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Abstract: When students respond rapidly to an item dur-
ing an assessment, it suggests that theymay have guessed.
Guessing adds error to ability estimates. Treating rapid
responses as incorrect answers increases the accuracy of
ability estimates for timed high-stakes summative tests
like the ACT. There are fewer reasons to guess rapidly in
non-timed formative tests, like those used as part of many
personalized learning systems. Data from approximately
75 thousand formative assessments, from 777 students at
two northern California charter high schools, were ana-
lyzed. The accuracy of ability estimates is only slightly im-
proved by treating responses made in less than five sec-
onds as incorrect responses. Simulations show that the ad-
vantage is related to: whether guesses are made rapidly,
the amount of time required for thoughtful responses, the
number of response alternatives, and the preponderance
of guessing. An R function is presented to implement this
procedure. Consequences of using this procedure are dis-
cussed.

Keywords: response times, ability, personalized learning

How quickly a student solves an academic task pro-
vides information about the student’s response strategy.
Rapid responding suggests little cognitive effort has been
used (Wise, 2017). Luce (1986) provides a detailed account
of research in cognitive science laboratories up until the
mid-1980s. De Boeck and Jeon (2019), Kyllonen and Zu
(2016) and Ratcliff, Smith, and McKoon (2015) provide
more recent reviews of this literature.

Academic assessments are very different from these
laboratory tasks. A goal of many modern rigorous assess-
ments is to tap deep knowledge, requiring students to use
deep levels of processing (Craik & Lockhart, 1972). Reach-
ing a response may require that the students go through
several thoughtful steps. High-stakes summative tests like
the SAT and ACT allow students about one minute to an-
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swer each question, on average. In high-stakes timed tests
like these, students are encouraged to use response strate-
gies to increase their scores. For the SAT and ACT this in-
cludes guessing for students who run out of time:

Your score on the test will be based only on the number of ques-
tions that you answer correctly; there is no penalty for guessing.
Try to answer every question within the time allowed for each
test. (ACT Inc, 2018, p. 4)

Wise and colleagues (e.g., Wise & DeMars, 2006; Wise &
Kong, 2005) describe measures for saying a student has
not spent enough time to be judged to have expended
sufficient cognitive effort. They argue that this can occur
in tests where there is little motivation for students to
perform well. These students can score well below their
true ability. This can have ramifications for teachers and
schools because while some assessments are low-stakes
for students, they can be high-stakes for teachers and
schools.

It is likely that if somebody expends little cognitive ef-
fort throughout a test that the person’s overall scorewill be
low. For this paper it is assumed that students are not re-
warded for lack of effort and therefore this lowmark is ap-
propriate. But what happens if somebody rapidly guesses
on just a couple of items? Some of these guesses will likely
be correct and some will likely be incorrect. If the re-
sponses are true guesses then these chance events add er-
ror to the ability estimates. Wright (2016) showed for high-
stakes ACT Math data that treating all rapid responses as
errors (TARRE) increased the accuracy of the ability esti-
mates. He used ten seconds for the threshold for saying
that test-takers had or had not expended sufficient cogni-
tive effort on that item. Thegoal of the current research is to
test if TARRE also improves ability estimates for non-timed
formative assessments and to explore this across several
areas. The TARRE procedure is summarized as follows:

1. Define threshold (e.g., quicker than 5 seconds, quicker
than 95% of responses for that item).

2. If a response time is less than the threshold, treat as an
incorrect response even if it was answered correctly.

3. Aggregate responses as normal.

https://doi.org/10.1515/edu-2019-0004


Daniel B. Wright, Response Times | 57

An R function that implements the algorithm is pre-
sented in the Appendix B with examples.

Why Study Formative Assessments

Students take many formative assessments and in some
school systems these outnumber summative assessments.
During the past few decades it has become common for
students to use computer systems to help them to learn
part of their curriculum (for critical historical discussions,
see Cuban, 2001; Ferster, 2014; Wright, 2018). This allows
students some control over the content and the pace of
their learning. This is often called self-regulated or per-
sonalized learning (e.g., Arney, 2015; Bjork, Dunlosky, &
Kornell, 2013; Horn & Staker, 2015; Murphy, Redding, &
Twyman, 2016; Panadero, 2017). Students typically study
information in a module and then take a brief assessment
to estimate how well they know the module’s content. A
key aspect of personalized learning is that students should
only progress to the next module if they have mastered
the current module. Therefore estimating knowledge well
is important, though the consequences of these scores are
not as high-stakes for the individual test-taker as for most
summative tests.

These personalized learning assessments are different
inmanyways from tests like the SAT andACT. The SAT and
ACT are summative tests that are influential for college ad-
missions and scholarships; are fixed-time tests; are com-
posed of items that have been field tested with hundreds
of thousands of students; take in total several hours; and
are taken under tightly controlled settings. Each of these
aspects is different from the typical circumstances when a
student is doing a personalized learning assessment.

There are several reasons why a student might rapidly
respond inapersonalized learning context. First, theques-
tionmay tap superficial and rapidly accessible knowledge.
If the item is: “What is the Spanish word for tree?” and
the first option is árbol, a student with knowledge of Span-
ish might rapidly answer this without even looking at the
other alternatives. This type of question should be fairly
rare on most tests as item developers are encouraged to
write questions that tap more in-depth knowledge in or-
der to assess whether the student has mastered the mate-
rial (Herman& Linn, 2014). The second reason is similar to
what happens in timed high-stakes tests when the student
runs out of timeandguesses because there is nopenalty. In
non-timed formative tests students will have less incentive
to do this, but they may want to rush off to a class or lunch
or whatever else the student believes is more important
than this assessment. Third, some students may quickly

glance at an item and based on this initial impression be-
lieve that theywill not be able to figure out the answer, and
so they guess. Ideally formative tests shouldbedesigned to
entice students to think about even difficult items beyond
this initial impression. Thoughtful incorrect responses can
be valuable for learning (Metcalfe, 2017).

