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Abstract 

This paper investigates the dynamic changes in the interdependence structure and strength among 

ten financially significant stock markets across Asia, America and Europe, in the context of recent 

global public health events and regional conflicts. Employing the Vine-copula model, our analysis 

reveals that major events have varying impacts on the interdependencies across different regions. 

The COVID-19 pandemic shifted European markets from a symmetric dependence structure to an 

asymmetric structure that is more sensitive to negative news. Conversely, the impact on Asian 

markets is the opposite, and the interdependence between China’s stock market and other major 

markets shows a decreasing trend. The Russia-Ukraine conflict had minimal impact on stock 

markets excluding Russia. Moreover, stock markets exhibit stronger co-movements during market 

downturns. Our research provides new insights into how global events impact stock market 

interdependencies and underscores the importance of region-specific strategies in managing 

financial risks and maintaining market stability. 
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1. Introduction 

Amidst the gradual subsidence of the COVID-19 pandemic, coupled with the resurgence of global 

terrorism, heightened tensions in Europe, and the rise of China, the world is witnessing a shift 

towards a multipolar world order. With the advent of economic globalization and financial 

integration, risks have evolved from individual institutional risks to global risks (Freixas et al., 2015), 

driven by the complex interconnections among financial institutions and markets. Simultaneously, 

the increasingly frequent occurrence of global sudden events has brought significant uncertainty, 

triggering panic among investors and impacting the financial stability of various countries. Financial 

risks, stemming from sudden events, have been characterized by their rapid transmission, broad 

scope, and high destructiveness (Silva, 2017, Babaei, 2023). Furthermore, these events can lead to 

reductions in consumption and investment as well as disruptions in trade and supply chains (Yigit, 

2023), resulting in substantial fluctuations and contagion effects in stock markets.  

  The rapid pace of economic globalization and financial integration has significantly increased the 

interdependence among international stock markets. In recent years, unprecedented shocks—

ranging from the COVID-19 pandemic to geopolitical conflicts such as the Russia-Ukraine war—

have profoundly reshaped market dynamics, leading to pronounced volatility spillovers across 

regions. These crises expose the limitations of traditional linear models and underscore the necessity 

for more sophisticated frameworks that can capture the complex, nonlinear, and high-dimensional 

dependency structures that characterize modern financial systems. 

  Extant literature has demonstrated significant volatility spillovers in stock markets (Forbes, 2002, 

Quinn, 2008 and Balli, 2021), and public health incidents can even precipitate regional financial 

crises (Bennet et al., 2015). Following the outbreak of COVID-19 in 2020, relevant studies have 

consistently shown the intensification of volatility spillover effects (Mazur et al., 2021, Zhang, 2023), 

leading to a significant increase in risk levels (Albulescu 2021). During the pandemic, investor herd 

behavior further intensified (Chang, 2020, Xing, 2024). Amidst the economic recovery from 

COVID-19, the Russia-Ukraine military conflict broke out in 2022. Previous research into similar 

conflicts has revealed that geopolitical crises and localized conflicts heighten market uncertainty 

and risk aversion (Hudson et al., 2010, Guidolin et al., 2015). The Israel-Palestine conflict negatively 

affected stock market transactions in the short term (Hassouneh et al., 2018) and intensified spillover 

effects in financial markets (Cui et al., 2024). The Russia-Ukraine conflict has drawn significant 

scholarly attention due to its profound impact on the EU. Research indicates that developed markets 

experienced more significant negative impacts compared to emerging markets (Boubaker et al., 

2022). Furthermore, markets closer to the Russia-Ukraine conflict zone and those with lower market 

efficiency were more adversely affected by the conflict (Kumari et al., 2023). Other types of sudden 

events such as air disasters triggered investor panic, affecting stock prices (Kaplanski and Levy, 

2010), while natural disasters, such as China's Wenchuan earthquake, exhibit short-term negative 

impacts on the stock market (Humphrey and Carter, 2016). 

There are two main methods to measure volatility spillover effects: The first is the traditional 

single model, such as the Granger causality test (Granger, 1987), Vector Autoregressive model (VAR, 

Sims 1980), and Generalized Autoregressive Conditional Heteroscedasticity model (GARCH, 

Bollerslev 1986). While single models are straightforward to comprehend and interpret, they often 

exhibit poor fitting performance with nonlinear relationships. The second approach, the composite 

model, overcomes these limitations by combining multiple single models. Composite models are 

widely used in the financial domain due to their flexibility, multidimensionality, and scalability. For 
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instance, Jondeau and Rockinger (2006) developed the Copula-GARCH approach, and Karmakar 

(2019) utilized the CGARCH-EVT-Copula model to predict the value at risk (VaR) of the returns. 

CoVaR, which is based on VaR (Adrian and Brunnermeier, 2016), is widely combined with other 

models to gauge the strength of volatility spillovers (Karimalis & Nomikos, 2018, Yan et al., 2022). 

Copula models, including pair-copula (Sklar, 1959), Time-varying copula (Patton, 2002), and Vine 

copula models (Aas, 2009), are utilized to capture nonlinear and heavy-tailed risk correlations, 

demonstrating excellent performance with high-frequency financial data. 

In this context, our study further investigates the impact of recent major events on dependency 

structure and strength of financially important stock markets, particularly concerning the application 

of measure dependency for high-dimensional, high-frequency data. We extend the existing literature 

by examining volatility spillover effects among stock markets in Europe (France, Germany, 

Netherlands, Russia, Switzerland and the UK), the US, and Asia (China, Japan and South Korea). 

These countries have largest and most active stock market, accounting for over 75% of the global 

stock market capitalization. The stability and developmental trends of these stock markets play a 

crucial role in the global economy and financial markets. Furthermore, we employ the latest data, 

time spanning from 2016 to 2024, this study utilizes the structurally flexible Vine copula to 

investigate the dependency structures, and also employs dynamic SJC copula for robustness tests 

and research on dependency strength.  

