5641 3.5562
6 3.8133 3.7033 3.8893 3.8449 3.6668
9 3.6393 3.6308 3.6186 3.6538 3.6133
12 3.6852 3.7931 3.7064 3.6553 3.6287
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Table 8: Power Loss, Supply Cost, And Voltage Fluctuations-based Analysis on developed techno-economic optimization in microgrid with demand side
management.

Hours AGTO (Singh et al. 2022) BOA (Qazani et al. 2020) WOA (Zhai et al. 2020) SOA (Kaur, Jain, and Goel 2020) M-SOA
Power loss
1 1.1709 3.6558 1.0502 1.083 1.0313
2 4.5303 2.987 1.1788 1.4368 1.0927
3 1.5854 1.5146 1.4343 1.2578 1.0496
4 1.7012 1.7692 1.8027 2.0276 1.073
5 1.9012 1.8691 1.8901 2.24 1.1933
6 2.0631 3.5914 1.9365 2.6319 1.1945
7 2.3986 1.8921 2.0649 3.1603 1.4345
8 2.4397 1.9352 21142 3.9899 1.4735
9 2.444 2.2291 2.2449 2.8992 1.6478
10 2.6818 49138 2.3311 3.1164 1.9156
1 3.9732 3.4042 4.6879 3.1603 2.9501
12 2.4653 2.0983 2.3504 3.1719 1.7012
13 3.0949 2.6179 2.4396 3.7457 2.2616
14 4.0982 2.9576 2.4396 3.9754 2.3156
15 3.3063 2.3353 2.7319 3.9899 2.3311
16 3.5597 2.3865 1.9352 4.0071 1.4343
17 3.6869 2.9243 2.8002 4.0736 2.7244
18 3.9538 2.987 2.8229 4.1001 2.7874
19 4.0982 3.1785 2.849 2.9371 2.24
20 4.823 3.4042 2.9576 4.2046 2.9214
21 43442 3.4246 3.8216 4.2655 3.3693
22 45303 3.5227 2.2449 4.3455 1.4345
23 4.5975 3.5914 3.882 4793 2.0983
24 3.3063 3.4845 3.9496 3.6098 1.0927
Supply cost
1 147,110 1.02 x 10" 1.47 x 10*%° 1.03x 10" 1.00 x 10"
2 1.01 x 10*% 1.02 x 10°% 1.04 x 107 1.10x 10°%  1.00 x 10%%
3 1.03 x 10*% 1.08 x 10" 1.04 x 10*% 1.05x10"%  1.01 x 10"®
4 1.03 x 10*% 1.09 x 10" 1.07 x 10*%° 1.25x 10" 1.03x 10"
5 1.08 x 10°% 1.09 x 10°% 1.09 x 107% 1.06 x 10°%  1.05 x 10%%
6 1.43 x 10*% 1.12x 10" 1.39 x 10*% 1.10x10"%  1.09 x 10"
7 1.10 x 10*% 1.13x 10" 1.33 x 10*%° 1.07x 10"  1.05x 10"
8 1.13 x 10" 1.16 x 10% 1.10 x 10*% 1.11%x10"% 110 x 10"
9 1.14 x 10*% 1.19 x 10" 1.14 x 10*% 1.11x10"%  1.10x 10"®
10 1.34 % 10*% 1.11 x 10%% 1.14 x 10*%° 1.12x10"% 1,08 x 10"
1 1.13 x 10" 1.45 x 100 1.14 x 10" 116 x 10" 1.13x10"%
12 1.17 x 10*% 1.20 x 107 1.14 x 10*%® 1.17x10"%  1.01 x 10"®
13 1.16 x 10*% 1.22 x 10*% 1.19 x 10%% 137x10°%  1.16x 10*®
14 1.46 x 10°% 1.23x 10" 1.18 x 10" 1.21x10%  1.01x 10"®
15 1.21 x 10*% 1.23x 10" 1.18 x 10*%® 1.25x 10" 117 x10"®
16 1.20 x 10%% 1.28 x 10*% 1.19 x 10%% 1.23x10°%  1.17x10*®
17 1.23 x 10" 1.31x 10" 1.46 x 107 146 x 10 1.07 x 10"®
18 1.16 x 10*% 1.32x 10" 1.22 x 10*% 1.25%x10"% 110 x 10"®
19 1.25 x 10*% 1.38 x 10*% 1.30 x 10*% 1.28x10°%  1.10x 10"
20 1.29 x 10*% 1.32x 10" 1.33x 10" 1.28x 10" 127 x 10"
21 1.32 x 10*% 1.34 x 10" 1.49 x 10*% 1.29x10"%  1.03x10"®
22 1.35 x 10*% 1.38 x 10*% 1.36 x 10°% 127 x10°%  1.06 x 10"
23 1.34 x 10"% 1.37 x 10" 1.30 x 10"% 1.11%x10"%  1.04x 10"
24 1.25 x 10*% 1.30 x 10" 1.19 x 10*%® 1.29x10"%  1.12x10"®