1 Study 1: Empirical Test of TARRE
with Formative Assessments

1.1 Methods

Datawere gathered for one year from twoNorthern Califor-
nia BayArea Charter high schools. The personalized learn-
ing systemusedat these schools is called Summit Learning
and is described in detail at https://www.summitlearning
.org/. The assessments are divided into six subject areas:
History (26%of the assessments),World Languages (13%),
Science (22%), English (18%), Mathematics (21%), and Ex-
peditions (≪ 1%). The Expedition assessments are not ex-
amined here. Table 1 shows some of the characteristics of
the sample. Demographic differences in response times,
called speed gaps, are discussed in Wright (in press).

Students have several hours each day available to
spend on this system. This means that each student takes
many of these assessments for each of the topic areas and
therefore there are a large number of assessments. There
are data for 74,804 of these assessments. The personalized
learning system reports a score out of ten to the student.
Providing the score is at least eight, the student decides
whether to progress to further modules. This threshold
was chosen by the software developers; the consequences
of this choice are discussed later in this paper. If the score
is less than eight correct, the student is not given this op-
tion andmust re-do the module. Only twenty nine percent
of assessments were taken just once, so for most assess-
ments the student has already been assessed on the mod-
ule.

The items for each assessment are randomly chosen
from evolving test banks that vary in size by module. The
items were created by the same educators who developed
the content in themodules, not professional item develop-
ers. The item bank is large enough so that most items will
not have been previously seen by students who take the
assessmentmultiple times, but somemay. All items are in-
cluded in these analyses as all are used in the systemwhen
estimating mastering. The items are four-alternative mul-
tiple choice questions (i.e., the test-taker chooses among
four alternative answers for each item). This format, as

https://www.summitlearning.org/
https://www.summitlearning.org/
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Tab. 1: Percentages for some of the demographics characteristics of the 777 students.

School A = 54% B = 46%
Gender Females = 44% Males = 56%
Grade 9th = 25% 10th = 27% 11th = 25% 12th = 24%
Ethnicity Asian = 26% Black = 2% Hispanic = 37%

White = 17% Two or more races = 17%
American Indian, Alaska or Hawaii Native, or other Pacific Islander < 1%

opposed to free response, is used to ensure immediate
and accurate feedback for students. The response time is
recorded by the amount of time spent in total on each item,
combining times if the student comes back to an item.
The responses are recorded in integer values. A very small
number (0.08%) of times in the data set registered as neg-
ative, 0, or 1 second time. After consultation with the en-
gineers at Summit Learning it was determined that these
were recording errors and these times are treated as miss-
ing. This is a very small percentage, but having any errors
detected suggests that there may be others. It is expected,
if so, that the percentagewould be small. The softwarewas
written by engineers from a well-known technology com-
pany (Facebook) and it is being used by more than 380
schools in the US.

1.2 Analytic Plan

The assessments considered here have ten items and the
items are randomly chosen from pools of items for each
module. There are several ways to estimate ability, but for
transparency purposes the online personalized learning
system (Summit Learning) uses the number of correct re-
sponses (other methods are shown in Appendix B). Here
the sum of the number of correct responses will be com-
pared with and without treating all responses less than
different thresholds as incorrect responses. For example,
if the threshold is 7 seconds, all the responses faster than
7 seconds will be treated as incorrect responses and there-
fore not contribute to the sum of correct responses.

Following Wright (2016), leave-out-one-item cross-
validation will be used to compare TARRE and the tradi-
tional methods. This involves using the sum of nine of the
ten items to predict the probability of the tenth one be-
ing answered correctly. The following logistic regression
is used:

logit
(︁̂︁Pri)︁ = ln

(︃ ̂︁Pri
1 −̂︁Pri

)︃
= β0 + β1sumi (1)

where the probabilities are assumed to follow a binomial
distribution. The procedure is as follows:

1. For each of the 10 positions in which an item can ap-
pear:
(a) Traditional:

i. Sum the number of correct responses of the
remaining nine items.

ii. Use this sum to predict the response on the
chosen item using a logistic regression (alter-
natives exits, for example, using a probit re-
gression or a more flexible curve).

iii. Record the fit of the model.
(b) TARRE:

i. For the remaining nine items, change any val-
ues with an associated response time that
is less than the threshold to an incorrect re-
sponse.

ii., iii., iv. Repeat i., ii., iii. from above.
2. Compare the fit of the matched pairs of models

There are several ways to compare the fit of logistic re-
gressions. Many of these take into account the number of
people in the sample and themodel complexity. One set of
approaches¹ are information criteria (IC):

IC = −2 · log-likelihood + k · npar , (2)

where log-likelihood is the log-likelihood, npar is the num-
ber of parameters in the model, and k is a penalty invoked
for different complexities. Popular values for this penalty
are k = 2 for An (or Akaike’s) Information Criterion (AIC)
and k = ln(n) for the Bayesian Information Criterion (BIC).
Discussion of the differences between these is in Hastie,
Tibshirani, and Friedman (2009). Because the models be-
ing compared here use the same number of students and
each just uses a single predictor variable, different values
of k, and therefore different ICs basedon eqn. 2,will lead to
the same conclusions aswill using the log-likelihood value
itself. The log-likelihood statistic from each logistic regres-
sion is used here. Higher values for this mean the model
fits better. If the log-likelihood of the model using TARRE

1 The equations are often presented differently, for example multi-
plying these by the sample size. The equation shown here is based on
the R function AIC.
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minus the log-likelihood for the traditional procedure is
positive, this shows a TARRE advantage. If the difference
is negative it is a TARRE disadvantage.

