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Abstract: This article discusses the use of a scientific 
calculator in teaching calculus by using representations 
of mathematics notions in different sub-languages 
(analytical, graphical, symbolical, verbal, numerical 
and computer language). Our long-term experience 
shows that this may have a positive and significant effect 
on the enhancement of conceptual understanding of 
mathematical concepts and approaches. This transcends 
the basic computational uses, and implies a potential 
for real improvement in the learning success, cognitive 
motivation and problem solving skills of the student. 
We illustrate the steps we have taken towards doing this 
through some examples. 

Keywords: scientific calculator; calculus teaching; 
different representations; conceptual understanding; 
cognitive motivation. 

1  Introduction
Despite the near half-century of their widespread 
presence in schools, colleges and universities, educators 
have yet to agree on the best way to use electronic pocket 
calculators in teaching. For example, some claim that the 
use of electronic pocket calculators harms mathematics 
learning, while others are indifferent to their presence and 
are not fully aware of recent steps in their development. 
Indeed, many school and university teachers simply 
ignore the possible benefits of calculator use in teaching 
mathematics, or other fields of STEM (Kissane and Kemp, 
2013). In academic studies, relatively few educators pay 
enough attention to the broad educational opportunities 

made possible with calculators. This includes not only the 
basic computational tools, but also their potential use in 
enhancing conceptual understanding of mathematical 
concepts and approaches, essential for developing 
research and critical thinking by the student. 

This is very important nowadays, because academic 
institutions have been dealing with the failure of students 
in the first year of their studies in general and especially 
in mathematical courses (Lowe and Cook, 2003; Yorke and 
Longden, 2004). With technological advances and a large 
flow of students to STEM professions at universities and 
colleges, there is a constant decline in the mathematical 
basic knowledge of the novice academic students (Gueudet, 
2013; Bosch, Fonseca & Gascon, 2004). Undergraduate 
students have difficulties in understanding definitions 
and various representation of mathematical concepts. It is 
because teaching and learning in high school is still based 
more on algorithmic exercises and memorization, rather 
than on deeper understanding of mathematical language 
and using its computer applications in solving complex 
and interesting problems. Using the scientific calculator 
may contribute to a reduction of this gap between enough 
developed algorithmic skills of novice engineering 
students and insufficiency of research, creative and 
critical mental skills, required in our current academic 
studies.

2  Pedagogical strategy
Our main pedagogical approach is based on the active 
use of different representations of mathematics notions 
and problems through diverse sub-languages (analytical, 
graphical, symbolical, verbal, numerical and computer 
language) of mathematics (Dagan et al., 2018, 2019b). 
For convenience, we will designate these basic forms of 
representations by means of the capital first letters of the 
appropriate words:
A – Analytical representation
V – Verbal representation
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G – Graphical representation
N – Numerical representation
C – Computer representation (Calculator depiction, in the 
context of this article)

For example, the problem: “Calculate 1 + 2 + 3 + 4 + 5 + 6 + 
7 + 8 + 9 + 10” formulated in numerical form and required 
numerical answer is NN representation of the problem in 
this classification. If we want to present it in computer 
language (in CASIO fx-991ES PLUS sub-language, in the 
context of this article) we must submit it in CN form: 
“Calculate 

PLUS sub-language, in the context of this article) we must submit it in CN form:

“Calculate  


10

1x
X ”.

Figure 1. Graphical representation of the sum  


10

1x
X ”.

Verbal representation (VN) of the same problem will 
be “Calculate the sum of natural numbers from 1 to 10”. 
Graphical representation (GN) of the same problem will be 
“Calculate the area of the figure shown on figure 1”. 

Our hypothesis, based on long-term pedagogic 
research and teaching experience, is:

“The permanent and systematic use of different sub-language 
representations, and various transitions among them, in 
a calculus course, in addition to extensive use of scientific 
calculators and graphic applications, yields greater achievement 
and a higher level of understanding, while enhancing cognitive 
motivation and creative thinking of students”. Such approach is 
in accordance with the requirements of 21 century that needs 
profound changes in the teaching of mathematics and other 
STEM disciplines for engineering students.

