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Abstract: Learning is a complex phenomenon.
Contemporary theories of education underline active
participation of learners in their learning processes. One
of the key arguments supporting this approach is the
learner’s simultaneous and unconscious development of
their ability of “learning to learn”. This ability belongs to
the soft skills highly valued by employers today.

For Mathematics Education, it means that teachers
have to go beyond making calculations and memorizing
formulas. We have to teach the subject in its social context.
When the students start understanding the relationship
between real-life problems and the role of numbers and
formulas for their solutions, their learning becomes a part
of their tacit knowledge. Below we explain the theoretical
background of our approach and provide examples of
such activities.

Keywords: calculator; mathematics education;
computational; mathematical context.

1 Introduction

The main role of education in a classroom is to prepare
learners for their future life. Contemporary theories of
education underline their active participation in the
processes. One of the key arguments supporting this
approach is the learner’s simultaneous and unconscious
development of their desire of “learning to learn”
(Rabekova & Hvorecky, 2015). This competence is defined
by Educational Council (2006) as “the ability to pursue
and persist in learning, to organize one’s own learning,
including through effective management of time and
information, both individually and in groups”. The
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learning to learn competence belongs among today’s

most frequent requirements of employers (Pirrie &

Thoutenhoofd, 2013). They expect their employees to

be capable of adapting to their changing environment

and learning new facts and procedures. For education
it implies that instead of memorization of formulas and
theorems they should be steered towards problem-
solving and creativity. It does not mean that formulas and
theorems should be excluded from the courses. On the
contrary, they must be incorporated into the problems in

a way which will clarify their meaning and importance

i.e. their context. For example, Lovaszova & Hvorecky

(2002) show that one — virtually the same — problem can

be solved using several mathematical methods depending

on expectations of their results.

Unfortunately, the capability of finding an applicable
method is often misunderstood. Learners are tempted
to apply their existing knowledge and produce a result
regardless of its “price” and meaning. It may end in
generating a(ny) numerical outcome regardless of the
logic behind it. In this context, (Greer, 1997) demonstrates
his student’s solution to the following problem: “There are
125 sheep and 5 dogs in a flock. How old is the shepherd?”
The student used the following reasoning: “125+5=130...
this is too big, and 125-5 is still too big... while ... %= 25
... that works... I think that the shepherd is 25 years old.”
This example demonstrates an inconsistency between
two principal types of knowledge defined by Knowledge
Management: explicit and tacit (Kendal & Creen, 2007):

— Explicit knowledge refers to the part of person’s
knowledge which can be clearly demonstrated using
facts, formulas, instructions, drawings, and similar.
The pieces of explicit knowledge can be fixed and
distributed using appropriate media. Formulas, laws
of physics, recipes, user instructions and other exactly
formulated recommendations, rules and regulations
belong to this category.

— Tacit knowledge represents the part of our knowledge
having an informal character. Its content and ways of
application are much foggier. We gain it unnoticed
through our day-to-day communication. It becomes
“visible” only through our understanding of the
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relationships among pieces of explicit knowledge,
by our ability to apply them, by synchronizing our
behaviour to our community’s expectation and its
values, etc.

In the above example, the student likely wanted to
accommodate his/her teacher by delivering “a reasonable
figure”. He/she was ready to interpret the input data in a
wrong way in order to favour his/her socially-developed
interpretation of the community’s desire. His/her
tacit knowledge likely guided his/her reasoning in the
following way: “Whenever my teacher gives me a problem,
using a calculation leads to its solution. I am supposed to
calculate.”

Similar risks grow with the application of calculators
in classrooms. Using technology, experiments leading to
similar “socially affected” solutions can be executed faster
and the student is capable of doing more calculations
within the same time period. The learner’s self-conviction
about finding the expected solution may grow, too. In our
paper, we indicate methods of facilitating tacit knowledge
in order to train students to become more critical of their
own procedures for problem solving as well as of their
results (for details see Hvorecky & Koreriova, 2018).

In the real world, this process runs as a series of
trials and errors. Its equivalent in education is discovery
learning. Regardless of whether children work individually
or collaborate while solving problems, making trials,
errors and corrections helps them to understand the
complexity of learned phenomena, their relationships
and properties. In this paper, we exemplify the approach
using a series of examples.

First, we present this learning as a social activity
which simultaneously develops both explicit and tacit
knowledge - the elements and laws of the subject as
well their meaning and relevance. Then, we show a set of
problems that explain to the students that Mathematics
is a standard human activity which is not free of
errors, imperfections and confusions. Using advanced
calculators, we demonstrate problems that may introduce
them to the field of discovery learning by combining
mathematics and information technology.

