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ABSTRACT 

This paper is concerned with emergency material relief in response to major emergencies, con-

centrating on the difficulties in locating emergency logistics facilities and deploying emergency 

supplies. Using discrete scenarios, we describe the uncertainty of the demand for emergency 

supplies at the catastrophe site as well as the uncertainty of the cost and timing of the shipment 

of such supplies. Meanwhile, we consider two key objectives, i.e., emergency relief cost and 

emergency relief time, and build a multi-objective emergency logistics center siting model, 

including both deterministic and robust optimization models. In the construction of the siting 

model, due to the time urgency of emergency logistics, we adopt a bi-objective function, in-

cluding transportation cost and transportation time, and consider the construction cost and in-

ventory cost of the emergency logistics center. We also introduced a generalized hybrid frog-

hopping algorithm to encode facilities that provide emergency material relief services. To ver-

ify the effectiveness of the models and algorithms, we design a multi-scenario simulation ex-

periment, and the results show that the two models and algorithms we propose have good fea-

sibility and effectiveness, and the robust optimization model performs well in handling various 

uncertainties. 

 

KEYWORDS: Emergency logistics system; robust optimization; site selection; multi-objec-

tive; hybrid frog jump algorithm 

 

1 Introduction 

In real life, all kinds of natural disasters, man-made disasters and other major emergencies have 

occurred repeatedly, causing serious disruptions to the social order and leading to huge casual-

ties and economic losses (Maharjan, R, et al, 2020). Therefore, the research and management 

of disaster emergency response and disaster emergency response system engineering have ex-

tremely important value and significance. When major emergencies, especially disaster events, 

occur suddenly, the emergency response system needs to be activated quickly in order to pro-

vide sufficient supplies to the affected areas and people to cope with the crisis. However, since 
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emergencies are usually difficult to predict in advance and the extent of damage from disasters 

is difficult to assess accurately, once a serious emergency occurs, especially a natural disaster, 

it has a wide range of impacts and a long duration of impacts, which poses a great challenge to 

emergency rescue. 

One of the common emergency response strategies is to pre-position relief supplies in emer-

gency relief facilities close to the potential disaster site. This can help to reduce the time it takes 

to deliver the supplies, keep the cost of the relief under control, and increase the effectiveness 

of the relief. Since post-disaster rescue efforts depend on the effective deployment and delivery 

of emergency relief supplies, this is also the main purpose of the emergency logistics system. 

Emergency rescue network planning is a key link in emergency rescue and emergency response, 

and reasonable planning can significantly improve the deployment efficiency and effectiveness 

of emergency supplies (Karatas, M, et al, 2021), (Eshghi, A. A, et al, 2022). This typically 

entails researching two distinct issues, namely the placement of emergency facilities and the 

distribution of emergency supplies. 

The research on emergency facilities can be traced back to the P-center of gravity and P-center 

problem proposed by Hakimi (Caglayan, N, et al, 2021), (Ji, X, et al, 2023). In the area of 

emergency facilities location and emergency logistics, studies (Shariat Mohaymany, A, et al, 

2020), (Pourghader Chobar, A, et al, 2022).  explored the emergency logistics and emergency 

materials allocation after natural disasters, to reduce the time it takes to deliver supplies and 

treat casualties, study (Men, J, et al, 2019) established a deterministic emergency logistics lo-

cation model; study (Pourghader Chobar, A, et al, 2022) introduced the minimum and maxi-

mum critical distance and coverage level function, built a multi-quantity and multi-quality cov-

erage model, and enhanced the genetic algorithm solution; In a study (Beiki, H, et al, 2020), 

the position of the emergency logistics system was examined in the immediate aftermath of the 

earthquake, and the genetic algorithm solution was enhanced. The concept, characteristics, sys-

tem, model design, and solution algorithm of emergency logistics site selection have all been 

usefully explored in these studies. However, the problem itself and the uncertainty of data ac-

quisition have not been taken into account, and all of the studies discuss and solve the problem 

using a single-objective model. In terms of multi-objective modeling, (Khanchehzarrin, S, et al, 

2022) integrates several traditional facility siting models and verifies the correctness of the 

models through examples based on the fairness and efficiency of emergency rescue facilities; 

(de Veluz, M. R. D, et al, 2023) constructs a multi-objective emergency facility siting problem 

considering total cost, fairness and efficiency. These academic works present the emergency 

problem as a deterministic issue without taking into account the emergency problem's different 

uncertainties. 