3  Using calculators in teaching 
calculus
In most study programs, the calculus course plays a 
central role. After many years of experience in teaching 
calculus, we have found that the calculator presents 
opportunities for significantly developing exploratory 
and critical thinking by the student. In this paper, we 
will describe some of our findings in this direction. Since 
most of our students have worked with the fx-99IES 
PLUS CASIO calculator, which allows for mid-term tests, 
final exams and high school exams, we have used this 
calculator in all our examples. As is the case for many 
advanced calculators, the lecturer will play a key role in 
utilizing the full power of this device that transcends its 
basic computational functions.

In a survey of lecturers in our department, several 
years ago, we found that most lecturers did not use this 
calculator in the teaching process and some of them were 
not even familiar with it and its potential for the teaching 
and learning of the calculus course (as well in others 

mathematical disciplines). To correct this situation, we 
organized special seminars dedicated to the use of the 
fx-99IES PLUS CASIO calculator in teaching of mathematics 
for engineering students. We treat this calculator as an 
interactive math dictionary and, as regards the calculus 
course, as a modern machine for evaluating elementary 
functions, and, more generally, as a convenient device 
for storing and processing numerical information. This 
approach has changed the attitudes of students and 
teachers regarding the use of the scientific calculator, not 
only in the calculus course, but also in other math courses 
and engineering disciplines. Note, that the skillful use 
of the calculator not only improves the student’s exam 
results, but also enhances the understanding of the key 
ideas of calculus, as well as students’ motivation and 
interest in studying them.

4  Classroom teaching examples

Consider an example involving simply the 
skillful use of the scientific calculator. 

Students are asked to evaluate the following expression:

22
019.2

019.2018.2
019.2018.2

019.2018.2
018.2018.2

+
×

−
+

+

Although all students had the fx-991ES PLUS CASIO 
calculator, they did this task in a direct “arithmetic” 

Figure 1: Graphical representation of the sum 
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10
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manner, step by step. This appears to be a routine 
calculation, requiring attention and numerous keystrokes, 
and no more than that. Only rarely did we observe a 
student who might be familiar with the useful algebraic 
options of the calculator, before the teacher’s explanation. 
This explanation begins by inviting the student to enter 
the following algebraic expression in the calculator:

 

Dear Dr. Beata Socha. After carefully reading the proof version of the paper several mistakes 
were  found: 

should be  –is no letter R  there  ,title the articlethe end of  at,7 -On p.1 lines 61) 
and was written CALCULATO.  RCALCULATO 

, Gascon instead  .)Gascon, 2004On p.1 line 24 in the right column after sign & should be 2)
.(2004  

Binstead   AB10 (left column) in the formula should be-On p.3 lines 93) 

22 BA
AB

BA
AAB

+
−

+
+correct formula is    The  

4)On p.4  line 12 (left column) need to remove brackets in the beginning of equality 

The correct written equation should be 

( )
4

1)(AA
2

1)A(AA...21A...21
222

2333 +
=






 +

=+++=+++ 

Ninstead  k On p.6  line 4 (left column) should be5)  

 

proof version edmarked these mistakes by yellow highlight in the attachWe also  

 Thank you, and both linguistic and technical editors, for carefully attention to our paper. 

With regards, 

Miriam Dagan 

 

 

After that, we ask the student to press the key “CALC”. 
What does the calculator do? It requests the value of A 
and then, after pressing the key “=”, the value of B, and 
compute the numeric value of algebraic expression for the 
given values of A and B.

