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ABSTRACT

This paper is concerned with emergency material relief in response to major emergencies, con-
centrating on the difficulties in locating emergency logistics facilities and deploying emergency
supplies. Using discrete scenarios, we describe the uncertainty of the demand for emergency
supplies at the catastrophe site as well as the uncertainty of the cost and timing of the shipment
of such supplies. Meanwhile, we consider two key objectives, i.e., emergency relief cost and
emergency relief time, and build a multi-objective emergency logistics center siting model,
including both deterministic and robust optimization models. In the construction of the siting
model, due to the time urgency of emergency logistics, we adopt a bi-objective function, in-
cluding transportation cost and transportation time, and consider the construction cost and in-
ventory cost of the emergency logistics center. We also introduced a generalized hybrid frog-
hopping algorithm to encode facilities that provide emergency material relief services. To ver-
ify the effectiveness of the models and algorithms, we design a multi-scenario simulation ex-
periment, and the results show that the two models and algorithms we propose have good fea-
sibility and effectiveness, and the robust optimization model performs well in handling various

uncertainties.

KEYWORDS: Emergency logistics system; robust optimization; site selection; multi-objec-

tive; hybrid frog jump algorithm

1 Introduction

In real life, all kinds of natural disasters, man-made disasters and other major emergencies have
occurred repeatedly, causing serious disruptions to the social order and leading to huge casual-
ties and economic losses (Maharjan, R, et al, 2020). Therefore, the research and management
of disaster emergency response and disaster emergency response system engineering have ex-
tremely important value and significance. When major emergencies, especially disaster events,
occur suddenly, the emergency response system needs to be activated quickly in order to pro-

vide sufficient supplies to the affected areas and people to cope with the crisis. However, since
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emergencies are usually difficult to predict in advance and the extent of damage from disasters
is difficult to assess accurately, once a serious emergency occurs, especially a natural disaster,
it has a wide range of impacts and a long duration of impacts, which poses a great challenge to
emergency rescue.

One of the common emergency response strategies is to pre-position relief supplies in emer-
gency relief facilities close to the potential disaster site. This can help to reduce the time it takes
to deliver the supplies, keep the cost of the relief under control, and increase the effectiveness
of the relief. Since post-disaster rescue efforts depend on the effective deployment and delivery
of emergency relief supplies, this is also the main purpose of the emergency logistics system.
Emergency rescue network planning is a key link in emergency rescue and emergency response,
and reasonable planning can significantly improve the deployment efficiency and effectiveness
of emergency supplies (Karatas, M, et al, 2021), (Eshghi, A. A, et al, 2022). This typically
entails researching two distinct issues, namely the placement of emergency facilities and the
distribution of emergency supplies.

The research on emergency facilities can be traced back to the P-center of gravity and P-center
problem proposed by Hakimi (Caglayan, N, et al, 2021), (Ji, X, et al, 2023). In the area of
emergency facilities location and emergency logistics, studies (Shariat Mohaymany, A, et al,
2020), (Pourghader Chobar, A, et al, 2022). explored the emergency logistics and emergency
materials allocation after natural disasters, to reduce the time it takes to deliver supplies and
treat casualties, study (Men, J, et al, 2019) established a deterministic emergency logistics lo-
cation model; study (Pourghader Chobar, A, et al, 2022) introduced the minimum and maxi-
mum critical distance and coverage level function, built a multi-quantity and multi-quality cov-
erage model, and enhanced the genetic algorithm solution; In a study (Beiki, H, et al, 2020),
the position of the emergency logistics system was examined in the immediate aftermath of the
earthquake, and the genetic algorithm solution was enhanced. The concept, characteristics, sys-
tem, model design, and solution algorithm of emergency logistics site selection have all been
usefully explored in these studies. However, the problem itself and the uncertainty of data ac-
quisition have not been taken into account, and all of the studies discuss and solve the problem
using a single-objective model. In terms of multi-objective modeling, (Khanchehzarrin, S, et al,
2022) integrates several traditional facility siting models and verifies the correctness of the
models through examples based on the fairness and efficiency of emergency rescue facilities;
(de Veluz, M. R. D, et al, 2023) constructs a multi-objective emergency facility siting problem
considering total cost, fairness and efficiency. These academic works present the emergency
problem as a deterministic issue without taking into account the emergency problem’s different
uncertainties.

In dealing with uncertainty in a problem, two approaches, stochastic optimization and robust
optimization, are commonly used. Stochastic optimization is one of the more commonly used

classical methods, and its goal is often to maximise the expected gain under all circumstances



or minimise the expected expense under all circumstances. In the research of the maximum
coverage siting problem, for instance, study (Arshad, M. A, et al, 2022) proposed the idea of
scenarios, and its goal was to maximise the number of demand served in all situations; a sce-
nario-based facility siting model was developed by study (Zahedi, A, et al, 2020) with the aim
of reducing estimated costs across all scenarios and time periods. In addition, some scholars
have used fuzzy number of intervals or interval gray number to describe and solve the uncer-
tainty of emergency logistics problems. The robust optimisation approach, which can be seen
as a complimentary substitute for stochastic optimisation and sensitivity analysis, is character-
ised by the requirement to understand the probability distribution of uncertain parameters. It is
derived from robust control theory. This minimax type of robust optimisation has captured the
interest of many scholars. Minimax cost (minimax cost) or regret (minimax regret) form of
robust model. For example, (Zafari, F, et al, 2019) used robust optimization method to study
the single-objective emergency facility siting model with deadline requirements; (Liu, K, 2020)
constructed a relative robust model for the siting of emergency logistics and distribution centers;
For the location of the emergency material reserve store, (Ma, Y, et al, 2022) built a single-
objective robust optimisation model and a stochastic optimisation model. All of the aforemen-
tioned research use the robust optimisation approach to examine the topic of where to locate
emergency facilities in a context with a single purpose, and the majority of them use a simplified
model that only takes into account one emergency resource.