2 Learning Concepts

2.1 Discovery Learning

Learning is a very complex, multifaceted phenomenon
(see Bianco & Ulm, 2010). Initiatives aiming at the
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development of discovery in mathematics education have

to take the nature of learning into account. Let us have

a quick look at some fundamental aspects of discovery

learning (e.g. Ruthven, 2007; Haberlandt, 1997).

— Discovery learning is a constructive process.
Knowledge and understanding cannot be simply
transported from teachers to students. Cognitive
psychology describes learning as a process of
construction and modification of cognitive structures.
From the view of neurosciences, learning is the
construction of neural networks. During learning,
connections between neurons develop and change
(Prodromou & Lavicza, 2017).

— It is an individual process from one side because
learning and its outcomes take place inside the mind
of each learner. He/she creates his own knowledge
and understanding by interpreting his/her personal
perceptions on the basis of his/her prior individual
knowledge and prior understanding. According to
the constructivist approach (Karagiori & Symeonu,
2005), every learner must construct his/her own new
knowledge in his/her specific way. His/her presence
in the team does not mean that every learner gets the
identical knowledge and skills.

— On the other hand, this type of learning is also a
social process. The sociocultural environment has
great impact on educational processes. Learning is
strongly based on interpersonal cooperation and
communication between students and teachers
(Prodromou, Lavicza & Koren, 2015).

— This type of learning is always an active process.
Cognitive activity means working with the content
in mind, viewing it from different perspectives and
incorporating it into a person’s existing knowledge
network. The use of models plays an important role.
According to Hejny et al. (2006) suitable separate and
generic models are needed for every kind of abstract
knowledge.

— It is a self-organized process. The learner is at least
partially responsible for the organization of his/her
individual learning. The degree of responsibility may
vary in the phases of planning, realizing or reflecting
of learning processes. In the frame of constructionism
(Papert & Harel, 1991), “learning-by-doing” is a
typical method of knowledge gathering. Students are
active and build new concepts, which help them to
understand new notions according to their personal
expectations and needs.

— It is a situated process. It is influenced by each and
every particular situation. A meaningful context or
a pleasant atmosphere can foster learning, while
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fear can hamper it. According to Hejny et al. (2006)
the role of the teacher is critical because he/she
must organize the activities in the class and to invite
students to construct their new knowledge according
to their individual dispositions.

2.2 Inquiry Based Learning

Inquiry based learning supports the development of
analytical skills, and on techniques for stimulating
intrinsic motivation for learning mathematics and
science. Here, the students are facing facts and their
role is to understand their meaning by querying them.
Context-based learning in which the relevance of science
is highlighted and inquiry-based techniques are used
to stimulate the formulation of ideas and their testing
through direct experimentation have been shown to be
effective in stimulating interest in science, but they need
to be developed and implemented more widely (see http://
scientix.eu).

By means of constructive, feasible problem-solving
teaching techniques, it is possible to demonstrate
mathematics as a science to students (Hejny et al.,
2006). They should have an opportunity to discover and
formulate the solutions to problems on their own. These
abilities and skills are also essential for the research
work in the field of mathematics, physics, geography and
other fields of science. In this methodology, all stages of
mathematization are applied: transferring problems into
the language of mathematical symbols, solving them using
calculations and formal manipulations and interpreting
the solutions using the language of the source discipline.

On the other hand, according to this theory
of education, a mutual transfer of knowledge and
experiences between sciences and the content of teaching
are very important. This transfer is more effective if
accompanied by activities introducing students to science
by closely linking to educational theory and practice.
A collaboration of experts in educational theory with
teachers and students will help achieve this objective. In
the field of Science education, it is very important that the
students’ knowledge not be isolated. To know how to link
knowledge from various thematic units as well as to use
the inter-thematic relations, experts’ support is necessary.
This guided educational process should support their
inductive and deductive reasoning as well as their ability
for abstraction and specification (Hejny et al., 2006).

In this case one suitable idea for teaching mathematics
and natural sciences will be the Georges Charpak’s “Hands
On” method which is special educational method for
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science and mathematics education at primary level. This

method promotes experimentation and observation in

class where teachers apply phases of separate and generic
model(s). The phases split the process into understandable

“chunks”. Unfortunately, they are often absent in the

teaching of mathematics and science at Slovak schools

so the knowledge of the pupils is superficial (Csachova &

Jureckova, 2018).

Teaching mathematics to pupils should stimulate
intrinsic motivation for learning mathematics, supporting
interdisciplinary relations between mathematics and
science, facilitating their personal growth, responsibility
and self-confidence in addition to developing their
analytical skills.

This method has ten main principles (see Charpak,
1997):

1. Studentsinthe class observe an object or phenomenon
in the real, tangible world and experiment with it.

2. During their investigations, students develop
their argumentation and reasoning, gathering and
discussing their ideas and results, and they build
their knowledge, as manual activity on its own is
insufficient.