After that, we invite the students to evaluate the 
effectiveness of algebraic approach by asking the question: 
“How much faster will the calculation be via the algebraic 
expression, than by direct arithmetic calculation”. At 
the beginning, most students do not understand how 
to evaluate this difference. In this case, there is data 
entry time. We ask students to estimate this time both 
theoretically and practically, comparing two data entry 
methods. To clarify the task we ask the question: “What 
is an elementary action with a calculator?” The correct 
answer is “pressing any calculator key”. How many 
clicks will it take directly calculating the given arithmetic 
expression? The answer is 9 × 5 + 12 = 57 (45 clicks to 
enter 9 numbers and 12 clicks for arithmetic operations 
including “=”). In addition, how many clicks are required 
to input an algebraic expression? The answer is 9 × 2 + 10 
= 29 (18 clicks to enter 9 letters and 10 clicks for arithmetic 
operations. In fact, after that, you will need to press the 
key “CALC” and twice the key “=” and then to enter the 
numbers 2.018 and 2.019 and to press the key “=”. There 
are ultimately 13 extra clicks. Therefore, computing in 
the algebraic way will require 42 clicks. One may wonder, 
what is the significant advantage of the algebraic way? 
It is important to understand the major difference in the 
reliability of these two methods. Firstly, we immediately 
see whether the algebraic expression is entered correctly, 
secondly, the possibility of error when entering two 
numbers is much less than when entering nine numbers, 
thirdly we can use this formula for any other numbers, 
fourthly, future engineers need to consider these issues 
for the development of research thinking.

We ask students to calculate the sum.

13 + 23 + 33 + 43 + ... + 253

We ask students to do this with their calculators and 
the first one, who correctly completes this task, will win 
this competition. Our experience shows that not many 
students are familiar with the summation operator ∑, 
which is available in this device. Therefore, in most cases, 
students trying calculate this sum directly, as is written in 
the expression, term-by-term. Such a way takes essential 
time and effort, and the hidden meaning of the task is not 
clear to students. After that, we have a good opportunity 
to show students the strength and convenience of the 
∑ operator. By using ∑ the calculator gives an answer 
immediately
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calculator gives an answer immediately 625 105
25

1

3 
x

X . 

In addition, what about the sum 33333 1000...4321  ?  

Now students see with surprise for the first time, that the calculator does not give an 

answer immediately. Moreover, what about the sum 


10000

1

3

x
X ? It takes some minutes to 

calculate this enormous sum! After that, we ask students to calculate Ans  and instead 

of a cumbersome result, 



10000

1

153 10500500025.2
x

X  they see the nice natural number 

50005000. This is something that makes you think. 

 

4.3. We invite students to find a formula for quick summation


A

x
X

1

3 for any natural 

number A (AA problem according to our classification). We enter the 

expression


A

x
X

1

3 into the calculator and using the “CALC” key start to sequentially 

calculate the sums and record the results obtained: 

21441654321   :6

1522554321   :5

101004321   :4

636321   :3

3921   :2

111   :1

333333

33333

3333

333

33

3




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We see that for each A the sum is an exact square and we 
can only guess the squares of which numbers. It is easy to 
see that they are the squares of the sums of the bases of 
the cubed numbers:
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)1(...4321 
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AAA , known from high school, we obtain  
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4

1)(AA
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222

2333 







 
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Now we can even compete with the Sigma Operator () of the CASIO calculator and 

leave it far behind in calculating the sum:  

   22
000  10

1

3 000 005 50001 10000 5 
x

X  

Alternatively, even 


1000000

1

3

x
X  and so on. Rigorous proof of this formula, obtained by 

analyzing particular results, is easy to get using the mathematical induction method.  
 
5. Approximate calculation of sums using integrals 
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k
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1
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Now we can even compete with the Sigma Operator () of the CASIO calculator and 
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
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X  and so on. Rigorous proof of this formula, obtained by 

analyzing particular results, is easy to get using the mathematical induction method.  
 
5. Approximate calculation of sums using integrals 
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formula, obtained by analyzing particular results, is easy 
to get using the mathematical induction method. 

5  Approximate calculation of sums 
using integrals
 Let f (x) be a decreasing and continuous function in the 
domain 1≥x , then from figure 2 it is easy to understand 
that ∑

=

=
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1
)(  is equal to the sum of the areas of N rectangles 

depicted in figure 2.
The sum of the areas of these rectangles is more than 

the area under the curve y = f(x) on the segment [1, N+1]. 
i.e. the following inequality holds:
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On the other hand, the sum of the excess areas of N rectangles above the curve y = f(x) 

i.e. 
1

1

)(
N

dxxf  , is the sum of areas of N “curved triangles” in figure 3, in that all of them 

can be moved into the first rectangle (the highest of all) which has an area equal to f(1). 
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
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Thus, we arrive at a double inequality: 

On the other hand, the sum of the excess areas of N 
rectangles above the curve y = f(x) i.e. 
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areas of N “curved triangles” in figure 3, in that all of them 
can be moved into the first rectangle (the highest of all) 
which has an area equal to f(1).