1.3 Results

1.3.1 Univariate Time and Accuracy

Approximately 1% of the response times (7,856 of 747,451
times) were longer than ten minutes. Figure 1 shows that
the log of the response times is approximately normally
distributed, thoughwith differences at the extremes. Some
of the differences at the low end may relate to the discrete
measurement of the data and rapid guessing. Differences
at the high end may be related to students doing an unre-
lated task (e.g., going to the bathroom). For the purposes
of this paper response time is dichotomized at the thresh-
old so very long response times are not treated differently
from those lasting only a minute.

The proportion accurate for each subject area, overall,
were:

History: 130,717 correct of 191,990, or 68%,
World Language: 64,912 correct of 98,710, or 66%,
Science: 108,602 correct of 163,560, or 66%,
English: 88,071 correct of 134,150, or 66%,
Mathematics: 98,861 correct of 157,020, or 63%.

Thus, the mathematics assessments have the lowest accu-
racy.

Each individual student’s assessment is made from
ten different items that are randomly chosen from item
banks that continue to evolve. Because these are only ten
items long the aggregate measures are less reliable than if
they were longer. The 95% confidence interval for getting
8 of 10 correct usingWilson’s method, as recommended in
(Agresti, 2002, p. 16), is 4.90 to 9.43, so quite wide. Cron-
bach’s α, calculated across all assessments using item po-
sition to demarcate the different items,was .56. Thiswould
be considered low for many purposes and is in part be-
cause of having only ten items.Using the Spearman-Brown
prophecy formula, if using twenty of these items the pre-
dicted α would be .72, and with fifty items it would be .87.
Having about ten items is common for formative tests, but
is less than most summative tests.

1.3.2 Relation between Accuracy and Response Time

Figure 2 shows the proportion correct for each of the five
subject areas for each amount of time. The proportion

accurate increases from extremely rapid responses to a
plateau for most subject areas at about 7–8 seconds. The
accuracy for mathematics items continues to increase un-
til about 15 seconds. The accuracy for the mathematics
items is lower than for the other subjects for each of the
responses less than about 25s.

1.3.3 Comparing TARRE and the Traditional Methods

Analyses were done separately for each of the five subjects
areas (History, World Languages, Science, English, and
Mathematics). Consistency across these five sets of com-
parisons is used to judge whether TARRE consistently pro-
vides more accurate estimates of ability for these forma-
tive assessments. Following the procedures in the Analytic
Plan, the TARRE advantages were calculated for each sub-
ject area for each possible threshold from 3 seconds to 10
seconds.² The mean log-likelihood value for each of these
sets of tenwas found and themean difference between the
TARREmethod and the traditional method is shown in Ta-
ble 2. Positive values, highlighted in yellow, show when
the TARRE estimates had on average higher log-likelihood
values and therefore were more accurate estimates of abil-
ity (a TARRE advantage). To assess the consistency of this
advantage within each set of ten, paired t-tests were con-
ducted.All thosewith t values above 2.262 (the t associated
with anupper-tail in theprobability distributionof approx-
imately .025 for df = 9) are in italics. If a single cut-offwere
required for all tests, having it at 4 or 5 seconds seems ap-
propriate to maximize accuracy. This choice is discussed
further in the General Discussion.

1.3.4 How Many Test-Takers does this affect?

Table 3 shows the number of tests that have scores of eight
or more (i.e., “passing”) depending on the cut-off used.
The change in percentage is fairly small, but if these stu-
dents only reach this level, which is assumed to denote
mastery, by guessing, having them re-do the module may
be in their best interest. If five seconds is used as the
threshold, about 1% more students would be required to
re-do the module. If students learn that they are not re-
warded for rapid guesses it is hoped that they will take
more time and make more thoughtful responses. Even if

2 Analyses were conducted with thresholds up to 30 seconds, and
also for treating long responses as incorrect responses. For all of these
additional evaluations, the traditional procedure had a better fit than
the TARRE procedure. These analyses are available from the author.
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Fig. 1: Distribution of the logged response time. Panel (a) shows the histogram and panel (b) the quantile-quantile plot with the normal
distribution line superimposed (10,000 of the points are shown).

Tab. 2: The mean difference in log-likelihood R2 for the TARRE ap-
proach minus the mean for the traditional approach for the different
thresholds. Highlighted cells show a TARRE advantage and those
which are also statistically significant at p < .025 are shown in
italics.

History Languages Science English Math
< 3s 4.19 1.07 2.59 5.02 4.19
< 4s 10.27 3.30 8.41 13.20 10.62
< 5s 7.03 -3.31 7.70 10.22 11.31
< 6s -11.57 -18.78 -2.26 -1.18 8.30
< 7s -36.60 -44.73 -20.75 -17.05 1.05
< 8s -67.59 -72.75 -44.09 -34.40 -6.26
< 9s -97.77 -102.89 -66.06 -53.70 -14.54
< 10s -128.08 -130.86 -88.20 -73.00 -28.10

the student is incorrect, thinking about the problem can
help them to learn (Metcalfe, 2017). Ideally any changes
would stop students just glancing at items and believing
that they cannot figure out the answer, and entice them to
spend some time thinking about the item if only for a few
extra seconds.

2 Study 2: Simulation of TARRE
Simulation methods are used to explore when the TARRE
advantage is likely to occur. Simulation methods allow in-
sight into how the data might have arisen and to test alter-

Tab. 3: The number of tests with scores less than eight or greater
than/equal to eight, and this percentage, for the different thresh-
olds for treating responses as incorrect.

# < 8 # ≥ 8 % ≥ 8
None 46,843 27,961 37.38
< 3s 46,881 27,923 37.33
< 4s 47,148 27,656 36.97
< 5s 47,863 26,941 36.02
< 6s 48,987 25,817 34.51
< 7s 50,501 24,303 32.49
< 8s 52,059 22,745 30.41
< 9s 53,634 21,170 28.30

< 10s 55,127 19,677 26.30

native what-if questions (Feinberg & Rubright, 2016; Gen-
tle, 2009).

