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Abstract: The study provided a techno-economic optimiza-
tion technique for acquiring the ideal battery storage
capacity in conjunctionwith a solar array capable ofmeeting
the desired residential load with high levels of self-
sufficiency. Moreover, the viability of a proposed photovol-
taic battery system was evaluated. With a resolution of one
minute, the annual energy consumption, irradiance, and
ambient temperature for 2021 have been measured. Simu-
lations of a stationary economic model are run from 2021 to
2030. Based on the experimental evaluation of the annual
energy consumption, which was 3755.8 kWh, the study
reveals that the photovoltaic arraywith a capacity of 2.7 kWp
is capable of producing an annual energy production of
4295.5 kWh. The optimal battery capacity determined was
14.5 kWh, which can satisfy 90.2% of self-consumption at
the cost of energy $0.25/kWh. Additionally, two third-order
polynomial relationships between self-consumption and net
present costs and energy cost were established.

Keywords: energy storage; photovoltaics; renewable energy;
self-consumption; techno-economic assessment.

1 Introduction

By reducing greenhouse gas emissions from the energy
sector, solar energy is viewed as a strategy to address

climate change (Hoesung and Fatih 2020). The worldwide
solar energy business rebounded well in 2019, with total
photovoltaic (PV) installations reaching 627 GW (Nowak
2014). This capacity reduces global electricity-related CO2

emissions by 5% (Jäger-Waldau 2020) and amounts for
around 3% of global electricity use. Significant contribu-
tors to the growth of the PV sector include the availability
of subsidies and the general decline in prices. Subsidies
are emerging to compensate for the capital-intensive
nature of PV projects. The injecting price is the injection
compensations paid by distribution center network oper-
ators. Today or in the near future, the wholesale rate will
be lower than the retail rate, which will encourage PV self-
consumption. The use of battery (BA) storage, which might
boost PV self-consumption while correcting real-time
imbalances caused by forecasting mistakes, is one of the
approaches that enables the continuous spread of PV sys-
tems (Han and Hug 2020). In the past, high pricing and
restricted use case designs were the most significant bar-
riers to battery installations. Batteries are currently
regarded as one of the most promising strategies to tran-
sition to renewable energy sources. This is due to the rapid
decline in battery prices over the past decade, which is
mostly attributable to advancements in the electric car
industry (Stephan et al. 2016).

Middle Eastern consumption of energy, climate con-
trol, and water heating is increasing due to the region fast
expanding population and economic growth, which is
fostering rapid urbanization. This situation exacerbates
geopolitical, economic, and environmental risks. In the vast
majority of cases where renewable energy rules exist, their
fundamental objective is to reduce dependency on fossil
fuels, limit their energy use, and meet the socioeconomic
demands of the people (Taher et al. 2021). Nonetheless,
these nations are concerned about the substantial increase
in the domestic use of fossil fuels for electricity generation
in buildings and other sectors (Ghodbane et al. 2019).
In reality, Greenhouse Gases are mostly related with the
demand for electrical power to meet this energy demand.
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In addition, they are experiencing tremendous economic
and demographic growth that will have future negative
consequences. The annual increase in energy usage in
these locations ranges from 3 to 8 percent (Mesia 2020).

This region contains around 60% and 45% of the world
oil and natural gas reserves, making it one of the largest
producers of oil and natural gas. Thus, its energy mix
remains dominated by fossil fuels (coal, oil and gas). The
Middle East must deploy alternate energy security measures
in response to some of these energy concerns. However, oil-
producing nations are penalized by subsidies for fossil fuels
that result in enormous waste, especially considering the
finite nature of these energies. Yet, the renewable nature of
energy sources (solar and wind) offers the possibility of
producing clean energy. While extensive investments in the
production capacity of these green sources are necessary for
them to have a significant impact (Solargis).