Therefore, the following inequality holds:  
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
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As example, for f(x) = 1/x , we get: 

1)1ln(11...
3
1

2
11)1ln(

1

1

1

1

 


N
x

dx
Nx

dxN
NN

 

Since for large values of N the differences between ln(N+1) and ln(N) is very small and 

tends to zero, we get very simple approximate formula for large values of N:  

)ln(1...
3
1

2
11 N

N
  

Denote the direct calculation result, using  operator of CASIO, as NS  







Nx

x
N XN

S
1

11...
3
1

2
11  

Denote approximate result as NA , that in this case is NAN ln . 

We estimate the relative error of approximation by formula: %100)( 



N

NN
N S

SA
x  

For N=100 the direct calculation by CASIO calculator of the sum 





Nx

x
X

1

1 we get  

%5.5    9035.920000ln;4807.10
%9.5    2103.910000ln ;7876.9

%7       9078.61000ln ;4855.7
%11           6052.4100ln ;1873.5

20000100020000

10000100010000

100010001000

100100100











AS
AS

AS
AS

 

Note that it needs about a quarter of hour for CASIO using direct calculation for 
N=20000.  

Geometric representation of the sum f (1) + f (2) +f (3) +... + f (N) as the appropriate 

number of rectangles is very easy, but we will get a better integral approximation if we 

think about the sum of the appropriate trapezoid areas. An integral approximation of the 

sum f (1) + f (2) +f (3) +... + f (N) will be better if we think about the sum of the 

appropriate trapezoid areas (Figure 4).  
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Note that it needs about a quarter of hour for CASIO using direct calculation for 
N=20000.  

Geometric representation of the sum f (1) + f (2) +f (3) +... + f (N) as the appropriate 

number of rectangles is very easy, but we will get a better integral approximation if we 

think about the sum of the appropriate trapezoid areas. An integral approximation of the 

sum f (1) + f (2) +f (3) +... + f (N) will be better if we think about the sum of the 

appropriate trapezoid areas (Figure 4).  

As example, for f(x) = 1/x , we get:
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Note that it needs about a quarter of hour for CASIO using direct calculation for 
N=20000.  

Geometric representation of the sum f (1) + f (2) +f (3) +... + f (N) as the appropriate 

number of rectangles is very easy, but we will get a better integral approximation if we 

think about the sum of the appropriate trapezoid areas. An integral approximation of the 

sum f (1) + f (2) +f (3) +... + f (N) will be better if we think about the sum of the 

appropriate trapezoid areas (Figure 4).  
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Figure 3: Graphical representation of the differences 
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Figure 2. Graphical representation of the sum 
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The sum of the areas of these rectangles is more than the area under the curve y = f(x) on 

the segment [1, N+1]. i.e. the following inequality holds: 
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On the other hand, the sum of the excess areas of N rectangles above the curve y = f(x) 

i.e. 
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dxxf  , is the sum of areas of N “curved triangles” in figure 3, in that all of them 

can be moved into the first rectangle (the highest of all) which has an area equal to f(1). 
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Thus, we arrive at a double inequality: 
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Thus, we arrive at a double inequality: 
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Since for large values of N the differences between ln(N+1) 
and ln(N) is very small and tends to zero, we get very 
simple approximate formula for large values of N: 

)ln(1...
3
1

2
11 N

N
≈++++

Denote the direct calculation result, using ∑ operator of 
CASIO, as NS

∑
=

=

=++++=
Nx

x
N XN

S
1

11...
3
1

2
11

Denote approximate result as AN, that in this case is AN = 
ln N.
We estimate the relative error of approximation by 
formula:

%100)( ⋅
−

=
N

NN
N S

SA
xδ

For N=100 the direct calculation by CASIO calculator of 
the sum ∑

=

=

−
Nx

x
X

1

1 we get 
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Since for large values of N the differences between ln(N+1) and ln(N) is very small and 

tends to zero, we get very simple approximate formula for large values of N:  
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Denote approximate result as NA , that in this case is NAN ln . 
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Note that it needs about a quarter of hour for CASIO using direct calculation for 
N=20000.  