In dealing with uncertainty in a problem, two approaches, stochastic optimization and robust 

optimization, are commonly used. Stochastic optimization is one of the more commonly used 

classical methods, and its goal is often to maximise the expected gain under all circumstances 



 

or minimise the expected expense under all circumstances. In the research of the maximum 

coverage siting problem, for instance, study (Arshad, M. A, et al, 2022) proposed the idea of 

scenarios, and its goal was to maximise the number of demand served in all situations; a sce-

nario-based facility siting model was developed by study (Zahedi, A, et al, 2020) with the aim 

of reducing estimated costs across all scenarios and time periods. In addition, some scholars 

have used fuzzy number of intervals or interval gray number to describe and solve the uncer-

tainty of emergency logistics problems. The robust optimisation approach, which can be seen 

as a complimentary substitute for stochastic optimisation and sensitivity analysis, is character-

ised by the requirement to understand the probability distribution of uncertain parameters. It is 

derived from robust control theory. This minimax type of robust optimisation has captured the 

interest of many scholars. Minimax cost (minimax cost) or regret (minimax regret) form of 

robust model. For example, (Zafari, F, et al, 2019) used robust optimization method to study 

the single-objective emergency facility siting model with deadline requirements; (Liu, K, 2020) 

constructed a relative robust model for the siting of emergency logistics and distribution centers; 

For the location of the emergency material reserve store, (Ma, Y, et al, 2022) built a single-

objective robust optimisation model and a stochastic optimisation model. All of the aforemen-

tioned research use the robust optimisation approach to examine the topic of where to locate 

emergency facilities in a context with a single purpose, and the majority of them use a simplified 

model that only takes into account one emergency resource. 

To summarize, although some notable research results have been achieved in siting emergency 

facilities, there are still some information uncertainties and deficiencies in the handling of un-

certainties in siting emergency logistics and mobilizing emergency supplies. Few research have 

addressed the issue of various types of emergency materials; the majority of previous studies 

have concentrated on single emergency material situations. The methods of reducing many ob-

jectives to a single objective are typically used in multi-objective emergency logistics siting 

studies, but these methods do not effectively address the unit and order-of-magnitude disparities 

among multiple objectives. In addition, existing studies mainly focus on the uncertainty of the 

problem parameters and ignore the different rescue stages in the emergency rescue process that 

may lead to decision uncertainty. In fact, the two objectives of emergency rescue cost and emer-

gency rescue time may not be equally important, and they may be related to the rescue phase 

or the requirements of the decision maker. 

To address these issues, this study introduces uncertainty scenarios to describe various uncer-

tainty situations for emergency logistics facilities (e.g., material collection points and emer-

gency logistics centers). We developed a multi-objective emergency logistics center site selec-

tion deterministic model and a robust optimization model, and introduced cost preference 

weights to take into account different rescue stage divisions or different decision-making needs 



 

of decision makers. By converting the objective values to dimensionless values, the multi-ob-

jective problem is reduced to a single-objective problem, and then an optimisation solution is 

developed using a generic hybrid frog leap method. 

2 Related Work 

In an uncertain environment, there are usually three approaches to solving the problem of siting 

an emergency logistics center: stochastic planning, fuzzy planning, and robust optimization. 

Stochastic planning requires knowledge of the probability distribution of the desired uncertain 

parameters, which is often difficult to obtain in reality. Fuzzy planning requires a certain 

amount of sample data and the personal experience of the decision maker to determine the fuzzy 

affiliation function of the uncertain parameters, which is very dependent on the subjective judg-

ment of the decision maker. Compared with the former two, robust optimization can effectively 

reduce the interference of the uncertainty of data parameters on the final solution, especially 

for the field of emergency logistics, the adaptability of the optimal solution obtained by robust 

optimization is often better.  

Study (Ghasemi, P, et al, 2019) combed through the literature on the location of logistics and 

distribution centers for large-scale emergency rescue, and found that there are problems in the 

current research as well as put forward a future research trend, i.e., it is necessary to focus on 

solving the problem of multi-party coordination, and to optimize the layout of distribution cen-

ter location through scientific planning. Study (Yenice, Z. D, et al, 2020) considers the uncer-

tainty of emergency cost, establishes a robust siting path optimization model for multi-emer-

gency resources, and solves it through CPLEX and GAMS programming, thus providing deci-

sion support for relevant departments. Study (Jamali, A, et al, 2021) proposes an emergency 

site selection and scheduling model based on robust optimization, which takes into account the 

facility failure problem as well as storage and transportation costs. In response to the uncertainty 

of material demand and vehicle transportation time, study (He, L, et al, 2022) took into account 

the risk of transportation time overrun and the risk of logistics facility point failure. It then 

established a robust optimisation model for emergency logistics time minimization by using 

combined vehicle and helicopter transportation, and it demonstrated the risk resistance of the 

robust optimisation method. Study (Zheng, F, et al, 2023) established an uncertain emergency 

facility siting model with deadline requirements, and compared and analyzed the solution ob-

tained from robust optimization and the optimal solution in the deterministic case, and proved 

that the deviation of the robust solution is relatively small, and it can effectively avoid the risk. 