Our empirical findings demonstrate that major events have varying impacts on the 

interdependencies across different regions. The COVID-19 pandemic shifted the symmetric 

dependence structure of European stock markets to an asymmetric structure that is more sensitive to 

negative news. While it significantly increased the dependence strength of Asian markets, moving 

from tail asymmetric to symmetric dependence. The US and European markets experienced a 

decrease in dependence strength, while China’s stock market exhibited a declining trend in 

dependence with other markets. Tail dependence analysis shows that stock markets exhibit stronger 

co-movement during downturns than upturns, potentially leading to herd behavior during crises. We 

also find that the R-Vine model outperforms D-Vine and C-Vine models in modeling volatility due 

to its flexibility in high-dimensional data analysis. 

Our research has both theoretical and practical significance. Theoretically, it reveals how global 

events differently affect stock market interdependencies and market behavior, offering insights into 

the latest developments and trends of financial markets. Practically, the insights from this research 

are invaluable for investors and regulators, highlighting the need for region-specific risk strategies, 

particularly in managing the stronger co-movement in markets during downturns. The proven 

efficacy of the R-Vine model in high-dimensional volatility analysis offers a practical tool for more 

accurate market risk assessments. 

The remainder of the paper is organized as follows: Section 2 proposes hypotheses based on the 

existing literature. Section 3 describes the methodology. Section 4 introduces the sample and the 

data. Section 5 presents the empirical results. Finally, Section 6 concludes. 

 

2. Literature Review and Hypotheses 

The interconnectedness of global stock markets has long been a critical area of study in financial 

economics, with implications for portfolio diversification, risk management, and the transmission 

of financial shocks. Numerous studies have demonstrated that the interconnectedness of stock 

markets is not randomly distributed, but exhibits a clear regional clustering. This phenomenon of 
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spatial regional clustering can be attributed primarily to the increased frequency of information 

exchange between countries that are geographically proximate, resulting in the strengthening of their 

economic and cultural ties. Tobler's first law of geography states that things that are geographically 

close are more related (Tobler, 1979), and this principle is reflected in financial markets. 

Geographical proximity fosters market linkages through a variety of mechanisms. It has been 

demonstrated that geographical proximity can serve to reduce transaction costs, accelerate the 

dissemination of information, and enhance the efficiency of capital markets (Li et al., 2022). 

Moreover, empirical evidence suggests a correlation between geographical proximity and 

technological similarity, as well as stronger economic ties among countries (Haddad et al., 2024). 

Furthermore, the phenomenon of geographical proximity is frequently accompanied by a reduction 

in cultural distances. This cultural affinity, in turn, fosters market linkages by impacting investor 

behavior and market sentiment (Lucey & Zhang, 2010). 

Some scholars used spatial econometric methods to provide empirical evidence for regional 

agglomeration. The research found that a country's economic (especially bilateral trade) and 

geographical relationships significantly affect the co-movement of its stock markets (Asgharian et 

al., 2013), and shocks can be transmitted between different markets through foreign direct 

investment (FDI), trade channels and geographical proximity (Djemo & Eita, 2024). Although some 

studies have pointed out that financial linkages measured by FDI may be able to explain market 

volatility better than purely geographical distance (Fernández-Avilés et al., 2012), and that the 

sensitivity of stock return correlations to geographical distance may be limited to shorter distances 

(Eckel et al., 2011), or that economic factors may be more sensitive than geographical factors in 

some cases (e.g. spillover of investor sentiment) (Jiang & Jin, 2021), but spatial dependence itself 

remains pervasive. 

Regional clustering is further reinforced by region-specific studies. Asian financial markets, 

especially East Asia, exhibit significant interconnectedness, and these links have strengthened 

during crises (Tam, 2014; Kim et al., 2015). Research on G20 financial networks also reveals clear 

regional clustering characteristics, such as the Asia-Pacific, European and American regions, and 

finds that emerging markets are increasingly becoming key nodes in the network (Zhang et al., 2019). 

Dynamic spatial model analysis shows that the global stock market's connectivity has evolved over 

time, and the connectivity within different regions (e.g., Europe) may be stronger than that across 

regions (Heil et al., 2022), and regional markets are simultaneously affected by global and 

intraregional factors (Sugimoto & Matsuki, 2019). Information factors such as media sentiment 

divergence can also have significant negative spatial spillover effects, affecting geographically 

adjacent markets (Zhang & Chen, 2025). In summary, the interconnectedness of the stock market is 

not only driven by geographical proximity, but also by non-geographical factors such as economics, 

technology, culture, and sentiment. Despite the complex and diverse driving factors, the 

interconnectedness of the stock market does exhibit obvious regional agglomeration characteristics. 

The spillover effects of volatility between stock markets are more pronounced during market 

downturns, i.e., negative news spreads more quickly and strongly, intensifying market panic. 

Research confirms this phenomenon, pointing out that markets usually react more strongly to 

downside risks (negative shocks) than to upside risks (positive shocks) (Maneejuk et al., 2025; 

Mensi et al., 2024). Market sentiment, particularly panic, has been identified as a pivotal factor in 

this regard. For instance, an increase in the VIX (fear index) is frequently accompanied by an 

increase in cross-market risk spillovers (Huang et al., 2023). Empirical evidence further confirms 
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this, spillover effects from the Chinese market to the US stock market increased significantly during 

the outbreak of the COVID-19 pandemic (Vuong et al., 2022). In particular, in energy and 

agricultural markets, which are closely linked to the real economy, negative news is more likely to 

trigger concerns about economic recession, exacerbating investor panic and overreaction (Maneejuk 

et al., 2025). The spillover effects of extreme market conditions are stronger than those in stable 

periods, and the sensitivity to negative news is particularly prominent (Khalfaoui et al., 2023; Mensi 

et al., 2024). The phenomenon of “bad news travels fast” is not only reflected in the stock market's 

sensitivity to negative news significantly outweighing its sensitivity to positive news (Baek et al., 

2020), but also in the speed of price adjustment. For example, the short selling mechanism can 

accelerate how quickly stock prices incorporate bad news (Gao & Ding, 2019). Even in other 

markets such as real estate, market network connectivity also significantly increases during periods 

of negative shocks (market downturns), and information spreads faster. This phenomenon is 

attributed to the amplifying effects of information dissemination efficiency and herd behavior in 

such negative environments (Xu et al., 2024). 

Building on the above theoretical and empirical findings, our paper proposes the following two 

research hypotheses: 

Hypothesis 1: Stock market linkages exhibit regional clustering. 

Hypothesis 2: Volatility spillover effects are more pronounced during market downturns. 

