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Abstract: Learning is a complex phenomenon. 
Contemporary theories of education underline active 
participation of learners in their learning processes. One 
of the key arguments supporting this approach is the 
learner’s simultaneous and unconscious development of 
their ability of “learning to learn”. This ability belongs to 
the soft skills highly valued by employers today. 

For Mathematics Education, it means that teachers 
have to go beyond making calculations and memorizing 
formulas. We have to teach the subject in its social context. 
When the students start understanding the relationship 
between real-life problems and the role of numbers and 
formulas for their solutions, their learning becomes a part 
of their tacit knowledge. Below we explain the theoretical 
background of our approach and provide examples of 
such activities.
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1  Introduction
The main role of education in a classroom is to prepare 
learners for their future life. Contemporary theories of 
education underline their active participation in the 
processes. One of the key arguments supporting this 
approach is the learner’s simultaneous and unconscious 
development of their desire of “learning to learn” 
(Rábeková & Hvorecký, 2015). This competence is defined 
by Educational Council (2006) as “the ability to pursue 
and persist in learning, to organize one’s own learning, 
including through effective management of time and 
information, both individually and in groups”. The 

learning to learn competence belongs among today’s 
most frequent requirements of employers (Pirrie & 
Thoutenhoofd, 2013). They expect their employees to 
be capable of adapting to their changing environment 
and learning new facts and procedures. For education 
it implies that instead of memorization of formulas and 
theorems they should be steered towards problem-
solving and creativity. It does not mean that formulas and 
theorems should be excluded from the courses. On the 
contrary, they must be incorporated into the problems in 
a way which will clarify their meaning and importance 
i.e. their context. For example, Lovászová & Hvorecký 
(2002) show that one – virtually the same – problem can 
be solved using several mathematical methods depending 
on expectations of their results. 

Unfortunately, the capability of finding an applicable 
method is often misunderstood. Learners are tempted 
to apply their existing knowledge and produce a result 
regardless of its “price” and meaning. It may end in 
generating a(ny) numerical outcome regardless of the 
logic behind it. In this context, (Greer, 1997) demonstrates 
his student’s solution to the following problem: “There are 
125 sheep and 5 dogs in a flock. How old is the shepherd?” 
The student used the following reasoning: “125+5=130… 
this is too big, and 125-5 is still too big… while … = 25 
… that works… I think that the shepherd is 25 years old.” 
This example demonstrates an inconsistency between 
two principal types of knowledge defined by Knowledge 
Management: explicit and tacit (Kendal & Creen, 2007):

–– Explicit knowledge refers to the part of person’s 
knowledge which can be clearly demonstrated using 
facts, formulas, instructions, drawings, and similar. 
The pieces of explicit knowledge can be fixed and 
distributed using appropriate media. Formulas, laws 
of physics, recipes, user instructions and other exactly 
formulated recommendations, rules and regulations 
belong to this category. 

–– Tacit knowledge represents the part of our knowledge 
having an informal character. Its content and ways of 
application are much foggier. We gain it unnoticed 
through our day-to-day communication. It becomes 
“visible” only through our understanding of the 
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relationships among pieces of explicit knowledge, 
by our ability to apply them, by synchronizing our 
behaviour to our community’s expectation and its 
values, etc. 

In the above example, the student likely wanted to 
accommodate his/her teacher by delivering “a reasonable 
figure”. He/she was ready to interpret the input data in a 
wrong way in order to favour his/her socially-developed 
interpretation of the community’s desire. His/her 
tacit knowledge likely guided his/her reasoning in the 
following way: “Whenever my teacher gives me a problem, 
using a calculation leads to its solution. I am supposed to 
calculate.”

Similar risks grow with the application of calculators 
in classrooms. Using technology, experiments leading to 
similar “socially affected” solutions can be executed faster 
and the student is capable of doing more calculations 
within the same time period. The learner’s self-conviction 
about finding the expected solution may grow, too. In our 
paper, we indicate methods of facilitating tacit knowledge 
in order to train students to become more critical of their 
own procedures for problem solving as well as of their 
results (for details see Hvorecký & Koreňová, 2018). 