To summarize, although some notable research results have been achieved in siting emergency
facilities, there are still some information uncertainties and deficiencies in the handling of un-
certainties in siting emergency logistics and mobilizing emergency supplies. Few research have
addressed the issue of various types of emergency materials; the majority of previous studies
have concentrated on single emergency material situations. The methods of reducing many ob-
jectives to a single objective are typically used in multi-objective emergency logistics siting
studies, but these methods do not effectively address the unit and order-of-magnitude disparities
among multiple objectives. In addition, existing studies mainly focus on the uncertainty of the
problem parameters and ignore the different rescue stages in the emergency rescue process that
may lead to decision uncertainty. In fact, the two objectives of emergency rescue cost and emer-
gency rescue time may not be equally important, and they may be related to the rescue phase
or the requirements of the decision maker.

To address these issues, this study introduces uncertainty scenarios to describe various uncer-
tainty situations for emergency logistics facilities (e.g., material collection points and emer-
gency logistics centers). We developed a multi-objective emergency logistics center site selec-
tion deterministic model and a robust optimization model, and introduced cost preference

weights to take into account different rescue stage divisions or different decision-making needs



of decision makers. By converting the objective values to dimensionless values, the multi-ob-
jective problem is reduced to a single-objective problem, and then an optimisation solution is
developed using a generic hybrid frog leap method.

2 Related Work

In an uncertain environment, there are usually three approaches to solving the problem of siting
an emergency logistics center: stochastic planning, fuzzy planning, and robust optimization.
Stochastic planning requires knowledge of the probability distribution of the desired uncertain
parameters, which is often difficult to obtain in reality. Fuzzy planning requires a certain
amount of sample data and the personal experience of the decision maker to determine the fuzzy
affiliation function of the uncertain parameters, which is very dependent on the subjective judg-
ment of the decision maker. Compared with the former two, robust optimization can effectively
reduce the interference of the uncertainty of data parameters on the final solution, especially
for the field of emergency logistics, the adaptability of the optimal solution obtained by robust
optimization is often better.

Study (Ghasemi, P, et al, 2019) combed through the literature on the location of logistics and
distribution centers for large-scale emergency rescue, and found that there are problems in the
current research as well as put forward a future research trend, i.e., it is necessary to focus on
solving the problem of multi-party coordination, and to optimize the layout of distribution cen-
ter location through scientific planning. Study (Yenice, Z. D, et al, 2020) considers the uncer-
tainty of emergency cost, establishes a robust siting path optimization model for multi-emer-
gency resources, and solves it through CPLEX and GAMS programming, thus providing deci-
sion support for relevant departments. Study (Jamali, A, et al, 2021) proposes an emergency
site selection and scheduling model based on robust optimization, which takes into account the
facility failure problem as well as storage and transportation costs. In response to the uncertainty
of material demand and vehicle transportation time, study (He, L, et al, 2022) took into account
the risk of transportation time overrun and the risk of logistics facility point failure. It then
established a robust optimisation model for emergency logistics time minimization by using
combined vehicle and helicopter transportation, and it demonstrated the risk resistance of the
robust optimisation method. Study (Zheng, F, et al, 2023) established an uncertain emergency
facility siting model with deadline requirements, and compared and analyzed the solution ob-
tained from robust optimization and the optimal solution in the deterministic case, and proved
that the deviation of the robust solution is relatively small, and it can effectively avoid the risk.
In (Jingchun Zhou, et al, 2023), the effect of random network failure on the location of emer-
gency facilities is proposed, and a heuristic algorithm is used to maximize the coverage for
post-disaster relief work. To control the position of commodities and fatalities in earthquake
reaction, study (Jingchun Zhou, et al, 2023) suggested a multi-objective, multi-model, multi-
commodity, multi-period robust optimisation model.Study (Sicuaio, T, et al, 2022) proposes a

decision making model in the field of Artificial Intelligence and designs a coherent network



which ensures the operation of certain infrastructures and potential resources even after they
have been damaged due to disasters.

In summary, the previous studies in the literature have achieved some results in the emergency
logistics center siting problem, but there are some shortcomings: 1) Insufficient handling of
information uncertainty. Most of the studies used different methods to deal with information
uncertainty, such as stochastic planning, fuzzy planning and robust optimization. However,
these methods still have limitations in dealing with uncertainty. For example, stochastic plan-
ning requires knowledge of the probability distribution, while fuzzy planning is highly depend-
ent on subjective judgment. Therefore, better methods are needed to cope with uncertainty,
especially in emergency situations where uncertain parameters cannot be accurately estimated.2)
Inadequate treatment of multi-objective problems. Most studies have addressed the multi-ob-
jective emergency logistics center siting problem, but the multi-objective problem is usually
transformed into a single-objective problem, which may result in the trade-off between objec-
tives not being properly addressed. A better approach is to develop optimization algorithms
applicable to multi-objective problems to effectively handle conflicts and trade-offs among
multiple objectives.

3 Mathematical Modeling

3.1 Problem description

We believe it is essential to quickly establish a number of emergency material collection points
and emergency logistics centres in the disaster area or nearby areas after the occurrence of major
emergencies (such as earthquakes, typhoons, and other natural disasters), considerations for
space and resources, uncertainty regarding the material requirements of the impacted places
(also known as emergency demand points), minimization of the emergency rescue time and
emergency rescue expenses are all taken into account. We will address the issue of how to
rationally choose the location for the emergency logistics centre, the appropriate material trans-
fer route, and the amount of transfer while taking into account the uncertainty of the material
demand at the disaster point (referred to as the demand point) and the two objectives of mini-
mising the emergency relief time and the emergency relief cost.

The emergency logistics system under consideration consists of an emergency materials col-
lection point, an emergency logistics centre, and an emergency demand point. Emergency ma-
terials are first transported from the collection point to the emergency logistics centre, where
they are then distributed to the emergency demand point based on the current situation; The
emergency supplies can also be delivered straight from the collection point to the emergency
demand location because emergencies may result in the failure or blockage of rescue highways
as well as other conditions. Emergency supplies can also be delivered directly from the collec-
tion site to the emergency demand location, taking into account the possibility that emergencies
could result in situations like the obstruction of rescue routes or the failure of rescue roads. (1)

Every emergency demand location does not require more emergency supplies than a single



emergency logistics centre can store, and all emergency supplies can be transported uniformly
by vehicles; (2) Don't assume that multiple emergency materials can't be delivered at the same
time because the various types of emergency materials are compatible with transportation; (3)
assuming that each emergency material collection point and the emergency logistics centre have
an adequate number of transport vehicles and an adequate vehicle carrying capacity, do not
consider the limitations on the working hours of the transport vehicles and the limitations on
the capacity of the vehicles.