 

3. Methodology 

3.1 Copula 

Copula functions establish a connection between marginal and joint distributions and are used to 

describe the dependence relationships among random variables. Copula functions effectively 

characterize the dependencies between random variables, encompassing not only linear and 

nonlinear correlations but also symmetric and asymmetric correlations, as well as upper and lower 

tail dependencies. 

The concept of Copula functions stems from Sklar's theorem (1959): For a 𝑝-dimensional random 

variable 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑝)
𝑇
 , where 𝐹  represents the marginal distributions 

𝐹1(𝑥1), 𝐹2(𝑥2),⋯ , 𝐹𝑝(𝑥𝑝), there exists a Copula function 𝐶(∙) such that: 

𝐹(𝑥1, 𝑥2, ⋯ , 𝑥𝑝) = 𝐶 (𝐹1(𝑥1), 𝐹2(𝑥2),⋯ , 𝐹𝑝(𝑥𝑝))  (1) 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑝) = 𝐶 (𝐹1(𝑥1), 𝐹2(𝑥2),⋯ , 𝐹𝑝(𝑥𝑝)) ×∏𝑓𝑘(𝑥𝑘)

𝑝

𝑘=1

(2) 

𝐶(𝐹1(𝑥1), 𝐹2(𝑥2),⋯ , 𝐹𝑝(𝑥𝑝)) represents the probability density function of the Copula function, 

where𝑓𝑘(𝑥𝑘) denotes the probability density function of the marginal distribution of the variable 

𝑥𝑘(𝑘 = 1,2,⋯ , 𝑝). The Vine-Copula model is an extension of the Copula function model. 

3.2 Vine-Copula 

To better handle asymmetric and nonlinear dependence relationships, scholars Aas, Czado, Frigessi, 

and Bakken (2009) proposed the Pair-Copula model. The Pair-Copula model decomposes the 
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multidimensional Copula function into a product of several bivariate Copula functions. The Vine-

Copula model, developed based on the Pair-Copula model and graph theory, adopts a tree structure 

to combine multiple bivariate Copula functions. The tree structure created by Vine-Copula, known 

as the "Vine graph," was introduced by Bedford (2002). The Vine structure includes nodes, branches, 

and trees. Each node signifies a variable, each branch represents the Copula function between 

variables, and each tree consists of branches connecting two nodes. The Vine-Copula model is a 

method used to model the joint distribution of multivariate random variables, to describe the 

dependencies between variables. This model provides improved flexibility and interpretability, 

offering a clearer depiction of dependencies among multidimensional random variables. 

Assuming 𝑋 = (𝑋1, 𝑋2, …𝑋𝑑)  is a d  -dimensional random vector with marginal distribution 

functions 𝐹1, 𝐹1, …𝐹𝑑 ,  𝐶(𝑢1, 𝑢2, … , 𝑢𝑑)  is its Copula function. The Vine-Copula model 

represents the Copula function using the product form conditional probability distributions in a tree-

like structure, given by:  

𝐶(𝑢1, … , 𝑢𝑑) =∏ ∏ 𝐶𝑖,𝑗∣𝑝𝑖,𝑗(𝑢𝑖 , 𝑢𝑗)

𝑑

𝑗=𝑖+1

𝑑

𝑖=1

  (3) 

Here  𝐶𝑖,𝑗∣𝑝𝑖,𝑗  represents the conditional Copula function between 𝑋𝑖  and 𝑋𝑗  on the tree 

structure, where 𝑝𝑖,𝑗 indicates their parent node on the tree. In the tree structure, nodes represent 

variables, edges represent dependencies between variables, and each node's edge represents its 

dependency on the parent node. The Vine-Copula model can accurately describe the dependency 

relationships among multidimensional random variables due to the flexibility and interpretability of 

the tree structure.  

Vine structures are commonly categorized into three types: C-Vine, D-Vine, and R-Vine. 

a. C-Vine Copula 

In a C-Vine structure, each tree has only one central node, exhibiting a star-like characteristic. The 

joint probability density function of the C-Vine Copula is given by: 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑑) = [∏  

𝑑

𝑘=1

𝑓𝑘(𝑥𝑘)] × 

{∏  

𝑑−1

𝑗=1

∏ 

𝑑−𝑗

𝑖=1

𝐶𝑗,𝑗+𝑖|𝑖,⋯,𝑗−1[𝐹(𝑥𝑗 ∣ 𝑥1,⋯,𝑗−1), 𝐹(𝑥𝑗+𝑖 ∣ 𝑥1,⋯,𝑗−1)]}  (4) 

Here, the tree is indexed by 𝑗 = 1, 2,⋯ , 𝑛 − 2, and each edge in the tree is represented by 𝑖, 

𝑓𝑘(𝑥𝑘)is the marginal density function of the k-th variable. 

b. D-Vine Copula 

In the D-Vine structure, each node has at most two branches, exhibiting a chain-like characteristic. 

The joint probability density function of the D-Vine Copula is given by: 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑑) = [∏  

𝑑

𝑘=1

𝑓𝑘(𝑥𝑘)] × 

{∏  

𝑑−1

𝑗=1

∏ 

𝑑−𝑗

𝑖=1

𝐶𝑖,𝑖+𝑗|𝑖+1,⋯,𝑖+𝑗−1[𝐹(𝑥𝑖 ∣ 𝑥𝑖+1,⋯,𝑖+𝑗−1), 𝐹(𝑥𝑖+𝑗 ∣ 𝑥𝑖+1,⋯,𝑖+𝑗−1)]}   (5) 
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c. R-Vine Copula 

The R-Vine structure is flexible, allowing for multiple nodes. The joint probability density function 

of the R-Vine Copula is: 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑑) = [∏  

𝑑

𝑘=1

𝑓𝑘(𝑥𝑘)] × 

{∏  

𝑑−1

𝑗=1

∏𝑪𝑗(𝑒), 𝑘(𝑒) ∣ 𝐷(𝑒)

𝑒∈𝐸𝐼

[𝐹(𝑥𝑗(𝑒) ∣ 𝑥𝐷(𝑒)), 𝐹(𝑥𝑘(𝑒) ∣ 𝑥𝐷(𝑒))]}  (6) 

The Vine-Copula model employs Kendall's rank correlation coefficient as weights and estimates 

the related parameters using maximum likelihood estimation. Kendall's rank correlation coefficient 

is a non-parametric statistical method used to measure the degree of correlation between two random 

variables. It examines the consistency of the trend in changes between pairs of variables. If the trend 

is consistent, it indicates a positive correlation; otherwise, it suggests a negative correlation. A value 

of -1 represents a perfect negative correlation, 0 indicates no correlation, and 1 signifies a perfect 

positive correlation. 