In (Jingchun Zhou, et al, 2023), the effect of random network failure on the location of emer-

gency facilities is proposed, and a heuristic algorithm is used to maximize the coverage for 

post-disaster relief work. To control the position of commodities and fatalities in earthquake 

reaction, study (Jingchun Zhou, et al, 2023) suggested a multi-objective, multi-model, multi-

commodity, multi-period robust optimisation model.Study (Sicuaio, T, et al, 2022) proposes a 

decision making model in the field of Artificial Intelligence and designs a coherent network 



 

which ensures the operation of certain infrastructures and potential resources even after they 

have been damaged due to disasters. 

In summary, the previous studies in the literature have achieved some results in the emergency 

logistics center siting problem, but there are some shortcomings: 1) Insufficient handling of 

information uncertainty. Most of the studies used different methods to deal with information 

uncertainty, such as stochastic planning, fuzzy planning and robust optimization. However, 

these methods still have limitations in dealing with uncertainty. For example, stochastic plan-

ning requires knowledge of the probability distribution, while fuzzy planning is highly depend-

ent on subjective judgment. Therefore, better methods are needed to cope with uncertainty, 

especially in emergency situations where uncertain parameters cannot be accurately estimated.2) 

Inadequate treatment of multi-objective problems. Most studies have addressed the multi-ob-

jective emergency logistics center siting problem, but the multi-objective problem is usually 

transformed into a single-objective problem, which may result in the trade-off between objec-

tives not being properly addressed. A better approach is to develop optimization algorithms 

applicable to multi-objective problems to effectively handle conflicts and trade-offs among 

multiple objectives. 

3 Mathematical Modeling  

3.1 Problem description 

We believe it is essential to quickly establish a number of emergency material collection points 

and emergency logistics centres in the disaster area or nearby areas after the occurrence of major 

emergencies (such as earthquakes, typhoons, and other natural disasters), considerations for 

space and resources, uncertainty regarding the material requirements of the impacted places 

(also known as emergency demand points), minimization of the emergency rescue time and 

emergency rescue expenses are all taken into account. We will address the issue of how to 

rationally choose the location for the emergency logistics centre, the appropriate material trans-

fer route, and the amount of transfer while taking into account the uncertainty of the material 

demand at the disaster point (referred to as the demand point) and the two objectives of mini-

mising the emergency relief time and the emergency relief cost. 

The emergency logistics system under consideration consists of an emergency materials col-

lection point, an emergency logistics centre, and an emergency demand point. Emergency ma-

terials are first transported from the collection point to the emergency logistics centre, where 

they are then distributed to the emergency demand point based on the current situation; The 

emergency supplies can also be delivered straight from the collection point to the emergency 

demand location because emergencies may result in the failure or blockage of rescue highways 

as well as other conditions. Emergency supplies can also be delivered directly from the collec-

tion site to the emergency demand location, taking into account the possibility that emergencies 

could result in situations like the obstruction of rescue routes or the failure of rescue roads. (1) 

Every emergency demand location does not require more emergency supplies than a single 



 

emergency logistics centre can store, and all emergency supplies can be transported uniformly 

by vehicles; (2) Don't assume that multiple emergency materials can't be delivered at the same 

time because the various types of emergency materials are compatible with transportation; (3) 

assuming that each emergency material collection point and the emergency logistics centre have 

an adequate number of transport vehicles and an adequate vehicle carrying capacity, do not 

consider the limitations on the working hours of the transport vehicles and the limitations on 

the capacity of the vehicles. 

3.2 Explanation of Symbols 

(1) Collection 

U :the set of emergency material collection points u . 

G :the set of emergency supplies type g ; 

I :set of alternative emergency material centers i ;  

J :set of emergency material demand points j . 