3.2 Explanation of Symbols

(1) Collection

U :the set of emergency material collection points U,

G :the set of emergency supplies type 9.

| :set of alternative emergency material centers i ;

J et of emergency material demand points I

(2) Variables

f :the fixed cost of opening I alternative emergency logistics centers;

g
G the unit transportation cost of transporting the 9th emergency material from the material

collection point U to the alternative logistics center i

c’ . . . . -
U the unit transportation cost of the Yth emergency material from the alternative logistics

center to the emergency demand point J ;

9
Cy :the unit transportation cost of the 9th contingency material transported from the material

collection point U to the contingency demand point I

g
L : transport time of the 9th emergency material from collection point U to the alternative

logistics center so that it is transported;

9 .
b : transportation time of the Yth emergency material from the alternative logistics center !

to the emergency demand point ] ;

te o : : : :
W :transportation time of the 9th emergency material from material collection point U to

emergency demand point J ;

g
b turnaround time of the 9 th emergency material at the alternative emergency logistics cen-

ter 1:



t
% -the unit storage cost of the 9th emergency material at the alternative emergency logistics

center .

g,max

u  :the maximum quantity of the Yth emergency material to be collected at material col-
lection point U

g .
hj :the quantity of the 9th emergency material demanded at emergency demand point )

g .
I :the quantity of the 9th emergency material at the unsatisfied emergency demand point )

9 .
1 :the unit penalty coefficient of unmet emergency demand point ) for the 9th kind of

emergency supplies.

(3) Decision variables

z 10,1 - . . . -
i € { ’ }:decmon variable of whether or not to site in alternative emergency logistics center

[ , z;=1 means to site in emergency logistics center i , otherwise Z :O;

g
Yi': the storage capacity of the 9th emergency material in the alternative emergency logistics

center 1;

g
Wi € {0’1} :whether or not to transport the 9th emergency material from collection point U
to logistics center i

g
Wy € {0’1} ‘whether the 9 th emergency material is transported from collection point U to

emergency demand point J ;

w? 10,1 . - :
U E{ ’ }: whether to transport the 9 th emergency material from logistics center ! to

emergency demand point J ;

g
Xii the guantity of the 9th emergency material to be transported from collection point U to

logistics center i;
9
% ‘quantity of type 9 contingency transported from collection point U to emergency de-

mand point ] ;



g .
Xi ‘the quantity of emergency goods of type 9 transported from logistics center ! to emer-

gency demand point J .

3.3 Multi-objective deterministic model construction

The first emergency relief time target takes into account the turnaround and deployment times
of emergency materials in the logistics centre as well as the transportation times of emergency
materials between the material collection point, the emergency logistics centre, and the emer-
gency demand point; the second emergency relief cost target is primarily made up of the con-
struction costs. The construction and operation (storage) costs of the emergency logistics centre
as well as the cost of transporting emergency supplies between the material collecting site, the
emergency logistics centre, and the emergency demand point make up the bulk of the second

emergency relief cost target.
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Egs. (1) and (2) in the model are the objective functions, and Eg. (2) is to minimise the cost of
emergency rescue, which includes the cost of building the emergency logistics centre, the cost
of storing emergency materials there, and the cost of transporting emergency materials. Eq. (1)

is to minimise the emergency rescue time, which includes transport time and turnaround time.



Eqg. (3) for the emergency logistics system of the material flow conservation conditions, where
Egs. (3) and (4) show the emergency logistics centre at the flow conservation conditions, For-
mula (5) shows the emergency demand point at the flow conservation or the demand is satisfied,
and Eq. (6) shows the flow at the point of collection of materials conservation or the collection
of materials at the point of collection of the transport out; Eq. (7) indicates that Eq. (7) means
that only one logistics center or collection point can provide material relief for a certain material
at each emergency demand point; Eq. (8) means that only selected logistics centers can transport
the material; Eq. (9) guarantees the supply capacity of each emergency material; the limits on
decision variables are shown in equations (10) and (12).

3.4 Multi-objective robust optimization model construction

The demand for different types of materials at each emergency demand point is difficult to
estimate accurately due to the suddenness of emergencies and the difficulty of accurate predic-
tion, and the transportation costs and times of emergency materials may change due to the pos-
sibility of an untimely supply of emergency materials. Considering these uncertainties, the set

of problem scenarios and robust constraint coefficients are introduced, and scenario S € S s
added to the symbols of the existing variables and decision variables to denote the variables or

decision variables corresponding to scenario S € S In this way, the model is based on the
above modeling model. To this end, the following multi-objective robust optimization model is

constructed based on the model identified above:
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Where are the optimal time and optimal cost values of the multi-objective de-

terministic problem under scenario S, Eqs. (13)-(16) are the objective functions, which repre-
sent the minimization of the time and cost values under all scenarios, and the constraints Egs.
(21) and (22) represent the robustness constraints on the time and cost values under each sce-
nario.

4 Model Solving

4.1 Multi-objective treatment

In the model of this paper, it is difficult to harmonize the time and cost objectives, and in the
actual emergency logistics rescue process, the requirements on cost and time are different, so
the importance of the two may be different. In addition, the measurement units of time and cost
are different, so the traditional linear weighting method is not feasible. Although (Hong, J. D,
et al, 2019). has used the percentage dimensionless method (using a fixed value of 100 divided
by the target value) to eliminate the difference in the units of measurement of the two sub-
objectives, there are two shortcomings in this approach: one is that it does not truly reflect the
difference in the units of measurement of the two objectives and their order of magnitude, and
the other is that it cannot adapt to the changes in the problem data. For this reason, we first

eliminated the two target units for each scenario, using the following formula:

. Tim
Time f = — s Cost § = COSti
Time Cost (29)
Where Time,, Cost, denote the optimal objective values obtained by modifying the objective

function of the multi-objective deterministic model under scenario S to a single minimization
of rescue time (without considering the objective Eq. (2)) and a single minimization of rescue
cost (without considering the objective Eq. (1)). It is easy to see that Eq. (29) not only eliminates

the unit of measurement between the two objectives, but also eliminates the order-of-magnitude



difference between the two objective values, and automatically adapts to changes in the prob-
lem data. Secondly, we consider the degree of importance assigned to the two objectives by the
decision maker, and let W be the value of the importance assigned to the cost objective by the
decision maker according to the actual situation, which is called the cost preference weight, and

satisfies O<W<1, Then the objective functions (1)-(2) of the multi-objective deterministic
model can be transformed into the following Eq.s:

Time W Cost

Time | Cost, (30)

min(1—w)-Timef+w-Cost{ = (1-w)-

The objective function of the multi-objective deterministic model is modified to Eg. (30), and

the time and cost values corresponding to the optimal solution obtained under scenario s are set

o Time, , Cost,

tob , respectively, so that we can deal with the objective functions (13)-(14)

of the multi-objective robust optimization model as follows:

Time | W Cost

Time Cost | (31)

min max_s (1-w)-

Noting that the main purpose of Eq. (29) is to eliminate the unit of measurement and its order
of magnitude difference between the two objectives, for all the scenarios of the problem, small
changes in the data can also cause changes in the values of optimal time and optimal cost under

the single objective, which are usually not too large; based on this consideration, if the solution

time of the algorithm is to be saved, it is also possible to use the values of optimal time Time,
and optimal cost Cost, under the single objective of the benchmark scenario in place of the

me

values of optimal time Time, and optimal cost Cost, under the scenarios with a single ob-

jective, respectively, in Egs. (29) to (30).

4.2 Design of Hybrid Frog Leading Algorithm

Shuffled Frog Leading Algorithm (SFLA) is a new type of biomimetic intelligent optimization
algorithm that imitates frog groups searching for food, which is proposed by (Wan, M, et al,
2023) to solve the combinatorial optimization problem. Its main feature is to divide the group
of frogs into multiple subgroups, and each subgroup executes its own local search strategy,
repeatedly merging and splitting frog groups during the search process, and exchanging infor-
mation among the subgroups. Because the algorithm uses the concept of subgroups, it increases
the flexibility and effectiveness of the search process and avoids falling into local optima more
effectively than other intelligent optimization methods.

For any intelligent algorithm, the coding of the problem is the most important part. We encode
the rescue service facilities (emergency material collection points and alternative emergency

logistics centers) that each kind of material at the emergency material demand points receives,



i.e., we use the rescue services provided by the emergency material collection points and the
alternative emergency logistics centers for each kind of material at all the emergency material
demand points as the encoding. Specifically, assuming that there are ™ emergency material
demand points, each of which has N types of material demands, an MxN dimensional vec-
tor (called a frog or chromosome) is constructed using symbolic coding:

X :(Xl’L ’Xn7xn+l7L ’XZn’L ’an)(32)

X 1<k <mn)

The value of indicates the number of the collection point or alternative emer-

gency logistics center that provides a certain type of emergency material to the corresponding

k=i

demand point, and position ~D-n+ ] corresponds to the J th type of emergency ma-

terial for the 1th demand point.
For example, assuming that there are two demand points, each of which has three types of

emergency material requirements, and that there are three material collection points (numbered
I, 2, 3) and three alternative emergency logistics centers (hnumbered 4, 5, 6) in the rescue system,
the frogs are (1, 4, 2, 5, 4, 1), indicating that the rescue services provided to the three types of
emergency materials at the first demand point are Collection Point 1, Emergency Logistics
Center 4, and Collection Point 2, and the rescue services provided to the three types of emer-
gency materials at the second demand point are Emergency Logistics Center 5, Emergency
Logistics Center 4, and Collection Point I, respectively. collection point 1, emergency logistics
center 4 and collection point 2 for the first demand point, and emergency logistics center 5,
emergency logistics center 4 and collection point | for the second demand point.

Initialization of the total frog population: According to the number of demand points for emer-
gency supplies and the number of emergency supplies, a character will be randomly generated
for each locus of individual frogs to represent the facility that will provide services to the cor-
responding demand point and emergency supplies for that locus (it may be an alternative emer-
gency logistics center or a collection point for emergency supplies).

The first frog is assigned to the first subpopulation, the second frog is assigned to the second

subpopulation, and so on. All frogs are sorted from smallest to largest in terms of suitability,

and so on, with the Mth frog assigned to the mth subpopulation, and the m+1 th frog as-
signed to the m+1th subpopulation, and so on, until all frogs have been processed.
Local search strategy: Assuming that the optimal and worst individuals of each group are

b w b
R R respectively, and the global optimal individual of the frog group is R , each sub-

group performs a local search in the following way:

_ {Fib Flvlv = Fib
“|rand FY#F°
il 7 i (33)



b . b
Where R is the !th component of the locally optimal individual R (or the globally op-

b w w

timal individual Fg ), i is the 1th component of the locally worst individual F , and
rand denotes the random selection of a service facility (emergency material collection point
or emergency logistics center).

Adaptation function: For the multi-objective deterministic model, we directly use Eq. (30); for
the multi-objective robust optimization model, we use Eqg. (31), if the current individual does
not satisfy the robust constraints under a certain scenario S, a large penalty term is applied to
the adaptability of the individual.

In this paper, the flowchart of the generalized hybrid frog jumping algorithm for solving the
multi-objective deterministic model and the multi-objective robust optimization model is

shown in Figure 1.
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v
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v
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Figure 1 Flowchart of the hybrid frog jump algorithm SFLA (main flow on the left, local
search flow on the right)
5 Algorithm Analysis
5.1 Data description
It is known that an emergency logistics system has three emergency material collection points
(numbered 1, 2, 3), three optional emergency logistics in a tb alternative points (numbered 4, 5,

6), as well as three emergency material demand points (numbered 7, 8, 9) and three kinds of

emergency material (numbered Gl, GZ, G3), the baseline scenario of the problem data in

Table 1-3, and in addition to set the demand point of the shortage of emergency material unit

penalty factor of 280. On the basis of the baseline scenario data, the demand for materials at the



demand point, unit transportation cost and transportation time will be subject to the share of
uniformly distributed random numbers on [0, 0.2], and a total of five scenarios of problem data
will be generated.