In the real world, this process runs as a series of 
trials and errors. Its equivalent in education is discovery 
learning. Regardless of whether children work individually 
or collaborate while solving problems, making trials, 
errors and corrections helps them to understand the 
complexity of learned phenomena, their relationships 
and properties. In this paper, we exemplify the approach 
using a series of examples. 

First, we present this learning as a social activity 
which simultaneously develops both explicit and tacit 
knowledge – the elements and laws of the subject as 
well their meaning and relevance. Then, we show a set of 
problems that explain to the students that Mathematics 
is a standard human activity which is not free of 
errors, imperfections and confusions. Using advanced 
calculators, we demonstrate problems that may introduce 
them to the field of discovery learning by combining 
mathematics and information technology.

2  Learning Concepts

2.1  Discovery Learning

Learning is a very complex, multifaceted phenomenon 
(see Bianco & Ulm, 2010). Initiatives aiming at the 

development of discovery in mathematics education have 
to take the nature of learning into account. Let us have 
a quick look at some fundamental aspects of discovery 
learning (e.g. Ruthven, 2007; Haberlandt, 1997). 

–– Discovery learning is a constructive process. 
Knowledge and understanding cannot be simply 
transported from teachers to students. Cognitive 
psychology describes learning as a process of 
construction and modification of cognitive structures. 
From the view of neurosciences, learning is the 
construction of neural networks. During learning, 
connections between neurons develop and change 
(Prodromou & Lavicza, 2017).

–– It is an individual process from one side because 
learning and its outcomes take place inside the mind 
of each learner. He/she creates his own knowledge 
and understanding by interpreting his/her personal 
perceptions on the basis of his/her prior individual 
knowledge and prior understanding. According to 
the constructivist approach (Karagiori & Symeonu, 
2005), every learner must construct his/her own new 
knowledge in his/her specific way. His/her presence 
in the team does not mean that every learner gets the 
identical knowledge and skills.

–– On the other hand, this type of learning is also a 
social process. The sociocultural environment has 
great impact on educational processes. Learning is 
strongly based on interpersonal cooperation and 
communication between students and teachers 
(Prodromou, Lavicza & Koren, 2015). 

–– This type of learning is always an active process. 
Cognitive activity means working with the content 
in mind, viewing it from different perspectives and 
incorporating it into a person’s existing knowledge 
network. The use of models plays an important role. 
According to Hejný et al. (2006) suitable separate and 
generic models are needed for every kind of abstract 
knowledge.

–– It is a self-organized process. The learner is at least 
partially responsible for the organization of his/her 
individual learning. The degree of responsibility may 
vary in the phases of planning, realizing or reflecting 
of learning processes. In the frame of constructionism 
(Papert & Harel, 1991), “learning-by-doing” is a 
typical method of knowledge gathering. Students are 
active and build new concepts, which help them to 
understand new notions according to their personal 
expectations and needs.

–– It is a situated process. It is influenced by each and 
every particular situation. A meaningful context or 
a pleasant atmosphere can foster learning, while 
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fear can hamper it. According to Hejný et al. (2006) 
the role of the teacher is critical because he/she 
must organize the activities in the class and to invite 
students to construct their new knowledge according 
to their individual dispositions. 

2.2  Inquiry Based Learning 

Inquiry based learning supports the development of 
analytical skills, and on techniques for stimulating 
intrinsic motivation for learning mathematics and 
science. Here, the students are facing facts and their 
role is to understand their meaning by querying them. 
Context-based learning in which the relevance of science 
is highlighted and inquiry-based techniques are used 
to stimulate the formulation of ideas and their testing 
through direct experimentation have been shown to be 
effective in stimulating interest in science, but they need 
to be developed and implemented more widely (see http://
scientix.eu). 