(2) Variables 

if :the fixed cost of opening i  alternative emergency logistics centers;  

g

uic
: the unit transportation cost of transporting the 

g
th emergency material from the material 

collection point u  to the alternative logistics center i ;  

g

ijc
: the unit transportation cost of the 

g
th emergency material from the alternative logistics 

center i to the emergency demand point j ;  

g

ujc
:the unit transportation cost of the 

g
th contingency material transported from the material 

collection point u  to the contingency demand point 
j

. 

g

uit
: transport time of the 

g
th emergency material from collection point u  to the alternative 

logistics center so that it is transported;  

g

ijt
: transportation time of the 

g
th emergency material from the alternative logistics center i  

to the emergency demand point 
j

;  

g

ujt
:transportation time of the 

g
th emergency material from material collection point u  to 

emergency demand point 
j

; 

g

it :turnaround time of the 
g

th emergency material at the alternative emergency logistics cen-

ter i ; 



 

t

ia
:the unit storage cost of the g th emergency material at the alternative emergency logistics 

center i . 

,maxg

uh
:the maximum quantity of the g th emergency material to be collected at material col-

lection point u . 

g

jh
:the quantity of the g th emergency material demanded at emergency demand point j . 

g

j :the quantity of the g th emergency material at the unsatisfied emergency demand point j . 

g

j :the unit penalty coefficient of unmet emergency demand point j  for the g th kind of 

emergency supplies. 

(3) Decision variables 

 0,1iz 
:decision variable of whether or not to site in alternative emergency logistics center 

i , 
1iz 

 means to site in emergency logistics center i , otherwise 
0iz 

; 

g

iy
: the storage capacity of the 

g
th emergency material in the alternative emergency logistics 

center i ; 

 

 0,1g

uiw 
:whether or not to transport the 

g
th emergency material from collection point u  

to logistics center i ; 

 0,1g

ujw 
:whether the 

g
th emergency material is transported from collection point u  to 

emergency demand point j ; 

 0,1g

ijw 
: whether to transport the 

g
th emergency material from logistics center i  to 

emergency demand point j ;  

g

uix
:the quantity of the

g
th emergency material to be transported from collection point u  to 

logistics center i ; 

g

ujx
:quantity of type 

g
 contingency transported from collection point u  to emergency de-

mand point 
j

; 



 

g

ijx
:the quantity of emergency goods of type g  transported from logistics center i  to emer-

gency demand point j . 

3.3 Multi-objective deterministic model construction  

The first emergency relief time target takes into account the turnaround and deployment times 

of emergency materials in the logistics centre as well as the transportation times of emergency 

materials between the material collection point, the emergency logistics centre, and the emer-

gency demand point; the second emergency relief cost target is primarily made up of the con-

struction costs. The construction and operation (storage) costs of the emergency logistics centre 

as well as the cost of transporting emergency supplies between the material collecting site, the 

emergency logistics centre, and the emergency demand point make up the bulk of the second 

emergency relief cost target. 

 

 
, , , , ,

min Time g g g g g g g g g g g g g

i i ui ui ui uj uj uj ij ij ij j j

g i g u i j j g

t y x t x t x t          
(1) 

 
, , , , ,

min Cos g g g g g g g g g g g g g

i i i i ui ui ui uj uj uj ij ij ij j j

i g i g u i j j g

t f z a y x c x c x c              
(2) 

. . , ,g g g

ui ui i i

u

s t x y z i I g G    
(3) 

, ,g g g

ij ij i i

j

x y z i I g G    
(4) 

, ,g g g g g

uj uj ij ij i j

u j

x x z h j J g G      
(5) 

,max , ,g g g g g

ui ui i uj uj u

i j

x z x h u U g G      
(6) 

1, ,g g

uj ij i

u i

z j J g G      
(7) 

 ,max , , ,g g

u j ui ij iz i I g G     
(8) 

,max ,g g

j u

j u

h h g G   
(9) 

, , {0,1}, , , ,g g g

ui uj ij u U i I j J g G        
(10) 

{0,1},iz i I  
(11) 

, , , 0, , , ,g g g g

i ui ui ijy x x x u U i I j J g G     
(12) 

Eqs. (1) and (2) in the model are the objective functions, and Eq. (2) is to minimise the cost of 

emergency rescue, which includes the cost of building the emergency logistics centre, the cost 

of storing emergency materials there, and the cost of transporting emergency materials. Eq. (1) 

is to minimise the emergency rescue time, which includes transport time and turnaround time. 



 

Eq. (3) for the emergency logistics system of the material flow conservation conditions, where 

Eqs. (3) and (4) show the emergency logistics centre at the flow conservation conditions, For-

mula (5) shows the emergency demand point at the flow conservation or the demand is satisfied, 

and Eq. (6) shows the flow at the point of collection of materials conservation or the collection 

of materials at the point of collection of the transport out; Eq. (7) indicates that Eq. (7) means 

that only one logistics center or collection point can provide material relief for a certain material 

at each emergency demand point; Eq. (8) means that only selected logistics centers can transport 

the material; Eq. (9) guarantees the supply capacity of each emergency material; the limits on 

decision variables are shown in equations (10) and (12). 