Voltage fluctuations

1 22.317 33.572 22.492 22.545 22.266
2 22.518 22.75 23.551 22.809 22.42
3 29.696 28.721 30.445 23.881 22.901
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Table 8: (continued)

DE GRUYTER

Hours AGTO (Singh et al. 2022) BOA (Qazani et al. 2020) WOA (Zhai et al. 2020) SOA (Kaur, Jain, and Goel 2020) M-SOA
4 25.009 28.704 35.711 24.667 22.547
5 24.029 32.871 24.724 23.004 22.516
6 33.881 35.976 28.916 23.574 23.158
7 26.141 24.677 31.841 37.616 24.034
8 31.676 26.419 28.342 22.901 22.547
9 24.512 33.184 34.35 26.426 23.699
10 34.33 24.776 22.516 33.114 22.266
11 25.009 25.671 28.47 24.227 22.65
12 26.253 25.987 33.287 37.328 23.158
13 32.683 25.987 28.626 24.227 23.551
14 34.531 37.843 37.854 28.47 24.667
15 25.069 28.702 24.49 28.704 22.809
16 26.253 28.721 37.55 28.916 23.699
17 28.017 25.671 27.394 34.938 24.951
18 29.047 24.677 27.762 33.473 24.034
19 28.909 30.587 33.377 25.394 24.724
20 29.549 29.356 27.781 30.863 27.484
21 24.029 29.466 28.342 30.482 23.881
22 29.549 30.587 33.814 31.803 29.122
23 29.696 30.998 29.345 26.141 23.004
24 30.66 32.871 29.91 28.626 23.574

7 Conclusions

This paper has investigated the problem of demand-side man-
agement in microgrids by performing techno-economic opti-
mization over the parameters of microgrids. A new enhanced
heuristic algorithm named M-SOA has been developed for
optimizing the parameters like PV capacity, wind turbine ca-
pacity, ESS capacity, PV bus location, wind turbine bus location,
and ESS bus location of the microgrid. This was done for
attaining the objectives of reducing the constraints like network
power losses, voltage fluctuations, electricity supply costs, initial
costs, operation costs, and fuel costs in the microgrid system.
With the consideration of power loss analysis, the proposed
model sudden variations in the power loss between 10 and 20 h
and finally, get reduced the power loss. Through the experi-
mental analysis, the developed M-SOA has secured a better
performance rate in reducing the voltage fluctuations, power
losses, and electricity supply costs of the microgrid system.

Acknowledgements: I would like to express my very great
appreciation to the co-authors of this manuscript for their
valuable and constructive suggestions during the planning
and development of this research work.

Research ethics: Not Applicable.

Informed consent: Not Applicable.

Author contribution: All authors have made substantial
contributions to conception and design, revising the

manuscript, and the final approval of the version to be
published. Also, all authors agreed to be accountable for
all aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

Competing interest: The authors declare no conflict of
interest.

Research funding: This research did not receive any specific
funding.

Data availability: No new data were generated or analysed
in support of this research.

References

Alhasawi, F. B., and J. V. Milanovic. 2012. “Techno-Economic Contribution of
FACTS Devices to the Operation of Power Systems with High Level of Wind
Power Integration.” IEEE Transactions on Power Systems 27 (3): 1414-21.

Abedini, M., M. H. Moradi, and S. M. Hosseinian. 2016. “Optimal
Management of Microgrids Including Renewable Energy Sources
Using GPSO-GM Algorithm.” Renewable Energy 90: 430-9.