1.1 Literature review

In recent years, a considerable amount of research has been
conducted on the techno-economic evaluations of PV/BA
systems, particularly in Germany, which has favorable rules
for renewable energy. Allwyn et al. (2022) optimized a PV/BA
system for the street lighting system at Sultan Qaboos Uni-
versity in Oman. Comparing the life cycle cost analysis and
cost per for two PV and battery configurations, one with a
high capacity of PV/BA and the otherwith a reduced capacity
of PV/BA, helps to establish the techno-economic feasibility
of installing the system in Oman. Utilizing experimental
data, MATLAB is used to determine the optimal size of a
component. The findings showed that the cost per kilowatt-
hour of energy generated by the large panel/battery system
was $/0.08 compared to $/19.9 for the modest system capac-
ity. In addition, the findings suggest that the conversion of a
grid-connected, 8.6-km-long street lighting system with 285
400-W lights to a PV/BA system with an 80-W bulb would
reduce annual CO2 emissions by 133,600 tonnes. Gul et al.
(2022) created an innovative mathematical model for the
PV/BT system in order to optimize power generation and
balance load demand. Using mathematical optimization
software, the System Advisor Model examines energy pro-
duction, energy consumption, and economic performance,
including capital cost, total investment, net present cost
(NPC), and project levelized cost of energy (COE). Innovative
is the use of decentralized load centres to trade power with
other communities. The constructedmodel is grid-connected
to increase system flexibility, reliability, and environmental
protection as a result of a reduction in CO2 emissions. The
analysis revealed that the yearly energy expenses without

the system was 552,477 dollars, but the proposed solution
reduced these costs by 45 percent, to 303,927 dollars. The
constructed system had a net capital cost of $2,046,993, a net
present value of $971,200, and a payback time projected to be
8.8 years. Environmental study indicates that the model
annual CO2 emissions have decreased by 1150 tons. Li et al.
(2022) investigate the techno-economic elements of hybrid
renewable energy design options that serve the multi-vector
energy demand, i.e. electricity, hydrogen, and heat, in four
diverse Chinese sites. A two-stage optimization technique is
proposed: First, the HOMER software is used to find every
feasible scenario that satisfies criteria at the lowest possible
cost; Then, a Multi-Criteria Decision-Making technique is
used to evaluate all feasible circumstances in order to
determine the optimal solution for monitoring economic
and environmental factors. The authors calculate the best
combination of the following technologies: PV/BA and PV/WT
(Wind turbine). In places where solar and wind energy are
abundant, the results suggest that the PV/WT combination
produces more electricity than either PV or WT alone. Ash-
tiani et al. (2020) illustrate how backup PV/BA systems might
reduce power costs, even in countries where energy is low
and subsidized. The NPC and COE of the on-grid PV/BA sys-
tem are 15.6% and 16.8% more than in the non-renewable
scenario, respectively. The NPC and COE variables were
calculated and compared to two different optimization
methods in order to validate the suggested approach and
assess the accuracy of the findings. Multiple cities were
analyzed to compare the results, and the fact that the
numbers were comparable indicated that the technique is
successful regardless of the local climate. In addition,
sensitivity analysis based on climatic data from several
cities, varying load requirements, and PV prices helped
determine the optimal system size for the economy. Ma
et al. (2014) studied a PV/BA and a PV/WT and found
that, compared to PV andWT alone, a hybrid of the twowith
BA power output may reduce the NPC by between 9 and
11 percent. Merei et al. (2016) give self-sustainability-
optimization results for a supermarket in Aachen, Ger-
many. Optimization of generation is achieved by using
exact experimental load and solar data. In addition, techno-
economic and sensitivity analyses have been performed to
analyze the effects of varying PV system capacity, PV system
pricing, and interest rates. In addition, numerous battery
sizes and costs have been investigated and analyzed for the
2015 and 2025 scenarios in order to improve self-sufficiency.
The findings show that the self-consumption of PV energy
via the installation of a PV system may reduce electricity
costs. Moreover, if battery costs can be reduced below
€200/kWh in the future, the combination of battery energy
storage and PV systems might further reduce electricity
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prices. Shabani et al. (2021) investigate the implications of
the two battery topologies on the size of a PV/BA system.
The first configuration is based on a conventional,
straightforward battery model and control strategy that
excludes dynamic behavior from its representation of the
battery status. The second configuration is determined by a
complex battery model that calculates battery properties
under various operating conditions. The results revealed
that the optimization of a suggested system based on the
first configuration required alternatives with a higher life
cycle cost and bigger battery capacity than the second
configuration in order to achieve the same degree of self-
sufficiency. Moreover, given the same design parameters,
the system optimization based on the second configuration
supplies the end-user with more power, resulting in a
higher self-sufficiency ratio than when the system is
simulated using the first configuration. This research re-
veals that a complete battery model with adequate effi-
ciency is technologically superior and results in a more
accurate battery size. Jamroen (2022) seeks to determine
the optimal techno-economic scale of a floating solar PV/BA
energy system for powering an aquaculture aeration and
monitoring system, while retaining the PV module and BA
weights in mind. System dependability was evaluated in
order to evaluate the energy system capacity to provide
electricity to ensure its continuing operation. In addition,
the levelized cost of energy was analyzed to determine the
cost-effectiveness of the energy system designs. The PV/BA
system is the best technically and economically feasible
design for both daytime and nocturnal ventilation cir-
cumstances, according to the findings. Hassan et al. (2022a)
assessed the economic feasibility of a PV/BA system to po-
wer a home with a high proportion of renewable energy.
The investigation revealed that the suggested solution was
economically viable in terms of energy costs. Abbas et al.
(2021) investigated the practicality of a PV/BA system for
supplying electrical energy for irrigation. The suggested
system size was determined over the course of many
summer days. Environmentally and economically, an
independent PV/BA system is a smart option to power an
irrigation system, according to the research. Hassan et al.
(2022b) designed a PV/BA system to power pump-based
diffuser aerators on a modest scale in rural locations. The
results indicated that the system safety factorwas sufficient
to power the aerators. In line with Uddin et al. (2022), a
techno-economic model for the electrical characteristics of
the modeled PV/BA energy system has been constructed
using HOMER and MATLAB/Simulink. Techno-economic
and ecological studies are given throughout to establish the
microgrid feasibility and usefulness. The simulations
demonstrate a remarkable connection, and the best COE for