3.4 Multi-objective robust optimization model construction  

The demand for different types of materials at each emergency demand point is difficult to 

estimate accurately due to the suddenness of emergencies and the difficulty of accurate predic-

tion, and the transportation costs and times of emergency materials may change due to the pos-

sibility of an untimely supply of emergency materials. Considering these uncertainties, the set 

of problem scenarios and robust constraint coefficients are introduced, and scenario s S  is 

added to the symbols of the existing variables and decision variables to denote the variables or 

decision variables corresponding to scenario s S . In this way, the model is based on the 

above modeling model. To this end, the following multi-objective robust optimization model is 

constructed based on the model identified above: 

min max  Time s S s (13) 

min max  Costs S (14) 

 
, , , , ,

Time ,
s s s s s s s s sg gs g g g gs g g g gs gs g g

s i i ui ui ui uj uj uj ij ij ij j j

g i g u i j j g

t y x t x t x c s S           
(15) 

 
, , , , ,

Cost ,
s s s s s s s s s s s ss s g g g g g g gs g g g g g g

s i i i i ui ui ui uj uj uj ij ij ij j j

i g i g u i j j g

f z a y x c x c x c s S             
(16) 

s. t. , , ,gs gs gs s

ui ui i i

u

x y z s S i I g G     
(17) 

, , ,gs gs gs s

ij ij i i

j

x y z s S i I g G     
(18) 

, , ,gs gs gs gs s gs

uj uj ij ij i j

u i

x x z h s S j J g G       
(19) 

,max , , ,gs gs s gs gs g

ui ui i uj uj u

i i

x z x h s S u U g G       
(20) 

  **Time 1  Time ,s s sp s S   
(21) 

  **Cost 1  Cost ,s s sp s S   
(22) 



 

1, , ,gs gs s

uj uj i

u i

z s S j J g G       
(23) 

 max , , , ,
s sg g s

uj ui ij iz s S i I g G      
(24) 

,
,max , ,

s
u j

g g

j u

j u

h h s S g G    
(25) 

, , {0,1}, , , , ,gs gs gs

ui uj ij s S u U i I j J g G         
(26) 

{0,1}, ,s

iz s S i I   
(27) 

, , , 0, , , , ,gs gs gs gs

i ui uj ijy x x x s S u U i I j J g G      
(28) 

Where 
** **,s sTime Cost

 are the optimal time and optimal cost values of the multi-objective de-

terministic problem under scenario s , Eqs. (13)-(16) are the objective functions, which repre-

sent the minimization of the time and cost values under all scenarios, and the constraints Eqs. 

(21) and (22) represent the robustness constraints on the time and cost values under each sce-

nario.  

4 Model Solving  

4.1 Multi-objective treatment  

In the model of this paper, it is difficult to harmonize the time and cost objectives, and in the 

actual emergency logistics rescue process, the requirements on cost and time are different, so 

the importance of the two may be different. In addition, the measurement units of time and cost 

are different, so the traditional linear weighting method is not feasible. Although (Hong, J. D, 

et al, 2019). has used the percentage dimensionless method (using a fixed value of 100 divided 

by the target value) to eliminate the difference in the units of measurement of the two sub-

objectives, there are two shortcomings in this approach: one is that it does not truly reflect the 

difference in the units of measurement of the two objectives and their order of magnitude, and 

the other is that it cannot adapt to the changes in the problem data. For this reason, we first 

eliminated the two target units for each scenario, using the following formula: 

* *

 Time  Cost 
 Time ,  Cost 

 Time  Cost 

R Rs s
s s

s s

 

(29) 

Where 
* *,s sTime Cost

 denote the optimal objective values obtained by modifying the objective 

function of the multi-objective deterministic model under scenario s  to a single minimization 

of rescue time (without considering the objective Eq. (2)) and a single minimization of rescue 

cost (without considering the objective Eq. (1)). It is easy to see that Eq. (29) not only eliminates 

the unit of measurement between the two objectives, but also eliminates the order-of-magnitude 



 

difference between the two objective values, and automatically adapts to changes in the prob-

lem data. Secondly, we consider the degree of importance assigned to the two objectives by the 

decision maker, and let W be the value of the importance assigned to the cost objective by the 

decision maker according to the actual situation, which is called the cost preference weight, and 

satisfies 0 1w  . Then the objective functions (1)-(2) of the multi-objective deterministic 

model can be transformed into the following Eq.s: 