Table 1 Alternative emergency logistics center information

No. | Construction | Unit storage | Material turna- | Unit transporta- | Transportation

Costs cost round time tion cost time

G |G, |GG, G, | G, 7 8 9 7 8 9

4 300 20 [35 |30 |1 2 3 14 (11 |19 |6 4 7
0 0 0

5 200 20 [35 |30 |3 3 4 14 (10 |20 |3 3 4
0 0 0

6 200 20 |35 |30 |2 2 1 15 |10 |20 |5 8 3
0 0 0

Table 2 Information on material collection points

No. | Unit  storage | Material turna- | Unit transporta- | Transportation
cost round time tion cost time

4 5 6 4 5 6 7 8 9 7 8 9
1 50 |60 |80 |5 6 2 150 | 180 | 240 |12 |12 |10
2 50 |50 |60 |2 4 6 150 | 150 | 180 | 4 8 13
3 50 |65 |70 |8 3 4 150 {200 {210 |10 |9 15

Table 3 Information on emergency supplies

Maxi- G, G, G, Require- G, G, G,
mum ments

collec-

tion vol-

ume

1 400 500 400 7 400 400 400
2 400 300 300 8 300 300 300
3 200 200 300 9 200 200 200

5.2 Results and analysis

The following settings are used to solve the multi-objective model using the hybrid frog hop-
ping algorithm in this study: There can be up to 100 hybrid iterations, 40 local searches per frog
subpopulation, a maximum of 4 subpopulations, and a maximum of 20 individuals in each sub-

population.In addition, this paper sets the robustness constraint coefficient to be the same for

all the scenarios, i.e. Ps ™ PV, =S




5.2.1 Cost preference weights

First, the baseline scenario data are taken into account to confirm the reliability of the multi-
objective deterministic model. The hybrid frog jump algorithm is used to optimise and solve
the cost preference weights, which are taken at intervals of 0.05 from 0 to 1. Table 4 displays
the ideal rescue allocation plan for all types of materials at all demand points. According to the
optimal rescue allocation programme 2-4-6-6-2-2-5-6-5, Collection Point 2, Emergency Logis-
tics Centre 4 and Emergency Logistics 6 are responsible for allocating the three different types
of emergency supplies at the first demand point, while Emergency Logistics Centre 6, Collec-
tion Point 2 and Collection Point 2 are responsible for providing the three different types of
emergency supplies at the second demand point and Emergency Logistics Centre 6 is respon-
sible for providing the rescue services at the third demand point. The findings in Table 4 demon-
strate that initially, the decision-maker prioritises the emergency response time when perform-
ing the rescue, and as a result, all three emergency logistics centres are opened to meet the
initial rescue's time urgency requirements. However, as the cost preference weights gradually
rise (from 0.35 to 0.6), the number of emergency logistics centres is reduced to two (i.e., the
locations of Emergency Logistic Centres 5 and 6); when the cost preference weights further
increase, the decision maker prioritizes the emergency response cost (i.e., the locations of Emer-
gency Logistic Centers 5 and 6). As the cost preference weight increases further, the decision
maker prioritizes contingency costs (from 0.65 to 1), and the number of emergency logistics
centers decreases to one (i.e., site selection for Emergency Logistics Center 4).

Table 4 Optimal relief allocation scenarios with different cost preference weights

Cost preference weights Optimal Rescue Allocation Program

[0.05,0.3] 2-4-6-6-2-2-5-6-5

[0.35,0.4] 2-1-6-5-2-1-5-5-6

[0.45,0.5] 2-2-1-6-2-2-5-2-6

[0.55,0.6] 2-1-1-1-2-1-5-5-6

[0.65,0.8] 2-1-1-1-2-2-5-5-2

0.85 1-1-1-2-2-2-5-6-3

[0.9,1] 1-2-1-1-1-2-4-5-3

Table 5 Optimal Rescue Paths and Rescue Material Movement under Three Cost Preference
Weights

W=0.35 W=0,55 W=0.8

Rescue Costs 557100 Rescue Costs 470021 Rescue Costs 453900

Rescue Time 21700 Rescue Time 25000 Rescue Time 26400

Gl GZ G3 Gl GZ GS Gl GZ G3

27 1->7 156->72->7 |17 |17 |27 |17 |17

400 400 400, 400 | 400 400 400 400 400 400




1-6—->82->8 2—>8 1-8 258 |2—->8 |1->8 2—>8 | 2—>8

300,300 | 300 300 300 300 300 300 300 300

3555935593569 | 3555935559 356—>9 35559 3>55—>9 359

200,200 | 200,200 | 200,200 | 200,200 | 200,200 | 200,20 | 200,200 | 200,20 | 200

Table 5 gives the results of rescue routes and rescue material transportation under three cost
preference weights in the baseline scenario. When the cost preference weights are 0.35, 0.55,
and 0.8, the emergency rescue costs are 557,100, 47,100, and 45,390, and the emergency rescue
times are 21,700, 25,000, and 26,400, respectively. Obviously, when the decision maker assigns
different weights to the rescue costs, the emergency rescue costs and times have different opti-
mal values, and it is not possible to achieve the possibility of decreasing both the costs and
times of the emergency rescue. Obviously, when the decision maker assigns different weights
to rescue costs, the cost and time of emergency rescue have different optimal values, and it is
impossible to achieve the possibility that the cost and time of emergency rescue decrease at the
same time.

Second, in order to further analyze the relationship between cost preference weights and emer-
gency response, especially how to set cost preference weights in different emergency response
phases. Figure 2 shows the trend of the mean and standard deviation of cost and time for all
scenarios as a function of cost preference weights. Table 5 and Figure 2 show that when the
decision maker assigns larger and larger values to the cost preference weights, the optimal value
of rescue cost decreases gradually, but the emergency rescue time increases gradually, which
is consistent with the real rescue situation; on the other hand, different values of the cost pref-
erence weights can correspond to different stages of the emergency rescue, and in the initial
stage of the emergency rescue, the main consideration is the high timeliness, and it is acceptable
to have a higher emergency rescue cost, which can be regarded as corresponding to a smaller
cost preference weight. In the early stage of emergency rescue, the main consideration is high
timeliness, and it is acceptable to have higher emergency rescue cost, which can be regarded as
corresponding to smaller cost preference weights (e.g., 0.35 in Table 5); in the middle stage of
emergency rescue, both timeliness and cost have to be taken into account, which can be re-
garded as corresponding to moderate cost preference weights (e.g., 0.55 in Table 5); in the later
stage of emergency rescue, timeliness takes a back seat, and the main consideration is the cost,
which can be regarded as corresponding to larger cost preference weights (e.g., 0.8 in Table 5).
Analyzing the trends of rescue cost and rescue time in Figure 2, the corresponding weights can
be roughly divided into three intervals, with the first interval being [0, 0.45], the second [0.45,
0.75], and the third [0.75, 1], which can be regarded as corresponding to the early, middle, late,
and final stages of rescue, respectively. The first stage is characterized by low cost preference