the power plant is predicted to be $18.3. Researchers predict
that 2500 residential scooters might cut yearly CO2 emis-
sions by 466.56 tonnes. Hassan (2022) determined the
optimal size of a PV/BA system to satisfy the electrical needs
of residential applications. During the day, the PV array fed
the electrical load and charged the batteries, while at night,
the battery fed the load. The optimal system size was
attained with the cheapest COE. Jaszczur et al. (2020)
examined the effectiveness of a PV/BA system for electricity
in terms of both cost and environmental impact. The eco-
nomic feasibility analysis revealed that the suggested sys-
tem could generate power for about $0.13 per kilowatt-
hour, which is much cheaper than the cost of conventional
electricity. Ceran et al. (2021) provide a computer method
for the techno-economic assessment of PV systemswith and
without energy storage devices. A mathematical model
used to calculate the economic assessment of PV system
integration. Using the offered computational approaches,
five instances containing no storage system, two scenarios
employing lithium-ion batteries, and two cases involving
flow batteries were studied. In comparison to comparable
PV systems with batteries, the PV system using lithium
cobalt oxide batteries had a levelized power cost of 3.40
cents per kilowatt-hour. An integrated systemwith lithium-
ion batteries was deemed the most feasible and cost-
effective alternative, according to the research. The full
analysis of the PV system with energy storage options
illustrates the far-reaching applicability of this technology.

There are numerous more advantages to use solar
energy to power homes and residential areas and to support
the grid. Using renewable energy sources to create elec-
tricity contributes to environmental preservation, which a
company could leverage to improve its image. This article
examines the influence of economic visibility in comparison
to household that consumes 3760 kWh annually. In addition,
a technical and economic analysis of the installation of
a photovoltaic system with and without battery storage
between 2021 and 2030 was conducted, taking into account a
number of influencing factors. This article focuses mostly
on addressing issues regarding the optimal size of the bat-
tery that can be incorporated into a PV system and the
optimal combination of PV system size and battery capacity
for maximum self-sufficiency.