* *
 

 Time  Cost 
min(1 ) Time Cost (1 )

 Time Cost

R R s s
s s

s s

w w w w        

(30) 

The objective function of the multi-objective deterministic model is modified to Eq. (30), and 

the time and cost values corresponding to the optimal solution obtained under scenario s are set 

to be 
** **,s sTime Cost

, respectively, so that we can deal with the objective functions (13)-(14) 

of the multi-objective robust optimization model as follows: 

** **

 Time  Cost 
min max (1 )

 Time  Cost 

s s
s S

s s

w w    

(31) 

Noting that the main purpose of Eq. (29) is to eliminate the unit of measurement and its order 

of magnitude difference between the two objectives, for all the scenarios of the problem, small 

changes in the data can also cause changes in the values of optimal time and optimal cost under 

the single objective, which are usually not too large; based on this consideration, if the solution 

time of the algorithm is to be saved, it is also possible to use the values of optimal time 
*

0Time
 

and optimal cost 
*

0Cost
 under the single objective of the benchmark scenario in place of the 

values of optimal time 
*

sTime
 and optimal cost 

*

sCost
 under the scenarios with a single ob-

jective, respectively, in Eqs. (29) to (30). 

4.2 Design of Hybrid Frog Leading Algorithm  

Shuffled Frog Leading Algorithm (SFLA) is a new type of biomimetic intelligent optimization 

algorithm that imitates frog groups searching for food, which is proposed by  (Wan, M, et al, 

2023) to solve the combinatorial optimization problem. Its main feature is to divide the group 

of frogs into multiple subgroups, and each subgroup executes its own local search strategy, 

repeatedly merging and splitting frog groups during the search process, and exchanging infor-

mation among the subgroups. Because the algorithm uses the concept of subgroups, it increases 

the flexibility and effectiveness of the search process and avoids falling into local optima more 

effectively than other intelligent optimization methods.  

For any intelligent algorithm, the coding of the problem is the most important part. We encode 

the rescue service facilities (emergency material collection points and alternative emergency 

logistics centers) that each kind of material at the emergency material demand points receives, 



 

i.e., we use the rescue services provided by the emergency material collection points and the 

alternative emergency logistics centers for each kind of material at all the emergency material 

demand points as the encoding. Specifically, assuming that there are m  emergency material 

demand points, each of which has n  types of material demands, an m × n  dimensional vec-

tor (called a frog or chromosome) is constructed using symbolic coding: 

 1 1 2, , , , , , ,n n n mnX x x x x x L L L
(32) 

The value of 
(1 )k k nx m 

 indicates the number of the collection point or alternative emer-

gency logistics center that provides a certain type of emergency material to the corresponding 

demand point, and position 
( 1)k i n j   

 corresponds to the j th type of emergency ma-

terial for the i th demand point.  

For example, assuming that there are two demand points, each of which has three types of 

emergency material requirements, and that there are three material collection points (numbered 

I, 2, 3) and three alternative emergency logistics centers (numbered 4, 5, 6) in the rescue system, 

the frogs are (1, 4, 2, 5, 4, 1), indicating that the rescue services provided to the three types of 

emergency materials at the first demand point are Collection Point 1, Emergency Logistics 

Center 4, and Collection Point 2, and the rescue services provided to the three types of emer-

gency materials at the second demand point are Emergency Logistics Center 5, Emergency 

Logistics Center 4, and Collection Point l, respectively. collection point 1, emergency logistics 

center 4 and collection point 2 for the first demand point, and emergency logistics center 5, 

emergency logistics center 4 and collection point l for the second demand point.  

Initialization of the total frog population: According to the number of demand points for emer-

gency supplies and the number of emergency supplies, a character will be randomly generated 

for each locus of individual frogs to represent the facility that will provide services to the cor-

responding demand point and emergency supplies for that locus (it may be an alternative emer-

gency logistics center or a collection point for emergency supplies).  

The first frog is assigned to the first subpopulation, the second frog is assigned to the second 

subpopulation, and so on. All frogs are sorted from smallest to largest in terms of suitability, 

and so on, with the m th frog assigned to the mth subpopulation, and the 1m  th frog as-

signed to the 1m th subpopulation, and so on, until all frogs have been processed. 