weights, the optimal rescue time is small, but the rescue cost remains high, which is in line with



the time urgency requirement of activating the emergency rescue system after a disaster occurs;
the second stage is characterized by moderate cost preference weights, which takes into account
the urgency requirement of the rescue time, but also considers the cost limitation that can be
afforded by the emergency rescue system, and the cost of the rescue decreases rapidly with the
slow increase of weights, but the required rescue time increases rapidly; the third interval seg-
ment is [0.75, 1], and the three cost preference weights can be seen as corresponding to the
early, middle, late or final stage respectively. The third stage is characterized by a large cost
preference weight, which mainly considers the cost limitations of the emergency rescue system
and is in line with the characteristics of the late stage or the end stage of emergency rescue, in
which the cost decreases slowly and the time increases a little faster.
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Again, in this research, the robust constraint coefficients of all the scenarios are assumed to be
0.2 in order to examine the benefits and drawbacks of the multi-objective robust optimisation
model and the deterministic model. Figures 3 and 4 show the trend of the mean (time and cost)
and standard deviation (time and cost) of the two models with the variation of cost preference
weights, respectively. The average results in Figure 3 only give an initial indication that there
is not much difference between the two models when the cost preference weights are taken at
[0, 0.55] and [0.75, 1], but the average cost of the deterministic model is significantly higher
than the average cost of the robust optimization model when the cost preference weights are
taken at [0.6, 0.7]. However, when we focus on the standard deviations (time and cost) of the
two models given in Figure 4, We can see that both of the deterministic model's standard devi-
ations are higher than those of the robust optimisation model; in particular, when the cost pref-
erence weights are taken as [0.55, 0.7], the deterministic model's standard deviation is about
twice as high as that of the robust optimisation model. This suggests that the robust optimization
model is more resistant to various uncertainties. Specifically, in terms of the general trend, the
corresponding cost preference weights of the robust model can be divided into three bands, the
first band is [0, 0.45], the second band is roughly [0.45, 0.75], and the third band is roughly
[0.75, 1], and the three cost preference weight bands can be regarded as corresponding to the
early, middle, and late stages of the rescue, respectively.

According to the results of the chart and the previous discussion, we can consider the emer-
gency rescue is divided into three types, the rescue of the early stage of the time urgency, the
rescue of the rescue of the middle stage of the rescue of the rescue of the cost and the rescue of
the rescue of the late stage of the rescue of the rescue of the cost, decision-making or modeling
optimization of the solution can be chosen to choose a different cost preference weight, and
here, according to the discussion of the above will be the cost of the weight of the range of
values of the weight of preference for the distinction as [0, 0.45], [0.45, 0.75], [0.45, 0.75],
[0.75]. Here, based on the above discussion, the range of cost preference weights is distin-
guished as [0, 0.45], [0.45, 0.75] and [0.75, 1], or a single value, such as 0.35, 0.55 and 0.8.

5.2.2 Impact analysis of robust constraint coefficients



In order to examine the impact of different robust constraint coefficients, we consider five dif-
ferent values of robust constraint coefficients, i.e., 0.1, 0.15, 0.2, 0.25, and 0.3. Figure 5 gives
the robust objective values obtained by the multi-objective robust optimization model with dif-
ferent robust constraint coefficients (left) and the average objective values of all scenarios under
the current robust optimal solution (right). The average objective value here means that the
optimal robust solution can be obtained for a given robust constraint coefficient, which corre-
sponds to the objective value of each scenario, and the average of these objective values is
calculated. As can be seen from Figure 5, when the cost preference weights are taken in [0, 0.45]
and [0.75, 1], the robust objective value and the average objective value under different robust
constraint coefficients are very stable; in addition, it is noted that when the cost preference
weights are taken in [0.75, 1] and all the robust constraint coefficients are taken in 0.1, the
robust objective value and the average objective value have large fluctuations, which indicates
that the robust coefficients are small (i.e., given the robust constraint coefficient), and the av-
erage objective value of the cost preference weights are not very stable. This shows that when
the robustness coefficient is small (i.e., the given robustness requirements are more stringent),
it is more difficult to find a robust optimal solution, and even in extreme cases, it may not be
possible to find a feasible solution that satisfies all the scenarios. When the cost preference
weights are within [0.5, 0.75], different robust constraint coefficients have different impacts.
When the robust requirements are more stringent (robust coefficient of 0.1), the robust objective
value increases rapidly with the increase of the cost preference weights; when the robust re-
quirements are more lenient (robust coefficient of 0.3), the robust objective value fluctuates
upward and downward; and when the robust requirements are general (0.15 to 0.25), the robust
objective value is relatively high and the robust objective value is relatively low. When the
robustness requirement is moderate (0.15 to 0.25), the robustness target value is relatively flat.
Based on the above analysis, we recommend that the robust constraint coefficients in robust
optimization should be taken in the range of [0.15, 0.25], or take the middle value of 0.2.

0.8

08

Average target value

02

0.2

00 0.2 04 0.6 08 10 00 02 04 06 0.8 10
Cost preference weight Cost preference weight

Figure 5 Impact analysis of robust constraint coefficients

5.3 Real Scenario



Since many earthquakes have occurred in Sichuan Province in recent years, the calculation

examples in this chapter will take Sichuan Province as the object of analysis. A total of 15

emergency material demand points are set up, including Wenchuan, Mianzhu, Beichuan and

other places, and 4 alternative points are proposed to establish emergency logistics centers,

including Chengdu, Mianyang and other places. The emergency material demand of each re-

gion is determined according to population data, etc., as shown in Table 6.

Table 6 Emergency material demand in disaster-stricken regions

Demand Points | Demand (million | Demand Points i Demand (million
pieces) pieces)

1 Wenchuan 6-14 9 Pengzhou 74-83

2 Mianzhu 45-53 10 Jiangyou 81-92

3 Beichuan 15-23 11 Deyang 58-66

4 Qingchuan 16-25 12 Ya'an 58-66

5 Mao County 5-12 13 Leshan 108-116

6 Dujiangyan 64-72 14 Baoxing 0-9

7 Anxian 39-45 15 Ziyang 105-113

8 Pingwu 12-21

The construction cost of the emergency logistics center, capacity based on the construction

standards of the disaster relief supplies reserve depot and related policies, as shown in Table 7-

8.