By means of constructive, feasible problem-solving 
teaching techniques, it is possible to demonstrate 
mathematics as a science to students (Hejný et al., 
2006). They should have an opportunity to discover and 
formulate the solutions to problems on their own. These 
abilities and skills are also essential for the research 
work in the field of mathematics, physics, geography and 
other fields of science. In this methodology, all stages of 
mathematization are applied: transferring problems into 
the language of mathematical symbols, solving them using 
calculations and formal manipulations and interpreting 
the solutions using the language of the source discipline. 

On the other hand, according to this theory 
of education, a mutual transfer of knowledge and 
experiences between sciences and the content of teaching 
are very important. This transfer is more effective if 
accompanied by activities introducing students to science 
by closely linking to educational theory and practice. 
A collaboration of experts in educational theory with 
teachers and students will help achieve this objective. In 
the field of Science education, it is very important that the 
students’ knowledge not be isolated. To know how to link 
knowledge from various thematic units as well as to use 
the inter-thematic relations, experts’ support is necessary. 
This guided educational process should support their 
inductive and deductive reasoning as well as their ability 
for abstraction and specification (Hejný et al., 2006). 

In this case one suitable idea for teaching mathematics 
and natural sciences will be the Georges Charpak’s “Hands 
On” method which is special educational method for 

science and mathematics education at primary level. This 
method promotes experimentation and observation in 
class where teachers apply phases of separate and generic 
model(s). The phases split the process into understandable 
“chunks”. Unfortunately, they are often absent in the 
teaching of mathematics and science at Slovak schools 
so the knowledge of the pupils is superficial (Csachová & 
Jurecková, 2018).

Teaching mathematics to pupils should stimulate 
intrinsic motivation for learning mathematics, supporting 
interdisciplinary relations between mathematics and 
science, facilitating their personal growth, responsibility 
and self-confidence in addition to developing their 
analytical skills. 

This method has ten main principles (see Charpak, 
1997):
1.	 Students in the class observe an object or phenomenon 

in the real, tangible world and experiment with it.
2.	 During their investigations, students develop 

their argumentation and reasoning, gathering and 
discussing their ideas and results, and they build 
their knowledge, as manual activity on its own is 
insufficient.

3.	 The activities that the teacher proposes to students 
are organized in sequences within teaching modules. 
They are related to the State Educational Curriculum 
and offer students a great deal of independence.

4.	 It is important to arrange the continuity of activities 
and teaching methods, which are ensured throughout 
the school program.

5.	 Each student keeps teaching materials, written and 
updated in his/her own words.

6.	 The main objective is a student’s gradual adoption 
of scientific concepts and techniques, along with the 
strengthening of their oral and written skills.

7.	 It is an advantage, if families and/or neighborhoods 
take part in students’ work done in class.

8.	 Local scientific partners, such as universities and 
engineering schools, support classwork by making 
their skills available.

9.	 It is an advantage, if teachers exchange their 
experiences in the use of the “Hands On” method (see 
https://www.fondation-lamap.org/en/ international). 

10.	 Teachers can access teaching modules, ideas for 
activities, and answers to various questions from 
resource websites (e.g. www.fondation-lamap.
org). They can also exchange ideas with colleagues, 
trainers and scientists via their collaborative labor. 
They support also collaborative work of their students 
in the classroom.
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According to Kovács, Recio & Vélez (2018)  using ICT tools 
develops innovative practices and research approaches of 
these tools from many new perspectives. The international 
character of the community of teachers who use tools 
provides many inspirations on how to use ICT tools in the 
inquiry based and discovery learning. It encourages also 
others to get involved in the creative work and apply their 
efforts in the development of learning materials and methods 
for this kind of teaching (see Kónya & Kovács, 2019).

2.3  Developing Tacit Knowledge

In this section, we present three examples of problems 
that can enhance the atmosphere in Mathematics classes 
in our desired direction. 

Take a piece of rope and hold its ends in your hands. 
Move your hands closer and further from each other. Look 
at the rope and think about its shape. Which curve could it 
be? 