The study presents a novel approach to optimizing the
deployment of battery storage systems in combination with
photovoltaic panels to achieve maximum self-consumption
of generated energy. Specifically, the authors use a simu-
lation model that considers both the technical and eco-
nomic aspects of the system to analyze the impact of
different battery capacities based on the PV panel capacity
and energy management strategies on self-consumption
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rates. Additionally, the study provides a comprehensive
analysis of the impact of different factors on the perfor-
mance of the system to provide insights into the most
effective ways to deploy battery storage systems in com-
bination with PV panels for maximum self-consumption.

2 System modelling

The concept under study is a PV/BA on-grid system in which
the batteries are recharged by the PV array during the day
and fed the required load at night and on cloudy days. The
most important criterion for a dependable system is that the
energy stored in the batteries can support the required load
with the maximum level of self-sufficiency. Consequently,
systemmodelling entails optimising the number of batteries
to extract adequate storage power to fulfil demand with the
optimal number of batteries to store the required energy.
Several terminologies are used in the literature to evaluate
the dependability of PV/BA energy systems Figure 1. In this
study, numerical simulations are used to determine the
battery capacity and assess the dependability of the pro-
posed system for supplying renewable energy at the highest
efficiency and lowest cost.

The technological and economic specifications of the
system components presented in Table 1.

2.1 Experimental measurements

The relevant experimental measurements of load, irradi-
ance, and ambient temperature were taken with an accu-
racy of one minute over the course of one year in 2021. The
and global horizontal irradiation and diffused horizontal
irradiation components of solar radiation were measured
by using Kipp Zonen CM21 pyranometers located in Diyala,
Iraq (33.7733° N, 45.1495° E) at the University of Diyala
campus weather measurement station as presented in
Figure 2. Themost crucial part of such a design system is the
annual electrical energy, and the energy delivered by the

PV panel is dependent on daily fluctuations in solar irra-
diance and ambient temperature.

Figure 3 depicts the daily electrical load, solar irradi-
ance, and ambient temperature readings for four chosen
seasonal days. Table 2 displays the average daily use of
energy, solar irradiance, and ambient temperature for four
days. The energy use fluctuates on a daily basis. It was
greatest in January 05th, by about 12.8 kWh and lowest in
October 05th, whereas solar irradiance and ambient tem-
perature were lowest in January and October, and highest
in the spring and summer. The monthly and yearly aver-
ages for experiment load, irradiance, and ambient tem-
perature are shown on Figure 4. The largest monthly
energy use was in April, at 1271.71 kWh, and the lowest was
in October, at 635.55 kWh. The average daily energy con-
sumption by about 10.4 kWh, and the total annual con-
sumption was 3758 kWh. Solar irradiance and ambient
temperature were lowest in the winter and greatest in the
summer, with yearly averages of 4.6 kWh/m2/day and
23.7 °C, respectively (refer Figure 3).

2.2 Energy flow distribution

The proposed system energy consumption in (kWh) can be
expressed as:

ET = EPV + EBA + EG (1)

where ET represents the total energy usage, EPV is the en-
ergy produced by the PV array, EBA, is the energy stored in
the battery, and EG is the energy drawn from the grid.

The PV array energy can be obtained as (Hassan et al.
2022c):

EPV = CPV ⋅ (HT/HT , STC) ⋅ (αP(TC, t − TC, STC) + 1) ⋅ ηPV (2)

where CPV represents the PV array capacity, ηPV repre-
sents the PV array derating factor (%), HT and HT, STC

represents the incident solar radiation and solar radiation
at standard condition, αP represents the module cell
temperature coefficient of power (Hassan et al. 2022d), TC
and TC,STC represents the module cell temperature and cell
temperature at standard condition respectively.

The array performance ratio is calculated using the
following formula:

PR=(ET/(Peakpower×Number of hours of sunlight))
× 100%

(3)

The limitation applies to the battery stored energy can
be expressed as:

EBA, min ≤ EBA ≤ EBA, max (4)

Table : The technological and economic specifications of the proposed
system components.

Component Rated power Model Cost Ref.

PV module . kWp Sunceco $ Monocrystalline
()

Battery  Ah/
. kWh

Visionbat $ Battery

Converter  kW Absopulse $ Absopulse Inverter
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where EBA,min, and EBA,max is the minimum and maximum
batteries energy level respectively.