Local search strategy: Assuming that the optimal and worst individuals of each group are 

,b w

l lF F
 respectively, and the global optimal individual of the frog group is 

b

gF
, each sub-

group performs a local search in the following way: 

,

, rand 

b w b

i i l i

i w b

i l i

F F F
F

F F

 
 

 (33) 



 

Where 
b

iF
 is the i th component of the locally optimal individual 

b

iF
 (or the globally op-

timal individual 
b

gF
), ,

w

i lF
 is the i th component of the locally worst individual 

w

lF
, and 

rand  denotes the random selection of a service facility (emergency material collection point 

or emergency logistics center).  

Adaptation function: For the multi-objective deterministic model, we directly use Eq. (30); for 

the multi-objective robust optimization model, we use Eq. (31), if the current individual does 

not satisfy the robust constraints under a certain scenario S, a large penalty term is applied to 

the adaptability of the individual.  

In this paper, the flowchart of the generalized hybrid frog jumping algorithm for solving the 

multi-objective deterministic model and the multi-objective robust optimization model is 

shown in Figure 1. 
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Figure 1 Flowchart of the hybrid frog jump algorithm SFLA (main flow on the left, local 

search flow on the right) 

5 Algorithm Analysis  

5.1 Data description  

It is known that an emergency logistics system has three emergency material collection points 

(numbered 1, 2, 3), three optional emergency logistics in a tb alternative points (numbered 4, 5, 

6), as well as three emergency material demand points (numbered 7, 8, 9) and three kinds of 

emergency material (numbered 1G
, 2G

, 3G
), the baseline scenario of the problem data in 

Table 1-3, and in addition to set the demand point of the shortage of emergency material unit 

penalty factor of 280. On the basis of the baseline scenario data, the demand for materials at the 



 

demand point, unit transportation cost and transportation time will be subject to the share of 

uniformly distributed random numbers on [0, 0.2], and a total of five scenarios of problem data 

will be generated.  

Table 1 Alternative emergency logistics center information 

 

Table 2 Information on material collection points 

No. Unit storage 

cost 

Material turna-

round time 

Unit transporta-

tion cost 

Transportation 

time 

4 5 6 4 5 6 7 8 9 7 8 9 

1 50 60 80 5 6 2 150 180 240 12 12 10 

2 50 50 60 2 4 6 150 150 180 4 8 13 

3 50 65 70 8 3 4 150 200 210 10 9 15 

Table 3 Information on emergency supplies 

Maxi-

mum 

collec-

tion vol-

ume 

1G
 2G

 3G
 

Require-

ments 
1G
 2G

 3G
 

1 400 500 400 7 400 400 400 

2 400 300 300 8 300 300 300 

3 200 200 300 9 200 200 200 

5.2 Results and analysis  

The following settings are used to solve the multi-objective model using the hybrid frog hop-

ping algorithm in this study: There can be up to 100 hybrid iterations, 40 local searches per frog 

subpopulation, a maximum of 4 subpopulations, and a maximum of 20 individuals in each sub-

population.In addition, this paper sets the robustness constraint coefficient to be the same for 

all the scenarios, i.e., 
,s sp p S  

. 

No. Construction 

Costs 

Unit storage 

cost 

Material turna-

round time 

Unit transporta-

tion cost 

Transportation 

time 

1G
 2G

 3G
 1G

 2G
 3G

 
7 8 9 7 8 9 

4 300 20 35 30 1 2 3 14

0 

11

0 

19

0 

6 4 7 

5 200 20 35 30 3 3 4 14

0 

10

0 

20

0 

3 3 4 

6 200 20 35 30 2 2 1 15

0 

10

0 

20

0 

5 8 3 



 

5.2.1 Cost preference weights  

First, the baseline scenario data are taken into account to confirm the reliability of the multi-

objective deterministic model. The hybrid frog jump algorithm is used to optimise and solve 

the cost preference weights, which are taken at intervals of 0.05 from 0 to 1. Table 4 displays 

the ideal rescue allocation plan for all types of materials at all demand points. According to the 

optimal rescue allocation programme 2-4-6-6-2-2-5-6-5, Collection Point 2, Emergency Logis-

tics Centre 4 and Emergency Logistics 6 are responsible for allocating the three different types 

of emergency supplies at the first demand point, while Emergency Logistics Centre 6, Collec-

tion Point 2 and Collection Point 2 are responsible for providing the three different types of 

emergency supplies at the second demand point and Emergency Logistics Centre 6 is respon-

sible for providing the rescue services at the third demand point. The findings in Table 4 demon-

strate that initially, the decision-maker prioritises the emergency response time when perform-

ing the rescue, and as a result, all three emergency logistics centres are opened to meet the 

initial rescue's time urgency requirements. However, as the cost preference weights gradually 

rise (from 0.35 to 0.6), the number of emergency logistics centres is reduced to two (i.e., the 

locations of Emergency Logistic Centres 5 and 6); when the cost preference weights further 

increase, the decision maker prioritizes the emergency response cost (i.e., the locations of Emer-

gency Logistic Centers 5 and 6). As the cost preference weight increases further, the decision 

maker prioritizes contingency costs (from 0.65 to 1), and the number of emergency logistics 

centers decreases to one (i.e., site selection for Emergency Logistics Center 4).  