Atia, R.,and N. Yamada. 2016. “Sizing and Analysis of Renewable Energy and
Battery Systems in Residential Microgrids.” IEEE Transactions on Smart
Grid 7 (3): 1204-13.

Amini, M. H., and M. P. Moghaddam. 2013. “Probabilistic Modelling of
Electric Vehicles’ Parking Lots Charging Demand.” In Iranian
Conference on Electrical Engineering (ICEE), 1-4.

Bandyopadhyay, S., G. R. C. Mouli, Z. Qin, L. R. Elizondo, and P. Bauer. 2020.
“Techno-Economical Model-Based Optimal Sizing of PV-Battery Systems
for Microgrids.” IEEE Transactions on Sustainable Energy 11 (3): 1657-68.



DE GRUYTER

Bourhim, F.-A,, S. Berrhazi, A. Ouammi, and R. Benchrifa. 2021. “Decision
Support Model for Optimal Design of Wind Technologies Based
Techno-Economic Approach.” IEEE Access 9: 148264-76.

Cai, G., and L. Kong. 2017. “Techno-economic Analysis of Wind Curtailment/
hydrogen Production/fuel Cell Vehicle System with High Wind
Penetration in China.” CSEE Journal of Power and Energy Systems 3 (1):
44-52.

Delfino, F., G. Ferro, R. Minciardi, M. Robba, M. Rossi, and M. Rossi. 2019.
“Identification and Optimal Control of an Electrical Storage System for
Microgrids with Renewables.” Sustainable Energy, Grids and Networks
17:100183.

Dey, B., S. Dutta, and F. P. G. Marquez. 2023a. “Intelligent Demand Side
Management for Exhaustive Techno-Economic Analysis of Microgrid
System.” Sustainability 15 (3): 1795.

Dey, B., S. Basak, and B. Bhattacharyya. 2023b. “Demand-Side-
Management-Based Bi-level Intelligent Optimal Approach for Cost-
Centric Energy Management of a Microgrid System.” Arabian Journal
for Science and Engineering 48: 6819-30.

Dominguez-Garcia, A., G. Heydt, and S. Suryanarayanan. 2011. Implications
of the Smart Grid Initiative on Distribution Engineering (Final Project
Report-Part2), 11-50. PSERC Doc.

Erdogan, N., S. Kucuksari, and U. Cali. 2022. “Co-Simulation of Optimal EVSE
and Techno-Economic System Design Models for Electrified Fleets.”
IEEE Access 10: 18988-97.

Gao, S., H. Jia, and C. Marnay. 2019. “Techno-Economic Evaluation of Mixed
AC and DC Power Distribution Network for Integrating Large-Scale
Photovoltaic Power Generation.” IEEE Access 7: 105019-29.

Ganjeh, G. H., H. Niaei, A. Jafari, D. O. Aroko, M. Marzband, T. Fernando,
M. Marzband, and T. Fernando. 2020. “A Novel Techno-Economic
Multi-Level Optimization in Home-Microgrids with Coalition
Formation Capability.” Sustainable Cities and Society 60: 102241.

Ishraque, Md. F., Sk. A. Shezan, M. M. Rashid, A. B. Bhadra,

Md. Alamgir Hossain, and R. K. Chakrabortt. 2021. “Techno-Economic and
Power System Optimization of a Renewable Rich Islanded Microgrid
Considering Different Dispatch Strategies.” IEEE Access 9: 77325-40.

Jahid, A, M. S. Hossain, M. K. H. Monju, M. F. Rahman, and M. F. Hossain.
2020. “Techno-Economic and Energy Efficiency Analysis of Optimal
Power Supply Solutions for Green Cellular Base Stations.” IEEE Access
8: 43776-95.

Jarraya, I, F. Masmoudi, M. H. Chabchoub, and H. Trabelsi. 2019. “An
Online State of Charge Estimation for Lithium-Ion and
Supercapacitor in Hybrid Electric Drive Vehicle.” fournal of Energy
Storage 26: 100946.

Kaur, A., S. Jain, and S. Goel. 2020. “Sandpiper Optimization Algorithm:
ANovel Approach for Solving Real-Life Engineering Problems.” Applied
Intelligence 50 (2): 582-619., issue.