The first step with a statistical simulation is to decide
which probability distributions to use. The assumption
here is that the response time distribution is a mixture of
at least two distributions. One is a log-normal distribution
(alternatives to this, like the Weibull distribution, could
also be used, see Palmer, Horowitz, Torralba, and Wolfe,
2011) for the thoughtful responses. A second distribution
is for rapid guesses. With the ACT data (Wang & Hanson,
2005; Wright, 2016) exploratory analyses revealed a clear
bi-modal distribution with about 7% of the sample being
rapid responses around five seconds, fewer at around 6–9
seconds and then the main log-normal distribution. The
distribution for the data here (Figure 1b) has more low
(and high) times than predicted by the log-normal distri-
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Fig. 2: The relationship between the proportion correct for each subject area with the response time up to 30s.

bution, but because of the discrete nature of these data it
is difficult to see if the distribution is bi-modal. Further,
because the rapid responses constitute only a small pro-
portion in this data set, analytic procedures to detect mix-
tures of distributions (e.g., those procedures inmixtools,
Benaglia, Chauveau, Hunter, and Young, 2009) did not
identify a separate distribution for these rapid responses.
A distribution was created to be similar to those in Fig-
ure 1 by combining a log-normal distribution and a uni-
form distribution. The excess of slow times comparedwith
the log-normal is not included here because there was not
a drop in accuracy for these so they do not appear to be
guesses. Further, very slow times are not treated different
from those just above the threshold for the current analy-
ses.

2.1 Methods

Four variables are examined in this simulation. First, as
noted earlier, a suggested strategy in high-stakes fixed-
time tests that do not penalize incorrect answers is for
students to guess rapidly, but for a non-timed test stu-
dents have less incentive to guess rapidly. Twouniformdis-
tributions used to simulate guessing behavior are RT ∼
U[1, 30] for the non-timed version and RT ∼ U[1, 10]
for the fixed-timed version. Second, the items on tests can

require different amounts of thought. Those that require
deep knowledge (rigor) may average twice the amount
of time that items only requiring superficial, easily ac-
cessible, knowledge. Two log-normal distributions will be
examined. Their means are 30 and 60 seconds, which
correspond to ln(30) = 3.40 and ln(60) = 4.09 for the
logged distributions. The standard deviationswill be 1 and
ln(60)/ln(30) = 1.20, so that the ratio of the mean to the
standard deviation remains constant for the logged dis-
tributions. Occasionally (about 3 in every 10,000 trials)
these will result in a value less than one second or a neg-
ative log. The absolute values of these logs were taken so
that both the thoughtful responding distribution and the
guessing distribution have the same theoretical minimum
(1 second). Third, the number of alternatives presented
to students can vary. The values of 2 (which corresponds
with a TRUE/FALSE item), 4 (as typicalwithmanymultiple
choice items including those considered in Study 1), and 8
(this is an arbitrary larger number so that the likelihood of
guessing accurately is low, but not zero) are used. Finally,
how often students guess is varied from 0% to 50% in in-
crements of 5%. Thus, there were 2 × 2 × 3 × 11 = 132 dif-
ferent conditions. There were 5,000 replications for each
of these, so 660,000 trials in total.

A number of variables are not examined in this simu-
lation. For example, item variability is not taken into ac-
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count nor is that student ability will likely be related to
guessing likelihood. Also, 10 item assessment with 1000
students are fixed for this simulation. Using around ten
items is common with formative assessments, but is less
than used with most summative assessments. Only the
very basic method of treating responses that are less than
ten seconds as incorrect and a similarly basic method of
summing correct responses to estimate accuracy are used.
More involved methods are shown in Appendix B.

The expectation is that the TARRE advantage will be
most pronounced when there is a high likelihood of accu-
rate rapid guesses and that non-guesses will be slower so
not often treated as incorrect. This corresponds with be-
ing encouraged to guess rapidly (the U[1, 10] condition),
having few thoughtful responsesnear the threshold so that
these are not removed (the log-normal for thoughtful re-
sponding with the higher mean), having few response al-
ternatives (the advantage should be largest when there are
only two alternatives), and having lots of guessing (here
50% guessing is the maximum). Because this is a simu-
lation the true ability of each student is known. Ability is
based on a randomuniformly distributed variable from .01
to .99. Itemdifficulty is the square root of a randomvariable
drawn from a uniform .01 to .99 distribution. The TARRE
advantage will be measured by correlating student true
ability with the estimates from the TARRE procedure and
the traditional procedure. The difference between these
(un-transformed) values is stored and the mean of them
reported.

The code for this simulation is in the Appendix A and
at https://github.com/dbrookswr/tarre (the file Simu-
lationStudy2.r).

2.2 Results and Discussion

Figure 3 shows the relationship of the correlation between
true ability (known since this is a simulation) with abil-
ity estimates using the TARRE procedure and true ability
with estimates from the traditional procedure. Most of the
data points are near the diagonal, showing that the two
procedures usually yield similar levels of accuracy. How-
ever, when they differ the TARRE procedure usually per-
forms better as evident from the data points above and to
left of the red diagonal line. Of the 4.44% trialswhere there
is more than a .1 difference between the two correlations,
all have the TARRE correlation higher than the traditional
correlation. Thus adopting this procedure has little risk of
producing substantiallyworse estimates for the conditions
examined.

Themain effects for the TARRE advantagewere as pre-
dicted and are shown in Figure 4. The units of the effects
are differences in Pearson correlations. When the mean
time of the thoughtful responses was short (30 seconds)
the advantage was only 0.0029, but when it was long (60
seconds) the advantage was 0.0122. This was the smallest
main effect for any of the four variablesmanipulated. If the
differences between these distributions are made larger,
the corresponding differences in the TARRE advantage be-
come larger (e.g., 10 seconds versus 60 seconds).When the
rapid guesses ranged from U[1, 10] the mean TARRE ad-
vantage was 0.0193 and there was a TARRE disadvantage
(-0.0042) when it was U[1, 30]. The number of alternatives
had the predicted effect, with the TARRE advantage largest
when there were only two alternatives (0.0284), next when
four alternatives (0.0010), and an an overall TARRE disad-
vantage when there were 8 alternatives (-0.0068). When
the preponderance of guessingwas 0% there was a TARRE
disadvantage (-0.0143). This stayed negative until guess-
ing was above 25%, and reached a TARRE advantage of
0.0487 when the guessing preponderance was 50%.When
all thesemain effectswere included in themodel to predict
the difference, themean for the thoughtful responding dis-
tribution had a p-value of .03. The ps associated with the
other three variables were all p ≪ .001.