If your guess is “the parabola”, you are wrong. Do not 
get frustrated – many great mathematicians including 
Galileo Galilei made the same wrong guess. In reality, 
the curve’s name is the catenary – derived from the Latin 
word for “chain”. In 1669, many years after Galileo, a much 
less known Jungius proved it. The catenary is formed by a 
hanging flexible wire or chain supported at its ends and 
uniform gravitational force (Hvorecký, 2006). 

This and similar errors in reasoning should be 
presented to students. They are supportive examples of 
inquiry-based learning. They present famous scientists 
as humans making mistakes. Students might be scared 
of starting their discovery processes due to their image of 
scientists as ideal, never-failing persons. Reverting this 
image and placing an equality symbol between them and 
science celebrities may enhance diminishing their mental 
barriers. 

The students often do not comprehend formulas, 
their graphs and real objects. This example coming from 
(Hvorecky, 2005) demonstrates how the ties between them 
can be pointed to and facilitated.

In 1965, a huge arch was built in Saint Louis (Missouri, 
USA). It symbolizes an important period in the town 
history: for almost two centuries, St. Louis used to be the 
gateway to the United State’s West. Its shape has the form 
of the inverted cosine hyperbolic. Its shape follows the 
catenary (now formally renamed as the cosine hyperbolic 
– cosh). Its exact formula is 

(1)
      

On one hand, the example shows that the arch and the 
formula are virtually the same and can be used for a 
discussion about the meaning of such identity: “To what 
degree are they identical and what makes them different?” 
Within this frame students can be asked to complete two 
tasks: 

(a) to draw the graph using their graphic calculators 
to visualize the similarity, 

(b) to find the picture of Saint Louis Arch on the 
Internet.

They might be surprised by their relation or – if 
their dissimilarity is big – to investigate the reasons. 
For their teachers, a problems carries another lesson. 
Typical classroom problems use whole numbers as 
their parameters. Their role is to simplify and speed up 
learners’ manual calculations. With calculators, there is 
no difference between calculating with 20 or 327 and the 
numbers like above 693.8597 and 0.0100333. This is the 
good news: solving similar problems with information 
technology does not require any artificial simplifications.

The visualization of Saint Louis Arch and its 
expression by a formula can serve as an ignition point for 
continuing problems:

–– What is the height of the arch? In the discovery-
oriented part of the solution, students have to come up 
with a conclusion that they are supposed to find the 
maximum of the function (1). Using their calculator, 
the next stage of the solution is fast and simple. As 
a result, teachers can spend more time on the initial 
stage which is critical to students’ comprehension.

–– What is the distance between its branches measured 
on the ground? Now, the roots of (1) has to be found. 
Again, learners should come up themselves with the 
idea. This will help them to understand a meaning of 
“root” and its importance. After catching the idea and 
using an intelligent calculator, getting the result is 
easy and quick.

–– There is an elevator in a branch of the Arch going to 
its top. How long is it? This problem is an appropriate 
introduction to calculus. Using a graphic calculator, 
one can quickly demonstrate that splitting the basis 
of the arch to ten sections brings the elevator’s length 
exact to centimeters. For educators, the growth of the 
number of arch sections is an example of phasing 
the problem leading to an increasingly accurate 
solution. At the same time, learners quickly begin 
to understand that more than ten sections leads to 
negligible improvements in the precision. They will 
learn more about the interpretation of the concept of 
precision in mathematics and technology.
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2.4  Technology Advancement

Educators are often apprehensive about the quick 
development of technology. They are challenged by its 
new capabilities and frustrated by a necessity to modify 
their teaching routines. Similarly, parents dislike buying 
newer and newer devices as their child advances from 
class to class.

Calculator producers are aware of this animosity and 
started looking for solutions optimal for all partners. One 
such solution is offered by CASIO. Its CASIO Classwiz 
allows splitting solutions, “freezing” them and revoking 
their solution from their frozen stage using QR codes. As 
the QR codes can be copied, every learner can get his/her 
identical copy of the solution.