3. The activities that the teacher proposes to students
are organized in sequences within teaching modules.
They are related to the State Educational Curriculum
and offer students a great deal of independence.

4. It is important to arrange the continuity of activities
and teaching methods, which are ensured throughout
the school program.

5. Each student keeps teaching materials, written and
updated in his/her own words.

6. The main objective is a student’s gradual adoption
of scientific concepts and techniques, along with the
strengthening of their oral and written skills.

7. It is an advantage, if families and/or neighborhoods
take part in students’ work done in class.

8. Local scientific partners, such as universities and
engineering schools, support classwork by making
their skills available.

9. It is an advantage, if teachers exchange their
experiences in the use of the “Hands On” method (see
https://www.fondation-lamap.org/en/ international).

10. Teachers can access teaching modules, ideas for
activities, and answers to various questions from
resource websites (e.g. www.fondation-lamap.
org). They can also exchange ideas with colleagues,
trainers and scientists via their collaborative labor.
They support also collaborative work of their students
in the classroom.
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According to Kovacs, Recio & Vélez (2018) using ICT tools
develops innovative practices and research approaches of
these tools from many new perspectives. The international
character of the community of teachers who use tools
provides many inspirations on how to use ICT tools in the
inquiry based and discovery learning. It encourages also
others to get involved in the creative work and apply their
efforts in the development of learning materials and methods
for this kind of teaching (see Kénya & Kovacs, 2019).

2.3 Developing Tacit Knowledge

In this section, we present three examples of problems
that can enhance the atmosphere in Mathematics classes
in our desired direction.

Take a piece of rope and hold its ends in your hands.
Move your hands closer and further from each other. Look
at the rope and think about its shape. Which curve could it
be?

If your guess is “the parabola”, you are wrong. Do not
get frustrated — many great mathematicians including
Galileo Galilei made the same wrong guess. In reality,
the curve’s name is the catenary — derived from the Latin
word for “chain”. In 1669, many years after Galileo, a much
less known Jungius proved it. The catenary is formed by a
hanging flexible wire or chain supported at its ends and
uniform gravitational force (Hvorecky, 2006).

This and similar errors in reasoning should be
presented to students. They are supportive examples of
inquiry-based learning. They present famous scientists
as humans making mistakes. Students might be scared
of starting their discovery processes due to their image of
scientists as ideal, never-failing persons. Reverting this
image and placing an equality symbol between them and
science celebrities may enhance diminishing their mental
barriers.

The students often do not comprehend formulas,
their graphs and real objects. This example coming from
(Hvorecky, 2005) demonstrates how the ties between them
can be pointed to and facilitated.

In 1965, a huge arch was built in Saint Louis (Missouri,
USA). It symbolizes an important period in the town
history: for almost two centuries, St. Louis used to be the
gateway to the United State’s West. Its shape has the form
of the inverted cosine hyperbolic. Its shape follows the
catenary (now formally renamed as the cosine hyperbolic
— cosh). Its exact formula is

y = 693.8597 — 68.7672 - cosh(0.0100333x) (1)
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On one hand, the example shows that the arch and the

formula are virtually the same and can be used for a

discussion about the meaning of such identity: “To what

degree are they identical and what makes them different?”

Within this frame students can be asked to complete two

tasks:

(a) to draw the graph using their graphic calculators
to visualize the similarity,

(b) to find the picture of Saint Louis Arch on the
Internet.

They might be surprised by their relation or — if
their dissimilarity is big — to investigate the reasons.
For their teachers, a problems carries another lesson.
Typical classroom problems use whole numbers as
their parameters. Their role is to simplify and speed up
learners’ manual calculations. With calculators, there is
no difference between calculating with 20 or 327 and the
numbers like above 693.8597 and 0.0100333. This is the
good news: solving similar problems with information
technology does not require any artificial simplifications.

The visualization of Saint Louis Arch and its
expression by a formula can serve as an ignition point for
continuing problems:

— What is the height of the arch? In the discovery-
oriented part of the solution, students have to come up
with a conclusion that they are supposed to find the
maximum of the function (1). Using their calculator,
the next stage of the solution is fast and simple. As
a result, teachers can spend more time on the initial
stage which is critical to students’ comprehension.

—  What is the distance between its branches measured
on the ground? Now, the roots of (1) has to be found.
Again, learners should come up themselves with the
idea. This will help them to understand a meaning of
“root” and its importance. After catching the idea and
using an intelligent calculator, getting the result is
easy and quick.