3 General Discussion
Rapid responses on formative tests, like those examined in
Study 1, have near chance levels of accuracy. The length of
time takenmeans students are not expendingmuch cogni-
tive effort on these questions and the accuracy rates sug-
gest that many of these responses are guesses. What can
and should be done?

It is worth differentiating summative and formative as-
sessments. The following are three priorities for each of
these types of assessment.

Summative
1. Accurately measure ability.
2. Require rigor/assess mastery.
3. Thoughtful responding.

Formative
1. Thoughtful responding.
2. Require rigor/assess mastery.
3. Accurately measure ability.

https://github.com/dbrookswr/tarre
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Fig. 3: Scatter plot of the correlations between true ability and the estimates from the TARRE procedure with the correlations between true
ability and the estimates for the traditional procedure. Ten thousand points shown. The red line shows the diagonal where the correlations
are the same.
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Notice the priorities are they same; all three of these
are valuable for both types of assessment. But the priori-
ties are in opposite orders for the two types of assessment.

For summative tests accurately measuring ability–or
whichever construct is being measured–is the primary
goal. Because TARRE improves ability estimates of timed
summative tests (Wright, 2016), the main reasons not to
implement this for these tests is if it is too complicated
to explain to students and, for very high-stakes tests, any
negative consequences resulting from how test prepara-
tion companies would adapt to the change. It is important
to recognize that there are several methods to make scores

more accurate (e.g., adding more items, field testing items
in order to removeweak ones), and it is best consider these
together.

For formative tests the priorities are in the opposite
order. The goal of these assessments is to help students
to learn. Thoughtful responding during assessments is
one of the key aspects of the testing effect (Roediger &
Karpicke, 2006). This is particularly important for schools
that use a lot of personalize learning and formative assess-
ments. Accurate ability estimation is worth pursuing, but
any changes should also improve student learning. Sup-
pose that the administrators were to change their policy
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so that all rapid responses were treated as incorrect. Stu-
dents would likely be told this. This might negatively af-
fect students wanting to answer the tree-árbol example
rapidly, but arguably item developers may wish to tap less
superficial knowledge anyway. The second group of fast
responders–those wanting to finish the assessment and
get to recess–would likely accept not getting credit for ac-
curate guesses since they have already prioritized recess
over the assessment. The third group are thosewho glance
at the item and believe that they will not be able to answer
the question and therefore guess. Using TARRE should en-
courage this group to spend more time on these questions
and hopefully to think more about them.

Table 2 suggests thresholds from 4–7 seconds would
improve estimates for the data in Study 1. The optimal
threshold will vary by assessment and perhaps by sample.
The choice of threshold should be consistent across test
type to avoid confusing test-takers (assuming that they are
informed about the procedure). It is important to consider
how students change their behavior and evaluate how this
affects ability estimation.

It is worth considering how these formative assess-
ment scores are used. One goal of many personalized
learning systems is that students shoulddemonstratemas-
tery at each level before progressing to the next level.
For the present discussion, assume that the true state of
mastery is binary; somebody either has mastered the con-
tent or has not. No assessment can perfectly demarcate
these states; therewill be errorswhere the assessment says
someone has mastered the material when the person has
not (called a false alarm) and errors where the assessment
says the person has not mastered the material, when in
fact the person has. These are shown in Table 4.

For ten-item tests, like used in the data here, the per-
centage of different types of errors will depend on how
high the threshold is for declaring if a student has passed.
If the threshold is low, say getting only 5 of 10 correct,
the percentage of times incorrectly declaring someone has
mastered the concept (a false alarm) will be higher than if
the threshold is 9 of 10 correct. But with this high thresh-
old, many students, who have mastered the concepts, will
fail (misses). The costs of these different types of errors
should be considered (Swets, Dawes, & Monahan, 2000).
False alarms in an educational context mean students ad-
vance to part of the curriculum that they are not prepared
for. If the false alarm rate is high the system should in-
clude ways to check for fundamental knowledge that may
be missing (i.e., to catch these errors subsequently) and
require these students to learn this material (e.g., revert to
theseprevious “passed” levels). If thepercentageofmisses
is high (equivalently if the hit rate is low), studentsmay get

discouraged with the system and be spending too much
time on simple tasks without being challenged with more
rigorous material. The relative costs of these will vary with
context.

Tab. 4: Different types of outcomes for an assessment. Hits and
correct rejections are correct outcomes, false alarms and misses
are errors.

True State
Not Mastered Mastered

Test says
Not passed Correct Rejection Miss
Passed False Alarm Hit

The hits, misses, correct rejections, and false alarms
can be combined to create several measures of the diag-
nostic value of the assessment for that sample. People of-
ten discuss the hit rate (HR) and the false alarm rate (FAR).
HR is the number of hits divided by the total number of stu-
dents who havemastered the material, i.e., HR = hits/(hits
+ correct rejections). FAR is the number of false alarms
divided by total number of students who have not mas-
tered the material, i.e., FAR = false alarms/(false alarms +
misses). Inmedical contexts theHR is often called sensitiv-
ity and one minus the FAR called the specificity. This area
is called signal detection theory and a common statistic
is called d’. It is the z score associated with HR minus the
z score associated with the FAR: d′ = zHR − zFAR. d′ val-
ues above zeromean ratings aremore accurate than guess-
ing and negative d′ values means ratings are less accurate
than chance. The hope is that the d′ values are high, at
least above 1.