Table 7 Basic parameters of alternative points of emergency logistics center

Alternative Points J

Logistics Center Capacity

Construction cost (million

yuan per 10,000 units. Kilo-

meters)

(10,000 pieces) yuan)
1 Chengdu 330 300
2 Mianyang 300 230
3 Guangyuan 280 210
4 Meishan 260 180
Table 8 Other costs
Transportation costs (million | Delayed transportation cost | Storage cost (million

(million yuan/million pieces-

hours)

yuan/million pieces)

0.0125

5

2

The distance between the affected area and the alternative point of the emergency logistics

center is calculated according to the road distance between the two cities given by Baidu map,

as shown in Table 9.

Table 9 Distance between the affected area and the alternative points of the emergency logis-

tics center Unit: km



1 Chengdu | 2 Mianyang | 3 Guangyuan | 4 Leshan

Disaster area |

1 Wenchuan 135 215 382 202
2 Mianzhu 92 52 225 18
3 Beichuan 200 92 255 292
4 Qingchuan 288 176 94 375
5 Mao County 175 255 422 242
6 Dujiangyan 66 144 313 135
7 Anxian 122 18 178 210
8 Pingwu 276 160 202 365
9 Pengzhou 44 95 262 133
10 Jiangyou 158 43 148 252
11 Deyang 73 52 222 162
12 Ya'an 138 152 419 101
13 Leshan 175 292 459 72
14 Baoxing 200 317 478 168
15 Ziyang 107 199 366 108

Emergency supplies transport vehicle speed change range of 30 km / h a 50 km/ h, road speed
under normal circumstances for 50 km/ d, when the emergency supplies transport penalty time
for 3 hours, that is, the transport time of more than 3 hours will produce delayed transportation
costs.

5.3.1 Deterministic model solution

Based on the parameter setting in 5.1, in the deterministic siting model, the deterministic de-
mand of emergency materials in the affected area and the transportation time between the af-
fected area and the emergency logistics center can be calculated as shown in Table 10-11.

Table 10 Demand for emergency materials in the affected area (deterministic)

Demand Points | Demand (million | Demand Points | Demand (million
pieces) pieces)

1 Wenchuan 9 9 Pengzhou 79

2 Mianzhu 49 10 Jiangyou 85

3 Beichuan 21 11 Deyang 62

4 Qingchuan 18 12 Ya'an 62

5 Mao County 9 13 Leshan 110

6 Dujiangyan 68 14 Baoxing 5

7 Anxian 41 15 Ziyang 107

8 Pingwu 15




Table 11 Transportation time between the affected region and the alternative points of the

emergency logistics center Unit: hours

1 Chengdu | 2 Mianyang | 3 Guangyuan | 4 Leshan

Disaster area |

1 Wenchuan 2.69 4.29 7.61 6.19
2 Mianzhu 1.85 1.03 4.49 5.55
3 Beichuan 4 1.85 511 7.45
4 Qingchuan 571 3.49 1.85 9.3
5 Mao County 3.49 5.09 8.43 6.97
6 Dujiangyan 1.2 2.85 6.25 4.7
7 Anxian 245 0.33 3.57 5.93
8 Pingwu 5.6 3.3 4.05 8.95
9 Pengzhou 0.8 1.89 5.21 4.5
10 Jiangyou 3.13 0.85 2.95 6.73
11 Deyang 1.45 1.05 4.5 4.8
12 Ya'an 2.77 5.01 8.35 2.05
13 Leshan 3.53 5.81 9.17 1.43
14 Baoxing 4 6.33 9.59 3.33
15 Ziyang 2.2 3.95 7.2 2.19

The weighting of transportation time and cost in the model can be adjusted by adjusting the
parameter input, i.e., whether transportation time or transportation cost is more important to the
site selection results in the site selection model. Now, we take 4 =0-5 and carry out the cal-
culation.

The solution will be done with the help of a toolbox in Matlab software called RSOME (Robust
Stochastic Optimization Made Easy), which is a Matlab algebraic toolbox for general optimi-
zation modeling under uncertainty. After Matlab software calculations, the optimal objective
function is 25,193,000 yuan, the total cost of deterministic model site selection The specific

composition is shown in Table 12.

Table 12 Deterministic model site selection total cost composition Unit: 10,000 yuan

Construction

Costs

Inventory Costs

Transportation

Costs

Delay Penalty
Cost

Obijective Func-

tion

692

1488

689

221

2519.2




The optimal choice of emergency logistics center is shown in Table 13, where | indicates that

the location is chosen to establish an emergency logistics center and O indicates that it is not

chosen.
Table 13 Deterministic model emergency logistics center selection
Emergency Lo- | 1 Chengdu 2 Mianyang 3 Guangyuan 4 Meishan
gistics Center
Whether to|1 1 0 1
choose

The proportions of needs being met at each emergency material demand point are shown in
Table 14.

Table 14 Proportion of needs met at the point of need for deterministic modeled emergency
supplies

1 Chengdu | 2 Mianyang | 3 Meishan

Disaster area |

1 Wenchuan
2 Mianzhu
3 Beichuan

4 Qingchuan

5 Mao County

6 Dujiangyan

7 Anxian

8 Pingwu

9 Pengzhou

10 Jiangyou

11 Deyang
12 Ya'an
13 Leshan

RO |O(FRP|O|FRP|PO|lOC|OC|FRL,|OC|O|O
O|lrRr|lP|OlOjJ]OjlOCOj]O|lOCO|O|OC|FP|F,|PF

14 Baoxing

RlO|lOO|RPr|P|O|O|P| O OCJ]O|lOC|O| K

0 0

This allows us to determine the volume of emergency supplies that the emergency logistics

15 Ziyang

centre will transfer to each location where they are needed, as well as the volume of supplies

that the emergency logistics centre will stock, as shown in Table 15.