Considering that throughout sunny days the storage
batteries are fully charged, the energy stored is used to
supply the load at night, however during partially cloudy
days the storage batteries supply the load with available
energy and the required energy is provided by the grid can
be expressed as (Hassan et al. 2022e):

EBA, max = Ah ⋅ V (5)

the maximum permitted battery energy level can be
expressed as:

EBA(t − 1) = (EBA , max ⋅ NBA − EL)/NBA (6)

where NBA is the number of batteries, and t is the maximum
batteries depth of discharge.

The minimum permitted battery energy level can be
expressed as (Jaszczur et al. 2018):

EBA, min = EBA ⋅ NBA ⋅ (t − 1) (7)

The simultaneous load-balancing formula, which de-
scribes the energy transfer between system components, is
as follows.

ET =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EPV forEPV ≥ ET

EBA forEBA ≥ ET ; EPV = 0
EG forEPV + EBA = 0
EG + EPV + EBA forEPV + EBA < ET

EG + EPV forEBA = 0 andEPV < ET

EG + EBA forEPV = 0 andEBA < ET

EPV + EBA forEPV + EBA ≥ ET

(8)

2.3 Technical and economic indicators

The following section describes the technicalmetrics for self-
consumption rate and self-sufficiency rates, as well as the
economic indicator that will be utilised in the subsequent
study.

2.3.1 Rate of self-consumption (ESC)

The self-sufficiency indicator (self-consumption) is defined
in (Hassan et al. 2019) as the proportion of load profiles and
generation profiles that cross, with the values can reported
in kWh as follows:

ESC, (kWh) = ∑i=n
i=1ER −∑i=n

i=1EFed to grid (9)

The percentage of ESC is given as:

ESC, (%) = (∑i=n
i=1ER − ∑i=n

i=1EFed to grid)/∑i=n
i=1ER ⋅ 100% (10)

AC

AC

Grid system

Residential load

PV Modules

AC/DC Converter

DC

DC

BA

Figure 1: Schematic of the proposed PV/BA energy system.

Figure 2: Solar radiation measurement station.
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where ER is the energy produced by (PV + BAcharge – BAd-

ischarge) and ELoad denotes the electrical energy used (kWh),
EFrom grid denotes the energy drawn from the grid (kWh),
and EFed to grid is the energy fed to the grid (kWh), n denotes
the number of simulation steps.

2.3.2 Cost of electricity

The cost of electricity (COE) is computed using the “dis-
counting” approach, which equals the ratio of projected
total lifetime cost to lifetime generating output.
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Figure 3: Experiment load, solar irradiance and
ambient temperature data for four selected
days through the year.
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Importantly, numerous versions of COE metrics have
been established in recent years, particularly for hybrid
systems, and the conclusions may not be directly compa-
rable due to the varying assumptions and COE formulae
they include. Even though the COE value is a good way to
compare the results of different studies, readers should
be careful when using these values (Jaszczur et al. 2019;
Styszko et al. 2019).

Table : The daily energy, irradiance ad ambient temperature for four
selected days.

Day Energy (kWh) Irradiance (kWh/m) Temp. (oC)

Jan  . . .
Apr  . . .
Jul  . . .
Oct  . . .
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Figure 4: Monthly average and annual experiment (a) load, (b) irradiance, and (c) ambient temperature.
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COE = Acost/(EAC,DC + Egrid sales) (11)

where Acost is the total annualized cost of the system, EAC,DC
is the annual AC, DC primary load served, and Egrid sales is
the annual energy sales to grid.

The total NPC can be determined using the following
formula (Jaszczur et al. 2021; Javed et al. 2019; Javed et al.
2020; Shafiullah 2016; Uddin et al. 2020; Zhang et al. 2020):

NPC = Sc
R (i, PS) (12)

where, Sc is the system annual cost ($/year), R is recovery
factor capital, i is the annual interest rate (%) and Ps is life-
span for project (year).