A popular visual plot is the receiver operating charac-
teristic (ROC) plot. ROCs show the hit rate with the false
alarm rate. Because researchers often have only a small
number of HR and FAR pairs, some assumptions about the
decision process are made and ROCs plotted in an ideal-
ized form. Figure 5 is an example. Two ROCs for two d′

statistics are shown. These show what the HR and FAR
would be depending on the threshold that the assessment
developers choose to say someone has passed. Suppose
that they say the highest acceptable FAR is 50%. They can
use this to decide the threshold and this would show them
the expected HR. For the ROC with d′ = 1.5 this is .93 and
for the d′ = 1.0 this is .84. Conceptually the choice of the
passing threshold, for the tests considered in Study 1: 8 out
of 10, involves moving along a single ROC. With this con-
ceptualization, the choice between TARRE and the tradi-
tional method would involve moving from one ROC to an-
other. The TARREmethod is more diagnostic (a higher d′).
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False alarm rate

Hit rate
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Fig. 5: The receiver operating characteristics (ROCs) for two tests.
One has d′ = 1.5 (the one that is better able to assess student
mastery) and one has d′ = 1.0 (assesses mastery better than
chance, d′ = 0, but not as well as the other test). If chosing the
threshold so that the false alarm rate is .50, the ROC with d′ = 1.5
has a higher hit rate (.93) that does the ROC with d′ = 1.0 (.84).

If keeping the same threshold (and assuming these ideal-
ized ROC forms are correct) thiswould slightly raise theHR
and slightly lower the FAR.

3.1 An Alternative

Consider a more radical proposal: allow students to re-
place a question they believe that they do not know the
answer of with three (other numbers could also be used)
newquestions, but the students have to answer all of these
replacement questions correctly to get credit for the origi-
nal one. This would require students to think about their
metacognitive state regarding the question, one of the key
21st century skills (Griffin & Care, 2015) and could prevent
guessing. Theywould also have to think about the chances
of answering the replacement questions correctly. This
type of thinking, trying to imagine oneself as a thinking
machine and predicting outcomes, is central to the skills
Minsky (2019) argues are critical for student growth. Clark
(2016) argues thatwe are, in essence, predictionmachines.
The number of replacement items (e.g., two or three), how
to choose replacement questions (e.g., they shouldbe from
the same content area, but this could be difficult if the
question bank is not large), and whether students would
be limited in how often they could use this option would
need to be decided by test administrators and after further
testing.

Another groupof people interested in ability estimates
from assessments are researchers conducting studies on
how ability is related to other variables. For them, mea-

surement accuracy is of the utmost importance. Any im-
provements in ability estimates are welcomed, but if the
effects are small the value of the improved estimatesmight
not be worth over-complicating the results sections of arti-
cles. At presentmany articles still use the sumof correct re-
sponses even thoughestimates from IRT (Mair, 2018) could
be more accurate. Authors, editors, and reviewers might
not feel the psychometric advantages of these more com-
plex procedures are worth explaining to their audience for
non-methodological papers. If researchers wish to explain
TARRE to their audiences, they could use the leave-out-
one item cross-validation procedure shownwith Study 1 to
test if the ability estimates are improved for their data set,
and then use TARRE if appropriate. Further research on
TARRE should be conducted and if the findings continue to
show improved estimates in different situations then this
method should be widely recommended in research con-
texts.

All research has limitations. It is important to stress
that Study 1 was conducted with students from two high
schools that are not typical. They use personalized learn-
ing systemsmore than is typical and the students are from
a part of the United States (silicon valley) where computer
use–at almost all ages–is very common. Further, these for-
mative assessments were all produced by one organiza-
tion, and they are continuing to develop the test batter-
ies and how they are administered. Study 2 also has lim-
itations. While some of the key factors were manipulated,
it is important that future studies examine others, the co-
variation among these, and estimate what values for these
parameters are associated with different testing condi-
tions. The covariation between true ability and likelihood
of rapid guessing is particularly important. In complex la-
tent variable models, like van der Linden’s (2011) hierar-
chical model, the covariation between these, and other la-
tent constructs, is estimated. It is important to stress that
the format of this assessment is very different than that
used for Wright (2016), and yet for both treating rapid re-
sponses as incorrect improved the ability estimates. The R
function and the use of leave-out-one cross-validation al-
lows researchers to check for their owndata to see if TARRE
improves their estimates. It is encouraged that people do
this and report any TARRE advantages and disadvantages
for different thresholds.

Response times are a window into the cognitive pro-
cesses of the student (Luce, 1986). Beyond helping to esti-
mate ability, the response times can tell students and their
teachers about how they are answering questions. If teach-
ers know which questions students spend the most time
on, this can be helpful for their lesson plans. Response
times are one of the most readily available forms of para-
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data in online tests and are available for each item from
many software systems. They are a valuable resource that
should be used. Finding that treating rapid responses as
incorrect can improve ability estimates is oneway inwhich
this resource can be used.
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Appendix A: Code for the Simulation
The following is the code used for the simulation. It is also available at https://github.com/dbrookswr/tarre (the file
SimulationStudy2.r). If you adapt this code for your own research please email the author.

set.seed(1643)

replics <- 5000

n <- 1000

k <- 10

mu <- c(log(30),log(60))