Kolhe, M. 2009. “Techno-Economic Optimum Sizing of a Stand-Alone Solar
Photovoltaic System.” IEEE Transactions on Energy Conversion 24 (2):
511-9.

Lopez-Lorente, J., X. A. Liu, R. J. Best, G. Makrides, and D. J. Morrow. 2021.
“Techno-Economic Assessment of Grid-Level Battery Energy Storage
Supporting Distributed Photovoltaic Power.” IEEE Access 9:
146256-80.

Martinez Cesefia, E. A, E. Loukarakis, N. Good, and P. Mancarella. 2020.
“Integrated Electricity- Heat-Gas Systems: Techno-Economic
Modeling, Optimization, and Application to Multienergy Districts.”
Proceedings of the IEEE 108 (9): 1392-410.

Mathiesen, P., M. Stadler, K. Jan, and Z. Pecenak. 2021. “Techno-economic
Optimization of Islanded Microgrids Considering Intra-hour
Variability.” Applied Energy 304: 117777.

M. Praveen and V.S.K.R. Gadi: Intelligent techno-economical optimization with demand side management —— 19

Mbungu, N. T., A. A. Ismail, M. AlShabi, R. C. Bansal, and A. Elnady,

A. K. Hamid. 2023. “Control and Estimation Techniques Applied to
Smart Microgrids: A Review.” Renewable and Sustainable Energy
Reviews 179: 113251.

Mozafara, M. R., M. Hadi Amini, and M. Hasan Moradi. 2018. “Innovative
Appraisement of Smart Grid Operation Considering Large-Scale
Integration of Electric Vehicles Enabling V2G and G2V Systems.”
Electric Power Systems Research 154: 245-56.

Mohamed, A. A. R,, R. J. Best, X. Liu, and D. J. Morrow. 2022.

“A Comprehensive Robust Techno-Economic Analysis and Sizing Tool
for the Small-Scale PV and BESS.” IEEE Transactions on Energy
Conversion 37 (1): 560-72.

Murty, V. V. V. S. N., and A. Kumar. 2020a. “Optimal Energy Management
and Techno-Economic Analysis in Microgrid with Hybrid Renewable
Energy Sources.” Journal of Modern Power Systems and Clean Energy 8
(5): 929-40.

Murty, V. V. V. S. N., and A. Kumar. 2020b. “Optimal Energy Management
and Techno-Economic Analysis in Microgrid with Hybrid Renewable
Energy Sources.” Journal of Modern Power Systems and Clean Energy 8
(5): 929-40.

Nagapurkar, P., and J. D. Smith. 2019. “Techno-Economic Optimization and
Environmental Life Cycle Assessment (LCA) of Microgrids Located in
the US Using Genetic Algorithm.” Energy Conversion and Management
181: 272-91.

Qazani, M. R. C,, S. M.}. Jalali, H. Asadi, and S. Nahavandi. 2020. “Optimising
Control and Prediction Horizons of a Model Predictive Control-Based
Motion Cueing Algorithm Using Butterfly Optimization Algorithm.”
IEEE Congress on Evolutionary Computation (CEC) 1-8.

Queen,H.].,).).,D.T.J.,K. V. S. Moses Babu, and S. P. Thota. 2021. “Machine
Learning-Based Predictive Techno-Economic Analysis of Power
System.” IEEE Access 9: 123504-16.

Rahbari, 0., M. Vafaeipour, N. Omar, M. A. Rosen, O. Hegazy, J.-

M. Timmermans, S. Heibati, and P. Van Den Bossche. 2017. “An
Optimal Versatile Control Approach for Plug-In Electric Vehicles to
Integrate Renewable Energy Sources and Smart Grids.” Energy 134:
1053-67.

Rezaeimozafar, M., M. Eskandari, M. Hadi Amini, M. H. Moradi, and P. Siano.
2020. “A Bi-layer Multi-Objective Techno-Economical Optimization
Model for Optimal Integration of Distributed Energy Resources into
Smart/Micro Grids.” Energies 13 (1706): 1706.

Rodezno, D. A. Q., M. Vahid-Ghavidel, M. Sadegh Javadi, A. P. Feltrin, and
J. Cataldo. 2023. A Price-Based Strategy to Coordinate Electric Springs for
Demand Side Management in Microgrids. In 2023 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT).