3 Results and discussion

This study optimises the PV/BA energy system for resi-
dential applications using a 2.7 kW PV array and various
battery sizes. The PV array yield and performance ratio is
evaluated by about 76.1%. The number of batteries is
adjusted using a MATLAB programme for each battery
to reach the optimal capacity to provide the most
self-sustaining and lowest energy cost. The Section 2
equations are used for independent optimization. The PV
array was positioned at the optimum annual adjustment
(tilt angle β = 30, azimuth angle α = 0°) south direction
for the annual highest incident solar radiation at the
investigated site (latitude 33.7733° N, longitude 45.1495° E),
where the simulation process was conducted at 1-min res-
olution. The project life span is nine years until 2030, and
the economic assessment is made based on the Iraqi regu-
lation (buy from the grid at $0.33/kWh and sell to the grid at
$0.11/kWh), which means the annual interest rate is 6%.

Figure 5 shows the daily power flow at different battery
capacities for the day of Jan 05, 2022. The PV array gener-
ated about 15.172 kWh and the energy consumption
was 12.84 kWh. The energy from the grid decreases by the
battery capacity that compensates for the desired load. At
the same time, the energy fed to the grid is decreased by
increasing bakery capacity, which means more energy for
battery charging.

Figure 6 shows the daily energy from the grid/fed to the
grid for the selected four days. It is very clear that for all
selected days, the energy taken from the grid gets zero at
9.6 kWh and above battery capacity. That means the
renewable energy generated by the PV array and BA stor-
age unit can feed the desired load 100%. For all days,
increasing battery capacity reduces energy fed to the grid
because the energy generated by the PV array goes to

charge the batteries, which are designed only to charge
from the PV array (not from the grid).

Figure 7 shows the flow of energy self-consumption for
the selected four days with several battery capacities
(4.8 kW–24 kW, based on battery specification presented in
Table 2). The energy self-consumption increases by
increasing battery capacity for all selected days. For all days,
increasing battery capacity reduces energy fed to the grid
because the energy generated by the PV array goes to charge
the batteries, which are designed only to charge from the PV
array (not from the grid).

Figure 8 shows the daily total energy self-consumption
for the selected four days with several battery capacities
(4.8 kW–24 kW, based on battery specification presented
in Table 2). The value of energy self-consumption increases
by increasing battery capacity for all selected days. For all
days, increasing battery capacity reduces energy fed to the
grid because the energy generated by the PV array goes to
charge the batteries, which are designed only to charge from
the PV array (not from the grid).

Figure 9 shows the monthly energy generated by a PV
array with a selected capacity of 2.7 kW based on the
modules presented in Table 2. The energy generated by the
array is highly dependent on the incident solar irradiance
(see Figure 3). The results showed that the highest energy
can be generated by the specified array by about 510 kWh
during July and the lowest by about 148 kWh during
December, and the total annual energy can be generated
by about 975 kWh.

Figure 10 shows the monthly energy self-consumption
and percentage with several battery capacities. The amount
of energy self-consumption increases by increasing battery
storage capacity and decreases by decreasing battery ca-
pacity, which is why this value variants from one month to
another. It highly depends on the desired load, energy
generated by the PV array and battery storage capacity. It
is very difficult to decide which optimum battery storage
capacity can achieve the highest energy self-consumption
based on the daily and monthly results. Such a decision
requires at least one year lead time.

The experimental measurement of yearly energy con-
sumption was 3755.8 kWh, and the simulation results
demonstrated that the PV array with a capacity of 2.7 can
generate 4295.4 kWh annually. Figure 11 depicts the annual
amount of energy absorbed from the grid and returned to it
at various battery capacities. According to the data, the
4.8 kWh battery consumed the most energy at 1435 kWh,
while the least amount of energy was sent to the grid at
1487 kWh. Increasing battery storage capacity degreases
both the energy absorbed and the energy fed to the grid.
Because rising battery capacities necessitate more energy

8 Q. Hassan et al.: Assessment of maximum self-consumption



for charging, the PV array’s surplus energy exceeds the
anticipated load requirements for charging the batteries.

Figure 12 shows the annual energy charge and
discharge of batteries at several capacities. In general,
the energy for charge is higher than the energy for

discharge due to the selected batteries round-trip effi-
ciency of 85%. The batteries charge and discharge are
increased by increasing the battery storage capacity.