#sd included here in paras

unifs <- c(10,30)

nafc <- c(2,4,8)

guess <- seq(.0,.5,.05)

paras <- as.data.frame(matrix(ncol=9,

nrow=replics*length(mu)*length(nafc)*length(guess)*length(unifs)))

paras[,1] <- rep(1:(length(mu)*length(nafc)*length(guess)*length(unifs)),

replics)

paras[,2] <- rep(1:replics,each=nrow(paras)/replics)

paras[,3] <- rep(rep(mu,replics),each=nrow(paras)/(replics*length(mu)))

paras[,4] <- paras[,3]/log(30)

paras[,5] <- rep(rep(unifs,length(mu)*replics),

each=nrow(paras)/(replics*length(mu)*length(unifs)))

paras[,6] <- rep(rep(nafc,replics*length(mu)*length(unifs)),

each=nrow(paras)/(replics*length(mu)*length(nafc)*length(unifs)))

paras[,7] <- rep(rep(guess,replics*length(nafc)*length(mu)*length(unifs)),

each=nrow(paras)/(replics*length(mu)*length(nafc)*

length(guess)*length(unifs)))

colnames(paras) <- c("Trial","replic","mu","sd","unifs","nafc",

"guess","rtarre","rtrad")

for (i in 1:nrow(paras)) {

ability <- runif(n,.01,.99)

itemdiff <- sqrt(runif(k,.01,.99))

probright <- (matrix(rep((ability),k),ncol=k) +

matrix(rep((itemdiff),n),byrow=TRUE,ncol=k))/2

rt <- exp(matrix(rnorm(prod(dim(probright)),

paras$mu[i],paras$sd[i]),ncol=ncol(probright)))

rt[probright < paras$guess[i]] <-

runif(sum(probright < paras$guess[i]),1,paras$unifs[i])

probright[probright < paras$guess[i]] <- 1/paras$nafc[i]

probright[probright < 1/paras$nafc[i]] <- 1/paras$nafc[i]

correct <- matrix(rbinom(n*k,1,probright),ncol=k)

trad <- rowSums(correct)

correctTARRE <- correct

correctTARRE[rt<5] <- 0

tarre <- rowSums(correctTARRE)

paras[i,8:9] <- c(cor(tarre,ability),cor(trad,ability))

}

https://github.com/dbrookswr/tarre
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Appendix B. Examples using tarre with R
The tarre function uses R’s functional programming capabilities (Wickham, 2015). The function itself is succinct:

tarre <- function(x,respt,fabil,ftarre,...){

newx <- ftarre(x,respt,...)

abil <- fabil(newx,respt,...)

return(abil)}

This is a minimal function that allows much flexibility because the user can input their own functions to define how
rapid responses are treated and the scoring algorithm. The flexibility is at the cost that users will need some R skills.
This is why the examples are provided here. This function and examples are located on GitHub at https://github.com/
dbrookswr/tarre. Readers are encouraged to add more examples.

The user needs to create functions for deciding which responses to treat as incorrect (the ftarre slot above) and
how to create the ability estimates (fabil). Both of these functions can use the response accuracy matrix x and the
response time matrix respt, and the four examples below illustrate this. The assumption is that the columns for these
will refer to the item numbers, but this is only a requirement if made so by the user’s functions. Other parameters can
also be passed to these functions because of the ellipses (the ...) in the tarre function, and this is shown in Example
#2 below. If there is a particular approach that is common in your organization you can make this approach the default
for your version of tarre (if you do this on GitHub, please create a new function with a different name).

For ease, the same toy data set will be used for each example. x is the response accuracy matrix (1 correct, 0 incor-
rect) and respt are the response times in seconds. In this example, as response time increases the probability of being
accurate increases, and then at the median the probability of being accurate plateaus. These data are designed only to
illustrate the function, not to mimic any particular situation. This toy data set was created with the following:

set.seed(1984)

x <- matrix(nrow=100,ncol=10)

ability <- matrix(runif(100,0,.4)[row(x)],ncol=10)

nability <- apply(ability,1,mean)

LT <- abs(rnorm(1000,60,20))+2

probacc <- (LT<median(LT))*LT/105 +

(LT>=median(LT))*median(LT)/105 + c(ability)

x <- matrix(rbinom(1000,1,probacc),ncol=10)

respt <- matrix(LT,ncol=10)

These examples are included to illustrate the versatility of the function. Their inclusion is not an endorsement.

Example #1
This example uses a single threshold for guessing and returns the student sums for the new responsematrix. This is the
method used with the high school student data analyzed in Study 1 and would be easily understood by students if it
were implemented. Because both the accuracy and the response time matrices are named in ftarre and fabilwithout
defaults, it is importantwhenwriting these that either both are included as input variables or ... is used to show further
parameters could be included. The second approach is done in the sumall function below. Just a single variable of the
ability estimates are returned. The user can return more complex objects (e.g., multiple ability estimates per student);
it is whatever is returned by the user-defined fabil function.

ltthresh <- function(x,respt,thresh=10)

{x[respt<thresh] <- 0; return(x)}

sumall <- function(x,...) rowSums(x,na.rm=TRUE)

https://github.com/dbrookswr/tarre
https://github.com/dbrookswr/tarre
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ex1 <- tarre(x,respt,sumall,ltthresh)

Example #2
The ACT data, discussed earlier, were fit using a single threshold and the ability estimates, the θs, from item response
theory (IRT) models (Wright, 2016). Here the two-parameter logistic (2PL) model is estimated using the mirt package
(Chalmers, 2012). The mirt function requires that the data are in a data frame. The defaults (other than minimizing
output) are used for this function. The fscores function estimates a single latent variable; the 1 in the mirt function
call means only a single latent variable is estimated per student. The mirt package can estimate many different IRT
models and any of these can beusedwith the tarre function. Adifferent threshold, 15 seconds, is passed to the ltthresh
function to show how this can be done.

suppressPackageStartupMessages(library(mirt))

ltthresh <- function(x,respt,thresh=10)

{x[respt<thresh] <- 0; return(x)}

irtabil <- function(x,...)

fscores(mirt(as.data.frame(x),1,itemtype="2PL",verbose=FALSE,

technical=list(message=FALSE)))

ex2 <- tarre(x,respt,irtabil,ltthresh,thresh=15)