— There is an elevator in a branch of the Arch going to
its top. How long is it? This problem is an appropriate
introduction to calculus. Using a graphic calculator,
one can quickly demonstrate that splitting the basis
of the arch to ten sections brings the elevator’s length
exact to centimeters. For educators, the growth of the
number of arch sections is an example of phasing
the problem leading to an increasingly accurate
solution. At the same time, learners quickly begin
to understand that more than ten sections leads to
negligible improvements in the precision. They will
learn more about the interpretation of the concept of
precision in mathematics and technology.
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2.4 Technology Advancement

Educators are often apprehensive about the quick
development of technology. They are challenged by its
new capabilities and frustrated by a necessity to modify
their teaching routines. Similarly, parents dislike buying
newer and newer devices as their child advances from
class to class.

Calculator producers are aware of this animosity and
started looking for solutions optimal for all partners. One
such solution is offered by CASIO. Its CASIO Classwiz
allows splitting solutions, “freezing” them and revoking
their solution from their frozen stage using QR codes. As
the QR codes can be copied, every learner can get his/her
identical copy of the solution.

As aresult, not all students need calculators. They can
use their smartphones with an official application. It allows
reading the QR code, storing it on the phone, presenting
the solution and (to a limited degree) manipulating it.
A problem can be solved with one device (non-graphic
CASIO Classwiz) and then presented and analyzed on
the smartphone. In our examples, students will be able
to read the QR codes using their mobile phones, i.e. store
them. To demonstrate a possible phasing of the process,
the below subproblem is solved.

Example 1. Mitosis is a method of cell division based
on a normal (Gaussian) probability distribution. In our
example, the expected value of cell division is 1 hour with
the variance of 5 minutes. What is the probability that a cell
will divide in 45 ( x ) minutes?

The most advanced calculators are capable of
presenting probability distributions. For the above reasons
we present using CASIO Classwiz in two phases. In Phase
1, we select Distribution from the Classwiz main menu and
then Normal PD. The calculator asks for input values, i.e.
the requested parameters of the Gauss function. We type:
— The value x = 45,

- Thevarianceo =5
—  The expected value p = 60 minutes (i.e. 1 hour)

The calculated probability is 0.000886, i.e. very low. This
process can be followed by students. Here we presume
that it is done by the educator using the outcome of Phase
1 as his/her preparation for Phase 2. In this case, he/she
creates the QR code with the Classwiz display. It replaces
the previous displayed content (showing the parameters
of the normal probability distribution) by its QR code.
Both screenshots are presented in Figure 1.

Phase 2 starts with students reading this QR code using
their smartphones. (The free CASIO EDU+ application
must be installed in advance). After the successful reading
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Figure 2: Transferred normal distribution to a smartphone.

of the QR code, their screens display the data and graph -

see Figure 2.

The visualized normal distribution — the input of

Phase 2 — has several positive aspects for education:

— The students’ preparation time for getting to Phase 2
is virtually zero.

— The content of all their smartphones is identical.

— The teacher is now certain that there will be no
confusion caused by different data and graphs. He/
she can fully concentrate on the properties of the
normal distribution expressed by the graph.

— Then the students can start experimenting and be
certain that they can at any moment return to the
initial stage defined by the QR code. This makes them
feel at ease with their experiments. They are aware
that their mistakes can be easily corrected by starting
their calculations from this specified point.

— The teachers are also in a more comfortable position
than when using for example computers in a network.
Technological problems are easier to resolve, e.g.
by replacing the calculator with another one. It is
therefore suggested to have a few spare functioning
calculators. As a result, the delays caused by
technological difficulties are minimal.
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3 Conclusions

Calculators can simplify the teachers’ role in their
Mathematics classrooms under a crucial condition: They
are applied in accordance with the principles of active
learning. It means that their function remains supportive
and does not become the goal of learning. Activities
performed with their use would therefore concentrate on
analyzing the properties of the objects and intensifying
the students’ comprehension.

At the same time, technology can enrich education by
introducing realistic problems. Most textbook problems
use simplified parameters (small integers). These are
remnants from the times when all calculations were done
manually. Using more complex numbers would slow
down the classroom processes. Now, the problems can use
data which are closer to those used in science, technology
and economics — as big and complex as demonstrated by
the Saint Louis Arch.

Information Technology minimizes the time necessary
for completion of operations and allows students to
concentrate on their learning (see also Muller, Buteau,
Klincsik, Perjési-Hamori & Sarvari, 2009). Naturally, the
input to such problems should be preprocessed by the
teacher otherwise it could result in an even bigger waste
of time. The case of Classwiz shows a way to do this in a
speedy and easy manner.

All this means that the future of Mathematics
education can benefit from IT in classrooms presuming
the educators’ creativity and good will (Dostal & Kropac,
2017; Verma, Stoffova & Illés, 2018).
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