Geometric representation of the sum f (1) + f (2) +f (3) +... + f (N) as the appropriate 

number of rectangles is very easy, but we will get a better integral approximation if we 

think about the sum of the appropriate trapezoid areas. An integral approximation of the 

sum f (1) + f (2) +f (3) +... + f (N) will be better if we think about the sum of the 

appropriate trapezoid areas (Figure 4).  

Note that it needs about a quarter of hour for CASIO using 
direct calculation for N=20000. 

Geometric representation of the sum f (1) + f (2) +f (3) 
+... + f (N) as the appropriate number of rectangles is very 

easy, but we will get a better integral approximation if we 
think about the sum of the appropriate trapezoid areas. 
An integral approximation of the sum f (1) + f (2) +f (3) 
+... + f (N) will be better if we think about the sum of the 
appropriate trapezoid areas (Figure 4). 

Sum of areas of N trapezoids depicted in the figure 4 
equals to
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Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11
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 
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NNNkNdxxN
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k

N

 

  
 

10 
 

 

Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11




 




NNNkNdxxN
Nk

k

N

 

This number is close to the integral of the function f(x) on 
the segment [1, N]

1) 

  
 

10 
 

 

Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11




 




NNNkNdxxN
Nk

k

N

 

Therefore, we get the approximate formula:

2) 

  
 

10 
 

 

Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11




 




NNNkNdxxN
Nk

k

N

 

Note that for the function concave downward (Figure 4a)

3) 

  
 

10 
 

 

Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11




 




NNNkNdxxN
Nk

k

N

 

In addition, for the function concave upward (Figure 4b)

4) 

  
 

10 
 

 

Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11




 




NNNkNdxxN
Nk

k

N

 

As example for the sum, N++++ ...321  we 
obtained double inequality:

Figure 4: Approximation of the sum ∑
=

N

k
kf

1
)(  as sum of areas of N trapezoids.



Improving Calculus Learning Using a Scientific Calculator   225

5) 

  
 

10 
 

 

Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11




 




NNNkNdxxN
Nk

k

N

 

  
 

10 
 

 

Figure 4. Approximation of the sum 


N

k
kf

1
)( as sum of areas of N trapezoids  

Sum of areas of N trapezoids depicted in the figure 4 equals to 

2
)()1()(...)2()1(

2
)()1(...

2
)3()2(

2
)2()1( NffNfffNfNfffff 








   

This number is close to the integral of the function f(x) on the segment [1, N] 

1) 



N

dxxfNffNfff
1

)(
2

)()1()(...)2()1(  

Therefore, we get the approximate formula: 

2) 
2

)()1()()(...)2()1(
1

NffdxxfNfff
N 

   

Note that for the function concave downward (Figure 4a) 

3) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

In addition, for the function concave upward (Figure 4b) 

4) 
2

)()1()()(
11

Nffdxxfkf
NNk

k


 





 

As example for the sum, N ...321  we obtained double inequality: 

5)
6
1

23
2

2
1...321 

11




 




NNNkNdxxN
Nk

k

N

 

In Table 1, you can see the direct outcomes (by using 
operator S of CASSIO fx-991ES Plus calculator) and 
approximate outcomes (by using formula 5) calculation of 
this sum for some values of N, as well as the calculation 
time.

Comparison of approximate results (by using formula 
5) with direct computation outcomes (by using operator 
S of CASSIO fx-991ES Plus calculator), shows the great 
accuracy of that approximate formula.

6  Research questions and 
assessment experiment
Our research questions were:
1.	 To what extent do lecturers know and use the 

calculator in teaching calculus?
2.	 To what extent do students know this calculator?
3.	 To what extent use of the calculator helps you in 

calculus learning (in the student’s opinion)?

Concerning the first research question, Questionnaire 
1 was completed by 35 teachers of the mathematical 
department of Shamoon College of Engineering, in the 
winter semester 2017.

Questionnaire 1. To what extent are you familiar with 
the CASSIO fx-991ES Plus calculator? 

1.	 I don’t use this calculator and I am not familiar with 
this devise. 

2.	 I use this calculator for computation arithmetic 
operations only.

3.	 I am familiar with some basic options of this devise.
4.	 I am familiar with most of options of this devise and 

use them.