Example #3
Because the time required for a thoughtful response will vary by item (Wise, 2017), it can be worth having different
thresholds for each item. For this example the threshold is defined by whether the response is faster than 10% of the
times for that item. Wise and Ma (2012) refer to this as the normative threshold method. With 100 students in this toy
example and R’s default method for calculating quantiles, the quickest ten responses would be treated as incorrect.
This requires that that the cells of the response accuracy and response time matrices refer to the same unique trials. If
students see different items, as with adaptive testing, more columns would be needed and missing values would need
to be dealt with by the user defined functions. The ability estimates are calculated here using van der Linden’s (2011)
hierarchical model as implemented in the LNIRT package (Fox, Klotzke, & Entink, 2019). This package is in version 0.4
and therefore some of the syntax may change. The function LNIRT assumes the response times have been logged. If the
user wanted only the slowest 5% to be treated as errors, tarre(x,respt,vdlabil,botperc,bottom=.05) could be used.
There are lots of parameters that could also be passed to the LNIRT function.

suppressPackageStartupMessages(library(LNIRT))

botperc <- function(x,respt,bottom=.1){

x[respt < matrix(apply(respt,2,quantile,bottom),

ncol=10,nrow=100,byrow=TRUE)] <- 0

return(x)}

vdlabil <- function(x,respt)

return(LNIRT(log(respt),x)$Post.Means$Person.Ability)

ex3 <- tarre(x,respt,vdlabil,botperc)

Example #4
This example ismore complex and is used to illustrate howmore involved functions canbeusedwith the tarre function.
It is worth noting that the usefulness of the succinct tarre function is mostly conceptual here, stressing the separation
of the TARRE and ability estimation processes, than for making the computations simple. Anyone using it for an ex-
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ample this complex an example would need good knowledge of R. A brief review of the model used in this example is
warranted.

The diffusion model (Ratcliff, 1978) is the most extensively studied model within cognitive psychology that incor-
porates response time and response accuracy. It has been valuable for understanding how people make simple de-
cisions. It can also be applied to more complex decisions, like how students answer questions. There are several ex-
tensions to the basic model. Here, for this toy problem, the EZ-diffusion model (Wagenmakers, van der Maas, & Gras-
man, 2007) will be used because of its computational ease. It is available in Wagenmakers et al.’s appendix and at:
http://www.ejwagenmakers.com/2007/EZ.R. There are no plans in the foreseeable future to remove this web page (Wa-
genmakers, personal communication). The function is called get.vaTer. Becausewithin cognitive psychology the diffu-
sionmodel has beendeveloped for simple decisions, here the ftarre functionwill treat long response times as incorrect.
This might be appropriate in an educational context if it was believed that long delays suggest students may be looking
up answers on the internet. The user function is called slow. Slow response times will be based on the residuals, the
eijk, of variance component model that includes random variables for the student (u1j) and item (u2k). This is often
called a multilevel or cross-classified model (Goldstein, 2011; Wright & London, 2009).

ln(RTijk) = β0 + u1j + u2k + eijk (3)

This means that an item is deemed slow based on both other students’ times on the item and how slow the time is for
the particular student. This can be estimated using the lmer function from the lme4 package (Bates, Mächler, Bolker,
& Walker, 2015). Responses with eijk values above one standard deviation are treated as incorrect. This requires re-
structuring the data into a “long” format, as is necessary for many multilevel functions.

The input for the get.vaTer function requires the percentage correct (Pc), the mean response time for correct an-
swers (MRT) and the variance of response times for correct decisions (VRT) for each student. Pc values of 0, .5, and 1 result
in errors so are changed in the code below. With the typical cognitive psychology laboratory study these values do not
often occur because most responses are accurate and each subject may take part in hundreds of trials so that there will
usually be some errors. For the response times, the un-transformed values are used. The function calculates several
parameters for each person, the first of which is the drift rate, and this is what the code below returns. The drift rates
are used to estimate each student’s ability.

source("http://www.ejwagenmakers.com/2007/EZ.R")

suppressPackageStartupMessages(library(lme4))

slow <- function(x,respt){

RTs <- c(respt)

studID <- rep(1:nrow(respt),ncol(respt))

itemID <- rep(1:ncol(respt),each=nrow(respt))

rs <- matrix(resid(lmer(log(RTs)~1 + (1|studID) + (1|itemID))),ncol=10)

x[rs > 1*sd(c(rs))] <- 0

return(x)}

EZabil <- function(x,respt){

Pc <- apply(x,1,mean,na.rm=TRUE)

Pc[Pc==0] <- .05

Pc[Pc==1] <- .95

Pc[Pc==.5] <- rbinom(sum(Pc==.5),1,.5)/10 + .45

RTright <- respt

RTright[x==0] <- NA

MRT <- apply(RTright,1,mean,na.rm=TRUE)

VRT <- apply(RTright,1,var,na.rm=TRUE)

EZabil <- vector(length=length(Pc))

for (i in 1:length(Pc))

http://www.ejwagenmakers.com/2007/EZ.R


72 | Daniel B. Wright, Response Times

EZabil[i] <- get.vaTer(Pc[i],MRT[i],VRT[i])[[1]]

return(EZabil)

}

ex4 <- tarre(x,respt,EZabil,slow)

Table 5 shows the correlations among the estimated abilities from these different procedures and the true ability,
known because the datawere simulated and the datawere the same for all examples. Because therewere only ten items,
none of the methods provide very accurate estimates.

Ex. 1 Ex. 2 Ex. 3 Ex. 4
Ex. 2 0.69
Ex. 3 0.85 0.73
Ex. 4 0.85 0.58 0.68

True Ability 0.65 0.53 0.52 0.60

Tab. 5: Correlations among the ability estimates from the different R examples. The examples use the following methods for treating re-
sponses as incorrect responses: less than ten and fifteen seconds (#1 and #2), less than 90% (#3), and with a residual greater than one
standard deviations. The ability estimates were found by summing, the 2PL IRT model, van der Linden’s hierarchical model, and the EZ dif-
fusion model. True ability is known since the data are simulated.
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