Table 15 Deterministic model emergency logistics center to each demand point transport vol-

ume Unit: 10,000 pieces

1 Chengdu | 2 Mianyang | 3 Meishan
Disaster area |
1 Wenchuan 9 0 0
2 Mianzhu 0 47 0
3 Beichuan 0 21 0
4 Qingchuan 0 17 0
5 Mao County 9 0 0
6 Dujiangyan 66 0 0
7 Anxian 0 43 0
8 Pingwu 0 15 0
9 Pengzhou 79 0 0
10 Jiangyou 0 87 0
11 Deyang 0 60 0
12 Ya'an 0 0 62
13 Leshan 0 0 110
14 Baoxing 0 0 5
15 Ziyang 107 0 0
Total transportation volume | 270 290 177
Warehouse utilization 81.9% 96.9% 68.2%

5.3.2 Robust optimization model solution

The parameters required by the model are given in 5.1 and 5.2.1, also solved by Matlab pro-
gramming, by setting different r to adjust the degree of conservatism of the robust optimization
model, so that I =5, the optimal objective function value of 2572.02, robust optimization
model of the total cost of the site selection of the specific composition of the model as shown
in Table 16.

Table 16 Robust optimization model site selection total cost composition Unit: million yuan

Control Construction | Inventory Transportation | Delay Pen- | Objective
level Costs Costs Costs alty Cost Function
I'=5 692 1519 705.1 22.9 2572.02

The optimal selection of the emergency logistics center in the robust optimization model is
shown in Table 17, with 1 indicating that the location is selected to establish the emergency
logistics center and O indicating that it is not selected.

Table 17 Robust optimization model of emergency logistics center selection



choose

Emergency Lo- | 1 Chengdu 2 Mianyang 3 Guangyuan 4 Meishan
gistics Center
Whether to|1 1 0 1

The percentage of demand being satisfied at each emergency material demand point is shown

in Table 18.

Table 18 Proportion of emergency material demand point requirements satisfied by robust op-

timization model

Disaster area |

1 Chengdu

2 Mianyang

3 Meishan

1 Wenchuan

2 Mianzhu

3 Beichuan

4 Qingchuan

5 Mao County

6 Dujiangyan

7 Anxian

8 Pingwu

9 Pengzhou

10 Jiangyou

11 Deyang

12 Ya'an

13 Leshan

14 Baoxing

oO|lrhr|OO|lPOlO|O|P,P|O|lOC|]O|O|O

15 Ziyang

oOjlo|loo|lpr| OOl O|O|RrP|Oj]O|OC|O|F

RPlO|lO|P|O|O|PrP|O|lO|]O|R,r|O|OC|O|O

0

From this, the inventory quantity of the emergency logistics center can be calculated, as shown

in Table 19.

Table 19 Robust optimization model emergency logistics center to each demand point

transport volume Unit: 10,000 pieces

tive Points J 1 Chengdu | 2 Mianyang | 3 Meishan
Disaster area |
Total transportation/inven- | 282 300 177
tory
Warehouse utilization 85.9% 100% 68.1%

Robust Optimal Site Selection Model The optimal site selection scheme and transportation

routes are shown in Figure 7.




5.4 Comparison between deterministic model and robust optimization model

According to the above can be derived from the two models of the total cost of site selection
composition comparison, F = 0 indicates that there is no change in demand, all the demand is
fixed, the model is equivalent to the deterministic site selection model, as shown in Table 20.

Table 20 Comparison of the total cost of site selection between the two models Unit: 10,000

yuan
Control Construction | Inventory Transportation | Delay Pen- | Objective
level Costs Costs Costs alty Cost Function
I'=p 690 1477 682 215 2518.8
I'=5 690 1517 705.2 23.8 2573.02
I'=10 690 1557 725.3122 23.8 2621.62
I'=15 690 1597 759.411 28.9 2682.63

The cost of building the emergency logistics centre does not change with the increase in control
level, as can be seen from the comparison of the results of the deterministic model and robust
optimisation model. Both models use the same site selection scheme and choose Chengdu,
Mianyang, and Meishan as the three locations for the construction of the emergency logistics
centre. In contrast, the inventory cost, transportation cost, and delayed penalty cost keep in-
creasing with the increase of the number of emergency material demand points with uncertain
demand (Ershadi, M. M, et al, 2022), (Boonmee, C, et al, 2020).

Table 21 Comparison of warehouse utilization rate of two models

Control level 1 Chengdu 2 Mianyang 3 Meishan
I'=p 82.2% 97.2% 67.8%
I'=5 85.9% 100% 67.8%
I'=10 89.2% 100% 70.2%
I'=15 94.3% 100% 72.4%

As can be seen from Table 21, the utilization rate of Mianyang Emergency Logistics Center is
the highest in both models. And when the storage capacity of emergency materials in Mianyang
Emergency Logistics Center reaches the upper limit, the emergency materials are preferentially
stored in Chengdu Emergency Logistics Center, i.e., the utilization rate of Chengdu Emergency
Logistics Center-61N increases faster than the utilization rate of Meishan Emergency Logistics
Center.

6 Conclusion

This paper considers how to activate the emergency rescue system to carry out emergency res-
cue operations after a special event, especially a natural disaster, and examines the problems of
emergency logistics center site selection and the corresponding material transfer routes and
transfer volumes, incorporating the uncertainties of material demand, transport costs and
transport times at the disaster site (demand site), by developing a deterministic multi-objective

emergency logistics centre site selection model as well as a strong optimisation model of multi-



objective emergency logistics centre site selection, with the goals of reducing the overall rescue
costs as well as the length of time it takes to save people. In order to transform the bi-objective
into a single-objective and take into account factors like changes in the order of magnitude of
the problem data, a method of transforming the bi-objective into a single-objective using the
optimal value of a single-objective is constructed, which uses a robust optimisation model for
multi-objective emergency logistics centre site selection. In order to solve the two models effi-
ciently, a generalized hybrid frog jumping algorithm is designed, and the effectiveness of the
model and the algorithm is verified with examples. Based on the results, we discuss the effects
of different cost preference weights and different robust constraint coefficients, and give the
rules for setting cost preference weights and the recommended values of robust constraint co-
efficients in different phases of emergency rescue. However, there are also shortcomings in this
study, such as the differences in transportation modes, the road conditions or interruptions of
rescue roads, the number and capacity constraints of material carriers, and the price factors of
collecting emergency materials in different rescue phases, etc., Which approach to further re-
search on the location of emergency logistics centres will be practical.
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