Let (𝑋1, 𝑌1)  and (𝑋2, 𝑌2)  be independently and identically distributed random variables. The 

definition of Kendall's rank correlation coefficient 𝜏 is given by:  

𝜏 = 𝑃[(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) > 0] − 𝑃[(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) < 0]  (7) 

Here, 𝜏 represents Kendall's rank correlation coefficient. If 𝜏 > 0, it indicates a consistent trend 

between X and Y, implying a positive correlation. If 𝜏  < 0, it suggests an inconsistent trend, 

indicating a negative correlation. If 𝜏 = 0, it implies that it is not possible to determine whether X 

and Y correlated. 

3.3 Tail dependence 

The tail dependence coefficient refers to the probability of occurrence of extreme values in one or 

more random variables when another or other random variables are in extreme states within a 

multivariate random variable setting. In other words, tail dependence explores the degree of 

correlation among different assets when extreme losses or extreme gains occur simultaneously. This 

study employs the limit form of conditional probabilities to measure tail dependence, with specific 

definitions for the upper tail dependence coefficient 𝜏𝑈 and the lower tail dependence coefficient 

𝜏𝐿 as follows: 

𝜏𝑈 = 𝑙𝑖𝑚
𝑢→1−

 𝑃(𝑌 > 𝐺−1(𝑢) ∣ 𝑋 > 𝐹−1(𝑣)) = 𝑙𝑖𝑚
𝑢→1−

 
𝐶(1 − 𝑢, 1 − 𝑣)

1 − 𝑣
(8) 

𝜏𝐿 = 𝑙𝑖𝑚
𝑣→0+

 𝑃(𝑌 ≤ 𝐺−1(𝑢) ∣ 𝑋 ≤ 𝐹−1(𝑣)) = 𝑙𝑖𝑚
𝑣→0+

 
𝐶(𝑢, 𝑣)

𝑣
(9) 

Where X and Y are two random variables, and 𝐹(𝑋), 𝐺(𝑌) are the distribution functions of X and 

Y. 

The time-varying Copula function modifies the static Copula function by replacing the constant 

correlation coefficient 𝜏 with a time−varying correlation coefficient  𝜏𝑡. This modification is used 

to measure the dynamic upper and lower tail dependence between two variables. 𝜏𝑡
𝑈 represents the 

upper tail correlation coefficient, and 𝜏𝑡
𝐿  represents the lower tail correlation coefficient. The 

parameter evolution equations are given by: 
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{
 
 

 
 
𝜏𝑡
𝑈 = 𝛬(𝜔𝑈 + 𝛽𝑈𝜏𝑡−1

𝑈 +
𝛼𝑈

𝑞
∑  

𝑞

𝑖=1

|𝑢𝑡−𝑖 − 𝑣𝑡−𝑖|)

𝜏𝑡
𝐿 = 𝛬(𝜔𝐿 + 𝛽𝐿𝜏𝑡−1

𝐿 +
𝛼𝐿

𝑞
∑  

𝑞

𝑖=1

|𝑢𝑡−𝑖 − 𝑣𝑡−𝑖|)

(10) 

In equation (10),  
xe1

1
x


Λ  is the modified logistic function, and 𝑢 and 𝑣 are from SJC-

Copula model. The SJC-Copula model is an extension of the Joe-Clayton Copula model, the time-

varying expression for the Joe-Clayton Copula given by: 

𝐶𝐽𝐶(𝑢, 𝑣; 𝜏𝑡
𝑈 , 𝜏𝑡

𝐿) = 1 − {1 − {[1 − (1 − 𝑢)𝜅]−𝛾 + [1 − (1 − 𝑣)𝐾]−𝛾 − 1}
−
1
𝛾}

1
𝜅

(11) 

In equation (11), 𝜅 =
1

log2(2−𝜏𝑡
𝑈)，𝛾 = −

1

log2 𝜏𝑡
𝐿 ； 

The expression for the time-varying SJC Copula model is:  

𝐶𝑆𝐽𝐶(𝑢, 𝑣; 𝜏𝑡
𝑈, 𝜏𝑡

𝐿) =
1

2
[𝐶𝐽𝐶(𝑢, 𝑣; 𝜏𝑡

𝑈 , 𝜏𝑡
𝐿) + 𝐶𝐽𝐶(1 − 𝑢, 1 − 𝑣; 𝜏𝑡

𝑈 , 𝜏𝑡
𝐿) + 𝑢 + 𝑣 − 1] (12) 

 

4. DATA 

Our analysis is conducted within a time window starting from January 2016 to February 2024. We 

divide the timeline into three stages based on two major events (as shown in Figure 1). The World 

Health Organization announced the COVID-19 epidemic as a Public Health Emergency of 

International Concern on January 30th, 2020; therefore, we define the first division point as January 

30, 2020. Russia initiated a special military operation against Ukraine on February 24th, 2022, 

marking the start of a major conflict in Europe. This date serves as our second division point: 

February 24, 2022. The first period represents a relatively stable phase; the second corresponds to 

the peak COVID-19 period; and the third encompasses the Russia-Ukraine conflict alongside the 

lingering impact of COVID-19. Our study compares the changes in the interdependence of stock 

markets across these three periods to analyze the impact of major exogenous shocks on financial 

markets.  

 

Figure 1. Timeline stage division 

We selected representative stock indices from ten major global economies based on their financial 

significance, guided by Statista's 'Leading Financial Centers Worldwide 2023' report (as delineated 

in Table 1). The selection of representative stock indices for each country is based on previous 

literature and the World Financial Annual Report of 2023 by Guotai Junan Securities. These chosen 

stock indices exhibit broad market coverage, strong representativeness, high accuracy, and sustained 

continuity. Data on the daily closing prices of each country's stock index were retrieved from the 
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website: cn.investing.com. 