Roe, C., A. P. Meliopoulos, J. Meisel and T. Overbye. 2008. “Power System
Level Impacts of Plug-In Hybrid Electric Vehicles Using Simulation
Data.” IEEE Energy 2030 Conference, 1-6.

Rizvi, M., B. Pratap, and S. B. Singh. 2023. “Demand-side Management in
Microgrid Using Novel Hybrid Metaheuristic Algorithm.” Electrical
Engineering 105: 1867-81.

Shaheen, A. M., and R. A. El-Sehiemy. 2021. “A MultiobjectiveSalp Optimization
Algorithm for Techno-Economic-Based Performance Enhancement of
Distribution Networks.” IEEE Systems Journal 15 (1): 1458-66.

Shekari, T., S. Golshannavaz, and F. Aminifar. 2017. “Techno-Economic
Collaboration of PEV Fleets in Energy Management of Microgrids.”
IEEE Transactions on Power Systems 32 (5): 3833-41.

Singh, N. K., S. Gope, C. Koley, S. Dawn, and H. H. Alhelou. 2022. “Optimal
Bidding Strategy for Social Welfare Maximization in Wind Farm
Integrated Deregulated Power System Using Artificial Gorilla Troops
Optimizer Algorithm.” IEEE Access 10: 71450-61.



20 —— M. Praveen and V.S.K.R. Gadi: Intelligent techno-economical optimization with demand side management

Taheri, M. 2022. “Techno-economical Aspects of Electrocoagulation
Optimization in Three Acid Azo Dyes’ Removal Comparison.” Cleaner
Chemical Engineering 2: 100007.

Tsai, C.-T., E. M. Ocampo, T. M. Beza, and C.-C. Kuo. 2020. “Techno-Economic
and Sizing Analysis of Battery Energy Storage System for Behind-The-
Meter Application.” IEEE Access 8: 203734-46.

Venkatasubramanian, B. V., V. Jately, and B. Azzopardi. 2021. “Techno-
Economic Framework for Optimal Capacity Expansion of Active
Microgrid in the Mediterranean: A Case Study of MCAST.” IEEE Access 9:
120451-63.

DE GRUYTER

Yu, Z.-X., M.-S. Li, Y.-P. Xu, S. Aslam, and Y.-K. Li. 2021. “Techno-Economic
Planning and Operation of the Microgrid Considering Real-Time
Pricing Demand Response Program.” Energies 14: 4597.

Zakariazadeh, A., S. Jadid, and P. Siano. 2014. “Smart Microgrid Energy and
Reserve Scheduling with Demand Response Using Stochastic Optimization.”
International Journal of Electrical Power & Energy Systems 63: 523-33.

Zhai, Q., X. Xia, S. Feng, and M. Huang. 2020. “Optimization Design of LQR
Controller Based on Improved Whale Optimization Algorithm.”
International Conference on Information and Computer Technologies
(ICICT), 380-4.



	Intelligent techno-economical optimization with demand side management in microgrid using improved sandpiper optimization a ...
	Notation table
	1 Introduction
	2 Literature survey
	2.1 Related works
	2.2 Problem statement

	3 Modeling of system components: solar cell, wind turbine, and energy storage systems
	3.1 Solar cell
	3.2 Wind turbine
	3.3 Energy storage systems
	3.4 System model

	4 Demand side management for techno-economic optimization in microgrid with multi-objective function
	4.1 Demand side management
	4.2 Derived multi-objective function

	5 Development of modified sandpiper optimization algorithm for techno-economic optimization in microgrid with demand side m ...
	5.1 Proposed M-SOA
	5.2 Constraints to meet

	6 Results and discussions
	6.1 Experimental setup
	6.2 Parameter initialization
	6.2 Cost function analysis
	6.4 Network demand analysis
	6.5 Multi-objective analysis based on power loss, supply cost, and voltage fluctuations
	6.5 Different Scenarios-based power loss, supply cost, and voltage fluctuations analysis
	6.7 Statistical analysis of implemented model
	6.8 Time analysis of implemented model
	6.9 Power loss, supply cost, and voltage fluctuations analysis on implemented model

	7 Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