As a result, not all students need calculators. They can 
use their smartphones with an official application. It allows 
reading the QR code, storing it on the phone, presenting 
the solution and (to a limited degree) manipulating it. 
A problem can be solved with one device (non-graphic 
CASIO Classwiz) and then presented and analyzed on 
the smartphone.  In our examples, students will be able 
to read the QR codes using their mobile phones, i.e. store 
them. To demonstrate a possible phasing of the process, 
the below subproblem is solved.

Example 1. Mitosis is a method of cell division based 
on a normal (Gaussian) probability distribution. In our 
example, the expected value of cell division is 1 hour with 
the variance of 5 minutes. What is the probability that a cell 
will divide in 45 ( x ) minutes? 

The most advanced calculators are capable of 
presenting probability distributions. For the above reasons 
we present using CASIO Classwiz in two phases. In Phase 
1, we select Distribution from the Classwiz main menu and 
then Normal PD. The calculator asks for input values, i.e. 
the requested parameters of the Gauss function. We type:

–– The value x = 45,
–– The variance σ = 5 
–– The expected value μ = 60 minutes (i.e. 1 hour)

The calculated probability is 0.000886, i.e. very low. This 
process can be followed by students. Here we presume 
that it is done by the educator using the outcome of Phase 
1 as his/her preparation for Phase 2. In this case, he/she 
creates the QR code with the Classwiz display. It replaces 
the previous displayed content (showing the parameters 
of the normal probability distribution) by its QR code. 
Both screenshots are presented in Figure 1.

Phase 2 starts with students reading this QR code using 
their smartphones. (The free CASIO EDU+ application 
must be installed in advance). After the successful reading 

of the QR code, their screens display the data and graph – 
see Figure 2.

The visualized normal distribution – the input of 
Phase 2 – has several positive aspects for education:

–– The students’ preparation time for getting to Phase 2 
is virtually zero.

–– The content of all their smartphones is identical.
–– The teacher is now certain that there will be no 

confusion caused by different data and graphs. He/
she can fully concentrate on the properties of the 
normal distribution expressed by the graph.

–– Then the students can start experimenting and be 
certain that they can at any moment return to the 
initial stage defined by the QR code. This makes them 
feel at ease with their experiments. They are aware 
that their mistakes can be easily corrected by starting 
their calculations from this specified point.

–– The teachers are also in a more comfortable position 
than when using for example computers in a network. 
Technological problems are easier to resolve, e.g. 
by replacing the calculator with another one. It is 
therefore suggested to have a few spare functioning 
calculators. As a result, the delays caused by 
technological difficulties are minimal.

Figure 1: Normal distribution and its QR code.

Figure 2: Transferred normal distribution to a smartphone.
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3  Conclusions 
Calculators can simplify the teachers’ role in their 
Mathematics classrooms under a crucial condition: They 
are applied in accordance with the principles of active 
learning. It means that their function remains supportive 
and does not become the goal of learning. Activities 
performed with their use would therefore concentrate on 
analyzing the properties of the objects and intensifying 
the students’ comprehension.

At the same time, technology can enrich education by 
introducing realistic problems. Most textbook problems 
use simplified parameters (small integers). These are 
remnants from the times when all calculations were done 
manually. Using more complex numbers would slow 
down the classroom processes. Now, the problems can use 
data which are closer to those used in science, technology 
and economics – as big and complex as demonstrated by 
the Saint Louis Arch.

Information Technology minimizes the time necessary 
for completion of operations and allows students to 
concentrate on their learning (see also Muller, Buteau, 
Klincsik, Perjési-Hámori & Sarvári, 2009). Naturally, the 
input to such problems should be preprocessed by the 
teacher otherwise it could result in an even bigger waste 
of time. The case of Classwiz shows a way to do this in a 
speedy and easy manner.

All this means that the future of Mathematics 
education can benefit from IT in classrooms presuming 
the educators’ creativity and good will (Dostál & Kropáč, 
2017; Verma, Stoffová & Illés, 2018).
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