Table 1. Representative stock indices from 10 countries 

 Country Country Abbreviation Stock Index Stock Index Abbreviation 

1 China CN Shenzhen Component Index SZI 

2 France FR CAC40 Index CAC 

3 Germany DE DAX30 Index DAX 

4 Japan JP Nikkei 225 Index N225 

5 Netherlands NL AEX Index AEX 

6 Russia RU MOEX Russia Index MOEX 

7 South Korea SKR KOSPI Index KOSPI 

8 Switzerland CH SWI20 Index SWI 

9 United Kingdom UK FTSE 100 Index FTSE 

10 United States US S&P 500 Index SPX 

We adjust the daily closing price data collected for each stock index for extreme and missing 

values. Considering variations in trading schedules and market closure days across nations, trading 

days with three or more missing values were excluded. We fill the remaining missing values using 

a binomial moving average method. The resulting preprocessed data were visualized in Figure 2. By 

observing the line charts revealed similarities in trends among stock indices, this phenomenon, 

known as volatility contagion, is driven by both global factors (such as changes in the global 

economic environment) and local factors (such as political and economic changes). Major 

exogenous events, such as the onset of the COVID-19 pandemic and the Russia-Ukraine conflict, 

led to significant downturns in stock indices across various countries. 

 

Figure 2. Line chart of daily closing prices for each stock index 

Due to the non-stationarity of the original daily closing price data, we apply a logarithmic 

difference transformation and use the resulting series as returns for modeling. Table 2 presents 

descriptive statistics for the return series of ten stock market indices across three distinct periods. 

Our findings reveal that during the COVID-19 pandemic period, not all stock indices exhibited a 

uniform trend in mean returns. For instance, the mean returns of the China SZI, Netherlands AEX, 

and Korea KOSPI increased compared to the first period. Conversely, the mean returns of other 

indices decreased. Specifically, the volatility, as measured by the standard deviation of returns, 

increased for all ten indices during the crisis period. The returns of most stock indices exhibit 

negative skewness (skewness < 0) and leptokurtosis (kurtosis > 3). During the pandemic, kurtosis 

2016 2017 2018 2019 2020 2021 2022 2023 2024

 SZI          SPX

 FTSE      N225

 MOEX     AEX

 SWI         DAX

 CAC        KOSPI
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values reached high values but subsequently fell back to lower levels later. This may be attributable 

to widespread quantitative easing policies adopted by most countries, which temporarily boosted 

stock market liquidity and activity. During the Russia-Ukraine conflict period, the MOEX index's 

returns exhibited positive skewness and leptokurtosis. The uncertainty and negative effects 

accompanying the war likely contributed to stock market declines, influencing these return 

characteristics. 

Table 2. Descriptive statistical for the return series 

 Stage SZI CAC DAX N225 AEX MOEX KOSPI SWI FTSE SPX 

Mean 

1 -0.0001 0.0003 0.0003 0.0003 0.0003 0.0006 0.0002 0.0002 0.0002 0.0005 

2 0.0007 0.0003 0.0002 0.0002 0.0004 -0.0004 0.0005 0.0002 0.0000 0.0005 

3 -0.0010 0.0003 0.0004 0.0007 0.0003 0.0010 -0.0001 -0.0001 0.0001 0.0003 

Std.D 

1 0.0145 0.0097 0.0099 0.0114 0.0087 0.0091 0.0078 0.0081 0.0082 0.0081 

2 0.0244 0.0163 0.0164 0.0143 0.0145 0.0178 0.0147 0.0120 0.0145 0.0167 

3 0.0126 0.0115 0.0116 0.0110 0.0108 0.0169 0.0104 0.0086 0.0087 0.0117 

Skew- 

ness 

1 -0.716 -0.958 -0.718 -0.595 -0.718 -0.639 -0.842 -0.472 -0.335 -0.918 

2 -0.472 -1.208 -0.810 0.120 -1.030 -2.993 -0.103 -1.384 -1.123 -0.989 

3 -0.163 0.050 0.240 -0.025 -0.164 1.912 0.194 0.079 -0.414 -0.127 

Kurt- 

osis 

1 4.331 8.045 4.448 6.586 4.607 7.222 3.302 2.431 3.165 4.694 

2 1.441 12.572 13.865 4.489 11.930 26.446 6.669 14.627 12.636 14.318 

3 1.780 3.693 4.676 0.398 2.369 32.195 1.890 1.835 2.903 1.487 

Note: This table presents descriptive statistics for the return series of ten stock market indices across three stages. 

Specifically, cells with a white background denote the first stage, representing a stable period. Cells with a light gray 

background indicate the second stage, corresponding to the COVID-19 pandemic period. Cells with a dark gray 

background signify the third stage, identified as the Russia-Ukraine war period. 

 

5. Results 

5.1 Results of Fitting Marginal Distributions 

To capture the volatility clustering and asymmetry in the returns, we employ the ARMA-GARCH 

framework to fit the marginal distributions. We utilize the ARMA model to determine the optimal 

lag order for the conditional mean equation. Then, we compare the results of standard residual 

distributions with normal distribution, skewed normal distribution, T-distribution, skewed T-

distribution, GED distribution, and skewed GED distribution. The ARMA(p,q)-GARCH(1,1)-

skewed Student's t-distribution for the residuals is selected as the optimal model based on parameter 

significance and the minimum AIC principle. We use R Studio to fit the marginal distributions of 

stock index returns in different stages, the model parameters are estimated and summarized in Table 

3.  

The marginal distribution model parameters reveal that the ARCH(𝛼) and GARCH(𝛽) values 

for each series are statistically significant and generally satisfy the stationarity constraint α+β < 1. 

The estimated β values across all return series exceed 0.5, signifying substantial historical influence 

on their yield rates and suggesting volatility clustering phenomena, which is particularly noteworthy 

for the SPX index. Through diagnostic tests on the standardized residuals, including the Ljung-Box 

test for autocorrelation in residuals and squared residuals, and the ARCH-LM test, no significant 

autocorrelation or remaining ARCH effects (heteroscedasticity) were observed. Combining these 

diagnostic results with the AIC values and likelihood estimates, we conclude that the GARCH(1,1)-
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Skewed Student's t model provides a good fit for the return series. 