Figure 13 shows the annual energy self-consumption
and percentage with several battery capacities. The
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Figure 5: Daily power flow at different battery
capacity for the day of Jan 05, 2022.
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Figure 7: The daily energy self-consumption for
the selected dayswith several battery capacities.
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simulation results demonstrated the increasing percentage
getting raised very low after capacity of 14.4 kWh
(6-batteries), which is the energy self-consumption of
5396.85 kWh. It can be said that the optimum battery ca-
pacity is 14.4 kWh, which can match the highest self-
consumption for the investigated design.

Figure 14 shows the annual energy net present cost
and the energy cost with several battery capacities. The
simulation showed that both the net present cost and the cost
of energy went up as the battery storage capacity went up.
The lowest net present cost was $9615 at battery capacity
4.8 kWh and the highest was $11818 at battery capacity
24 kWh. The same was true for the energy cost, which
showed the lowest was $0.223 at battery capacity 4.8 kWh
and the highest was $0.274 at battery capacity 24 kWh.

4 Conclusions

Despite the fact that combining solarwith batteries results in
higher net present values than standalone PV for different
residential customer groups today, payback periods vary

between 2021 and 2030 as a result of regulatory changes,
rising costs, and fluctuating power market prices. The ideal
PV and battery sizes rise with time, and by 2050, the PV
expenditure is mostly constrained by the roof size. The
economic feasibility of PV/BA system investments differs
across residential customers, with the most advantageous
investments being most readily available to residential
customer groups with greater annual irradiance and power
use. Moreover, investment choices are significantly
impacted by payback periods, future expenses, power prices,
and tariff changes.

This research was utilized to construct a model of a
microgrid energy system for a municipality in Central
Iraq based on prospective trends. In addition, the authors
will investigate and incorporate solar energy sources
and new energy storage technology in order to expand the
use of renewable energy in the electrification field to include
industrial, agricultural, and commercial load centers for
long-term energy distribution in the Municipality of Iraq.
The study conclusion might be stated as:
– The average of the annual daily solar irradiance

(4.6 kWh/m2/day) can generate energy of about
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Figure 11: The annual energy taken from the
grid and fed back to the grid with several
battery capacities.
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Figure 12: The annual energy charge and
discharge batteries at several capacities.
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4295.4 kWh with 2.7 kWp of PV array positioned at the
annual optimum orientation.

– For the annual energy consumption (3755.8 kWh), the
optimum battery capacity that can be injected with
2.7 kWp of PV array is 14.4 kWh, which can satisfy 91.1%
of self-consumption.

– The NPC for the optimum system configurations
mentioned above was $11053 with a project life span
from 2021 to 2030.

– The COE for the optimum system configurations
mentioned above was $0.256/kWh.

This study proposes answers to the worldwide issues of
reducing the escalation of environmental problems and
satisfying energy requirements. The offered system offers a
feasible technical, financial, and ecological solution to the
aforementioned concerns. The established energy system
model of a solar PV system that incorporates batteries and a
local grid is an effective means of meeting energy needs.
The numerical method used to identify optimum system
configurations may be applied to any system capacity,

enabling the designer to determine optimal system
component capacities.

5 Future recommendation

– In recent years, home storage, especially for expanded
self-consumption, has become economically feasible in a
number of nations without government backing. A
fundamental proposal is that the homes, residential com-
munities and commercial buildings should unify legisla-
tion around auxiliary services and encourage to create
settings that are conducive to investments in storage
devices by prosumers. Consequently, it is important to set
up rules that encourage self-consumption and less energy
use, especially because of concerns about peak loads.

– The most important aspect of self-consumption is the
expansion of its scope: while some countries have
preferred to optimise local self-consumption through
storage, it seems logical to assume that self-consumption
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will become progressively delocalized, either between
different consumption and production points associated
with the same individual, or through energy commu-
nities. Mentalities and grid pricing must adapt in order
to decouple dispersed power use from the producing
site. Local, collaborative, decentralized, and creative
self-consumption is expected to be a big part of the
future carbon-free electrical system, which will have
millions of power plants, storage units, and more places
to charge, stabilise the grid, and store power.
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