Questionnaire 2. To what extent do you use CASSIO 
fx-991ES Plus in teaching calculus?
1.	 I don’t use calculator in the teaching process.
2.	 I use this calculator to check computation carried out 

during the lesson.
3.	 I show students algebraic possibilities of this devise, 

and how to use them.
4.	 I constantly demonstrate the great opportunities of 

this devise in calculus studies.

Concerning the second research question, Questionnaire 
3 was completed by Building Department students of 
Shamoon College of Engineering at the beginning of the 
first semester of their academic studies (two groups, A 
and B, with 50 students each). 

Questionnaire 3. To what extent are you familiar 
with the CASSIO fx-991ES Plus calculator? 
1.	 I use this calculator for arithmetic computation only.
2.	 I am familiar with some basic modes of this devise. 
3.	 I use the algebraic possibilities of this devise.
4.	 I am familiar with most of the options of this devise. 

As an example of our assessment experiment of how 
advanced calculator knowledge helps in solving 
computation problems of calculus, we describe the same 
15 minutes test, consisting of two questions, two groups 
of first year engineering students (50 students in each 
group) mentioned above. In one of the groups, (A), the 
teacher paid particular attention to the opportunities of 
the calculator in solving calculus computation problems, 
while in the other group, (B), the teacher paid no attention 

Table 1: Outcomes of direct and approximate formulas and calculation time.
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1 885 688.63666 716.5021 097.50671.5Approximate
Formula 5

 615 sec.330 sec.34 sec.4 sec.Direct calculation time

Table 2: Outcomes of questionnaire 1.

Knowing the calculator 1 2 3 4

Number of teachers 14 10 6 5
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to the skillful use of the calculator. The initial level was 
the same for these groups (see tables 4, 5).

Question 1. Find the slope of the tangent line to the 
graph of the function f(x) at the point x=3 

13
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These were standard questions for both groups and with all 
symbolic calculations students of each group succeeded 
equally but while in “calculator expert learned group” 
(A) all students did the numerical calculation correctly 
and quickly, the students in the other group (B) made a 
lot of errors and many of them did not have enough time 
to complete these numerical calculations. For Question 1, 
the symbolic calculations result is
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That takes more time (if the algebraic features of CASIO 
fx-991ES PLUS is not used) and so often leads to mistakes.

Concerning the third research question, questionnaire 
4 was completed by the students of groups A and B, 
mentioned above, at the end of the first semester.

Questionnaire 4. To what extent does use of the 
calculator help you in calculus learning?
1.	 I use this calculator for arithmetic computation and 

no more.
2.	 It helps me to check the results and detect errors. 
3.	 It helps me not only check errors but also to 

understand the notion of calculus. 

7  Conclusions
Our long-term experiences of use of the scientific calculator 
in teaching calculus, and our assessment experiment 
results show, that permanent and systematic use of the 
scientific calculator yields greater achievement and a 
high level of understanding, while enhancing cognitive 
motivation and creative thinking of students. Note, that 
we always observed surprise and admiration of students, 
when they see unexpected possibilities of mathematical 

Table 3: Outcomes of questionnaire 2.

Using the calculator in 
teaching of calculus 

1 2 3 4

Number of teachers 20 7 6 2

Table 4: Questionnaire 3 (group A).

Knowing the calculator 1 2 3 4

Number of students 22 18 9 1

Table 5: Questionnaire 3 (group B).

Knowing the calculator 1 2 3 4

Number of students 24 21 5 0

Table 6: Questionnaire 4.

1 2 3

Group A 0 18 32

Group B 31 12 7
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and engineering thinking in the process of using their 
scientific calculator. The above examples and numerous 
others, demonstrate to students the skillful use of the 
calculator when studying each topic and each concept 
of the Calculus course. Note that we also encourage 
engineering students to investigate the calculator as a 
computation machine. For example, we direct them to 
think about calculation speed of this device for those 
or other computation problems, and about the possible 
algorithms used by it in these calculations. In this way, 
the calculator has become an integral part of the studies 
of Calculus and other mathematics courses we teach. 
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