Table 3．Estimated parameters for the marginal distributions at each stage 

 Stage SZI CAC DAX N225 AEX MOEX KOSPI SWI FTSE SPX 

𝛼 

1 0.0341 0.2662 0.0496 0.1079 0.2352 0.0762 0.0416 0.1386 0.1612 0.2521 

2 0.0708 0.1674 0.1550 0.9224 0.1520 0.1163 0.1639 0.2022 0.1615 0.3934 

3 0.0494 0.1218 0.1270 0.0160 0.0926 0.2885 0.0654 0.1233 0.2806 0.0615 

𝛽 

1 0.9649 0.6744 0.9481 0.8644 0.6463 0.8572 0.9028 0.8060 0.7331 0.7453 

2 0.8973 0.8107 0.8440 0.5224 0.8296 0.8500 0.7779 0.7620 0.8313 0.6056 

3 0.9422 0.8518 0.8654 0.9830 0.9064 0.7105 0.8944 0.8437 0.5831 0.9375 

skew 

1 0.9672 1.0888 0.9744 1.0350 0.9937 1.0537 0.9159 1.0648 1.0085 1.0627 

2 0.9278 0.9697 1.0150 1.1617 0.9816 0.8971 1.0071 0.9719 0.9928 1.0725 

3 1.1114 1.0098 0.9849 0.9374 0.9965 1.0214 1.0388 1.0697 0.9722 1.0565 

shape 

1 4.45 4.41 4.49 3.70 5.52 8.57 4.85 8.64 4.89 3.55 

2 8.37 3.82 3.30 5.25 5.00 4.69 6.19 4.79 4.23 8.30 

3 12.99 6.82 6.16 12.46 4.73 2.70 7.13 10.62 3.53 9.89 

LogLik 

1 2878 3266 3194 3120 3347 3247 3421 3379 3390 3497 

2 1426 1485 1489 1468 1513 1474 1493 1632 1537 1551 

3 1403 1457 1467 1438 1490 1422 1476 1576 1593 1444 

AIC 

1 -5.91 -6.71 -6.57 -6.41 -6.87 -6.68 -7.02 -6.94 -6.96 -7.19 

2 -5.74 -5.98 -5.99 -5.91 -6.09 -5.92 -6.00 -6.57 -6.18 -6.23 

3 -6.01 -6.25 -6.30 -6.17 -6.40 -6.10 -6.34 -6.77 -6.84 -6.20 

LB(4) 

1 0.3964 0.3391 0.1612 0.5597 0.9524 0.4456 0.9992 0.8423 0.3549 0.3904 

2 0.9294 0.3858 0.3154 0.5415 0.1738 0.9580 0.5157 0.1615 0.0902 0.7177 

3 0.9991 0.9515 0.9102 0.8453 0.9863 0.9999 0.9898 0.9950 0.9295 0.9801 

LB2(4) 

1 0.6420 0.6368 0.2402 0.6958 0.9074 0.2677 0.7919 0.7236 0.7742 0.8380 

2 0.1503 0.6987 0.3083 0.6275 0.3945 0.3524 0.7164 0.8823 0.4612 0.6233 

3 0.0828 0.6954 0.3733 0.5273 0.7348 1.0000 0.4929 0.5329 0.3636 0.9556 

ARCH-

LM(20) 

1 0.9899 0.8464 0.0770 0.7946 0.9579 0.3830 0.5798 0.7220 0.7934 0.9313 

2 0.4690 0.9615 0.9224 0.6368 0.8554 0.9615 0.6357 0.9573 0.3923 0.8548 

3 0.8066 0.4374 0.1084 0.2961 0.5322 1.0000 0.2512 0.3684 0.2641 0.7258 

Note: This table represents Estimated parameters for the marginal distributions at each stage. 𝛼 is the coefficient of the 

ARCH term; 𝛽 is the coefficient of the GARCH term; skew and shape are parameters of the skewed-t distribution; 

LogLik stands for the log-likelihood value; LB and LB2 represent the Ljung-Box statistics for testing autocorrelation in 

the residuals and squared residuals, respectively. Specifically, Cells with a white background denote the first stage, 

representing a stable period. Cells with a light gray background indicate the second stage, corresponding to the COVID-

19 pandemic period. Cells with a dark gray background signify the third stage, identified as the Russia-Ukraine war 

period. 

 

5.2 Vine-Copula Estimation Results 

We employ the Vine-Copula methods described in section 2 to analyze the dependence structure 

among stock markets by fitting probability integral transformed residuals. Kendall’s rank correlation 

coefficient serves as the measure of pairwise dependence, and we utilize the maximum spanning 

tree (MST) algorithm to construct Vine-Copula model (specifically, the first tree, T1). The copula 

parameters are estimated using the maximum likelihood method. Subsequently, we identify the 

optimal R-Vine structure and select the best-fitting pair-copula families based on the minimum AIC 

criterion. Table 4 presents the parameters and selected pair-copula families of the first tree for each 

stage. The results indicate that while some countries exhibit consistent interdependence, there is also 

considerable variability in the chosen pair-copula families, the strength of dependence, and implied 



12 

 

tail dependence. 

Table 4. The parameters of the first Copula tree for each stage 

Stage edge Copula par1 par2 tau utd ltd 

1 

5,10 T-Copula 0.58 (0.02) 9.28 (2.95) 0.39 0.13 0.13 

2,3 T-Copula 0.89 (0.01) 8.64 (2.24) 0.70 0.47 0.47 

2,8 T-Copula 0.78 (0.02) 7.32(1.57) 0.57 0.34 0.34 

5,2 T-Copula 0.89 (0.01) 4.11 (0.59) 0.70 0.62 0.62 

5,9 T-Copula 0.78 (0.01) 8.55(1.95) 0.57 0.30 0.30 

5,6 T-Copula 0.41 (0.03) 10.00(2.40) 0.27 0.06 0.06 

7,1 SG-Copula 1.26 (0.03) - 0.21 - 0.27 

7,4 SG-Copula 1.58 (0.05)  0.37 - 0.45 

7,5 SG-Copula 0.91 (0.01) - 0.23 - 0.29 

2 

5,10 Normal-Copula 0.51 (0.04) - 0.34 - - 

5,8 SG-Copula 2.25 (0.11) - 0.56 - 0.64 

2,9 SG-Copula 2.72 (0.14) - 0.63 - 0.71 

3,2 T-Copula 0.89 (0.01) 2.70(0.50) 0.70 0.67 0.67 

5,3 SG-Copula 2.90 (0.15) - 0.65 - 0.73 

5,6 SG-Copula 1.65 (0.07) - 0.39 - 0.48 

4,5 Normal-Copula 0.41 (0.04) - 0.27 - - 

7,1 Normal-Copula 0.37 (0.04) - 0.24 - - 

7,4 T-Copula 0.61 (0.03) 7.06(2.60) 0.42 0.20 0.20 

3 

10,6 Normal -Copula 0.12 (0.05) - 0.08 - - 

2,3 SG-Copula 3.82 (0.21) - 0.74 - 0.80 

5,10 T-Copula 0.57 (0.03) 8.08(2.86) 0.39 0.15 0.15 

2,8 T-Copula 0.76 (0.02) 7.46(1.96) 0.55 0.31 0.31 

2,9 T-Copula 0.79 (0.02) 5.06(1.41) 0.58 0.43 0.43 

7,1 F-Copula 2.20 (0.29) - 0.23 - - 

5,2 SG-Copula 2.95 (0.17) - 0.66 - 0.74 

7,4 SG-Copula 1.61 (0.07) - 0.38 - 0.46 

7,5 F-Copula 1.83 (0.30) - 0.20 - - 

Note: This table presents the parameters of the first Copula tree for each stage. The term "edge" refers to a connecting 

branch within the tree structure. Copula functions include T-copula, SG-Copula, Normal Copula, F Copula, etc. SG-

Copula (Survival Gumbel Copula) is a 180-degree rotation of the Gumbel Copula, characterized by tail symmetry. While 

the T-Copula, Normal-Copula, and F-Copula exhibit tail asymmetry. Parameters Par1 and Par2 represent the first and 

second parameters of the Copula function, respectively. Tau (τ) is the Kendall rank correlation coefficient, utd is the 

upper tail dependence coefficient, ltd is the lower tail dependence coefficient, and the values in parentheses denote the 

standard errors of Copula model parameter estimates. The structural tree is derived from equations. Cells with a white 

background denote the first stage, representing a stable period. Cells with a light gray background indicate the second 

stage, corresponding to the COVID-19 pandemic period. Cells with a dark gray background signify the third stage, 

identified as the Russia-Ukraine war period. 

We utilize the graphical representation of the R-Vine structure (Vine trees) to provide a more 

intuitive visualization of the dependency structure, including the dependence strength (τ) and the 

selected pair-copula families, across the three stages, as illustrated in Figure 3.  

The overall structure exhibits a star-chain configuration, wherein the Netherlands emerges as the 

pivotal nexus of stock market volatility transmission. It serves as a conduit linking European, US, 

and Asian markets. This structural pattern reveals pronounced regional clustering; specifically, the 

interconnectedness between European and U.S. markets is notably tighter compared to their 

connection with Asian markets. The Kendall rank correlation within the EU stock markets exceeded 

0.55 throughout all observed periods, initially presenting a star configuration with symmetrical tail 

dependencies. This evolved into an asymmetric chain structure in the second stage. Despite the UK's 

secession from the EU, its dependency remained significant, with an asymmetric structure. In the 

third stage, with the pandemic's attenuation and ensuing economic revival, the EU’s central node 
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shifted to Switzerland, presenting a star-shaped structure with enhanced dependencies. The 

interdependence between the US and European equities generally maintained a symmetrical 

dynamic. In the second stage, the US stock market experienced a series of trading halts, and average 

interconnectedness with European markets decreased by approximately 12.8% compared to the first 

stage. According to investor behavior theory, global crises elevate market uncertainty, prompting 

investors to seek refuge in safe-haven assets like gold. This behavior diminishes market liquidity 

and amplifies volatility, thereby reinforcing the volatility contagion effect. This dependency 

rebounded towards pre-crisis levels in the third stage. 

Prior to the Russo-Ukrainian conflict, Russia maintained a moderate level of dependency with 

European markets, and the pandemic heightened this dependency. However, subsequent political 

factors and the onset of hostilities led to the severance of economic ties between Russia and Europe, 

resulting in Russia maintaining only a weaker dependency with the US in the third stage.  

Asian markets sustained a stable dependency with European markets, with an uptick during recent 

years. The profound military and political linkages between South Korea, Japan and the US, 

alongside their capitalist frameworks, have cemented their integration with Western markets. Inter-

market connectivity between South Korea and Japan approximately doubled amid the pandemic, 

likely influenced by geographic proximity and pandemic-related lockdowns. Conversely, the 

dependency between China and other countries transitioned from asymmetric to symmetric, 

exhibiting a weakening trend in dependence strength. 

 

Figure 3.  The first tree structure of the Vine-Copula for each stage 

Note: This figure illustrates the Vine-Copula tree structures for three distinct stages. On each edge (connecting branch), 

the Kendall rank correlation coefficient (τ) and the Copula type are presented. Each node represents a country's stock 

market. Stage 1: Stable Period; Stage 2: COVID-19 Pandemic Period; Stage 3: Russia-Ukraine War Period. 

5.3 Robust Check 

We further examine the robustness of our findings by analyzing both static and dynamic tail 
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dependencies within Copula frameworks across stock markets, alongside exploring variations in 

transmission strength. We compute static and dynamic tail dependence coefficients for ten pairs of 

interrelated stock indices, with Table 5 presenting the static lower and upper tail dependence 

coefficients for these pairs. 

European stock markets exhibit pronounced high level of dependence. Notably, the pair between 

the German DAX and French CAC indices demonstrates the highest upper (0.7564) and lower 

(0.8183) tail dependence coefficients, indicating strong mutual influences in both market upswings 

and downturns. The US demonstrates a moderate dependency with European markets, with minimal 

difference between its upper and lower tail dependence coefficients, suggesting predominantly 

symmetric volatility spillovers. Interdependencies between Asian and European markets are less 

pronounced than those between the US and Europe. Within Asia, South Korea and Japan exhibit the 

highest level of co-movement, while China's market interdependence with other markets is markedly 

low. Overall, our analysis reveals that the lower tail dependence among stock market pairs generally 

exceeds the upper tail dependence. This implies that markets are more correlated during downturns 

(bear markets) than during upturns (bull markets), suggesting that negative news spreads faster, 

inciting market panic and leading to steeper declines in stock prices. 

Table 5.  The static tail dependence coefficients of stock index returns 
 Upper tail Lower tail 

US&NL 0.4011 0.4014 

US&UK 0.2990 0.3076 

RU&NL 0.2022 0.2783 

RU&US 0.0861 0.1604 

FR&DE 0.7564 0.8183 

NL&UK 0.5865 0.6893 

NL&DE 0.6749 0.7592 

JP&SKR 0.3258 0.4362 

SKR&NL 0.1338 0.2507 

CN&JP 0.0680 0.1433 

To model dynamic dependence, we approximate the Copula distribution from among Normal, 

Clayton, Frank, Gumbel, T, and SJC types using the kernel density estimation method. The optimal 

dynamic copula model was selected based on the minimum Akaike Information Criterion (AIC) 

value, which identifies the time-varying SJC Copula as the optimal specification for our analysis. 

Subsequently, we calculate the dynamic upper and lower tail dependence coefficients for the ten 

pairs of dependent stock indices under study. The results are visualized through line plots, as 

depicted in Figures 4 to 7. 
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Figure 4.  The dynamic tail dependence of US stock index returns 

 

Figure 5.  The dynamic tail dependence of Russian stock index returns 

 

 
Figure 6.  The dynamic tail dependence of European stock index returns 

 

 
Figure 7.  The dynamic tail dependence of Asian stock index returns 

 

Figure 4 illustrates the dynamic dependence changes between the stock markets of US and Europe, 

revealing that the frequency of fluctuations in lower tail dependence is higher than that in upper tail 

dependence. A sharp decrease in dependency is observed at the start of the second stage, followed 

by a gradual recovery. 
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Figure 5 displays the dynamic dependency fluctuations between the Russian market and other 

stock markets. At the onset of the Russo-Ukrainian War, its dependency with European markets 

sharply decreased, maintaining levels below the average throughout the third stage. The dependency 

between Russia and the US, though initially reduced, swiftly reverted to its historical average level.  

Figure 6 demonstrates the dynamic dependency changes within European stock markets. The 

dependency among these markets remains high, with minimal fluctuation over time. Similarly, the 

pandemic and the Russo-Ukrainian conflict did not appear to significantly disrupt the internal 

dependency structure within Europe. The Brexit event in 2020 did not significantly impact the 

dependency between the UK and other European stock markets. 

Figure 7 presents the dynamic dependency between Asian stock markets and others. Within Asia, 

Japan and South Korea exhibit the highest dependency, which significantly increased during the 

pandemic. China's dependency with other markets is the lowest and shows a downward trend in 

recent years. South Korea serves as a link between Asian and European markets, with its dependency 

being not high but stable, and less affected by major events. These observations align with the results 

from Vine-copula analysis. 

 

6.  Conclusion & Discussion 

This paper, against the backdrop of recent major global shocks (including public health crises and 

regional conflicts in Europe), explores dynamic changes in interdependence and volatility spillover 

effects among ten financially important stock markets. Asia, America, and Europe are pivotal arenas 

for financial and capital activity, playing crucial roles in the development and stability of the global 

financial system. 

Our analysis, using the Vine copula model, demonstrates distinct regional clustering 

characteristics across different regions, with a sequential dependence strength ranking being Europe > 

Europe-US > Asia. This finding is consistent with the research results of Khoo et al. (2023) and 

León et al. (2017), their studies also indicated the presence of geographically dominant regional 

clusters in global stock markets. Moreover, major sudden events have varied impacts on different 

regions. For COVID-19, it did not affect the high interdependency of European stock markets; 

instead, it shifted their symmetric dependence towards an asymmetric dependence structure more 

sensitive to negative news. Conversely, for Asian stock markets, COVID-19 significantly increased 

the dependence strength, transitioning from tail asymmetric dependence to symmetric. The 

symmetric dependence structure between the US and Europe remained largely unaffected; however, 

due to multiple circuit breaker events in the US stock market and during the pandemic, the overall 

strength of dependence decreased. Notably, the interdependence between China’s stock market and 

others is low, showing a declining trend in recent years. China’s stock market, established later and 

relatively more closed compared to Western markets, is influenced significantly by domestic policies. 

The Russia-Ukraine conflict had minimal direct spillover impact on the interdependence structure 

of stock markets beside Russia itself, according to our model. 

Our examination of dynamic copula tail dependence across markets reveals a significant 

asymmetry: lower tail dependence is generally higher than upper tail dependence, indicating 

stronger co-movement during market downturns. This asymmetry suggests that during market 

downturns, the co-movement between stock markets strengthens, while during market upswings, 

the co-movement weakens. Consistent with this, Yin et al. (2017) and Bhattacharjee et al. (2019) 

demonstrated that global stock market linkages become more pronounced during periods of financial 
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turmoil.  This sensitivity to negative information is further evidenced by the disproportionate 

increase in lower tail dependence compared to upper tail dependence when sudden global events 

occur. This amplified lower tail dependence during crises indicates a heightened susceptibility to 

investor panic and the subsequent emergence of herd behavior. 

We also find that the structurally rich R-Vine model is more suitable for describing the 

transmission structure of volatility contagion effects in stock markets compared to the D-Vine and 

C-Vine structures. The R-Vine structure excels in handling high-dimensional data, allowing for the 

flexible selection of different marginal distributions and copula functions.  

In sum, our analysis sheds light on the latest dependency trends in financially important stock 

markets and the effects of major events on volatility spillover. This paper contributes to the literature 

by examining the structure and strength of interdependence, providing empirical evidence of 

regional clustering and dependence dynamics in global stock markets, analyzing the distinct impacts 

of recent global events, confirming asymmetric tail dependence and its behavioral implications, and 

demonstrating the suitability of the R-Vine model for more accurate and flexible modeling of 

volatility spillovers. From the theoretical and practical perspectives, the findings offer insights for 

investors, policymakers, and regulators, emphasizing the need for region-specific risk management 

strategies, particularly to address the stronger market co-movement during downturns. 

Understanding the dynamics of interdependence and volatility spillover effects is essential for 

designing effective regulatory and policy responses to mitigate systemic risks, especially during 

times of global uncertainty. 
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