Table 4 Optimal relief allocation scenarios with different cost preference weights 

Cost preference weights Optimal Rescue Allocation Program 

[0.05,0.3] 2-4-6-6-2-2-5-6-5 

[0.35,0.4] 2-1-6-5-2-1-5-5-6 

[0.45,0.5] 2-2-1-6-2-2-5-2-6 

[0.55,0.6] 2-1-1-1-2-1-5-5-6 

[0.65,0.8] 2-1-1-1-2-2-5-5-2 

0.85 1-1-1-2-2-2-5-6-3 

[0.9,1] 1-2-1-1-1-2-4-5-3 

Table 5 Optimal Rescue Paths and Rescue Material Movement under Three Cost Preference 

Weights 

w =0.35 w =0.55 w =0.8 

Rescue Costs 557100 Rescue Costs 470021 Rescue Costs 453900 

Rescue Time 21700 Rescue Time 25000 Rescue Time 26400 

1G
 2G

 3G
 1G

 2G
 3G

 1G
 2G

 3G
 

2 7  1 7  1 6 7   2 7  1 7  1 7  2 7  1 7  1 7  

400 400 400，400 400 400 400 400 400 400 



 

1 6 8   2 8  2 8  1 8  2 8  2 8  1 8  2 8  2 8  

300,300 300 300 300 300 300 300 300 300 

3 5 9   3 5 9   3 6 9   3 5 9   3 5 9   3 6 9   3 5 9   3 5 9   3 9  

200,200 200,200 200,200 200,200 200,200 200,20

0 

200,200 200,20

0 

200 

 

Table 5 gives the results of rescue routes and rescue material transportation under three cost 

preference weights in the baseline scenario. When the cost preference weights are 0.35, 0.55, 

and 0.8, the emergency rescue costs are 557,100, 47,100, and 45,390, and the emergency rescue 

times are 21,700, 25,000, and 26,400, respectively. Obviously, when the decision maker assigns 

different weights to the rescue costs, the emergency rescue costs and times have different opti-

mal values, and it is not possible to achieve the possibility of decreasing both the costs and 

times of the emergency rescue. Obviously, when the decision maker assigns different weights 

to rescue costs, the cost and time of emergency rescue have different optimal values, and it is 

impossible to achieve the possibility that the cost and time of emergency rescue decrease at the 

same time.  

Second, in order to further analyze the relationship between cost preference weights and emer-

gency response, especially how to set cost preference weights in different emergency response 

phases. Figure 2 shows the trend of the mean and standard deviation of cost and time for all 

scenarios as a function of cost preference weights. Table 5 and Figure 2 show that when the 

decision maker assigns larger and larger values to the cost preference weights, the optimal value 

of rescue cost decreases gradually, but the emergency rescue time increases gradually, which 

is consistent with the real rescue situation; on the other hand, different values of the cost pref-

erence weights can correspond to different stages of the emergency rescue, and in the initial 

stage of the emergency rescue, the main consideration is the high timeliness, and it is acceptable 

to have a higher emergency rescue cost, which can be regarded as corresponding to a smaller 

cost preference weight. In the early stage of emergency rescue, the main consideration is high 

timeliness, and it is acceptable to have higher emergency rescue cost, which can be regarded as 

corresponding to smaller cost preference weights (e.g., 0.35 in Table 5); in the middle stage of 

emergency rescue, both timeliness and cost have to be taken into account, which can be re-

garded as corresponding to moderate cost preference weights (e.g., 0.55 in Table 5); in the later 

stage of emergency rescue, timeliness takes a back seat, and the main consideration is the cost, 

which can be regarded as corresponding to larger cost preference weights (e.g., 0.8 in Table 5). 

Analyzing the trends of rescue cost and rescue time in Figure 2, the corresponding weights can 

be roughly divided into three intervals, with the first interval being [0, 0.45], the second [0.45, 

0.75], and the third [0.75, 1], which can be regarded as corresponding to the early, middle, late, 

and final stages of rescue, respectively. The first stage is characterized by low cost preference 

weights, the optimal rescue time is small, but the rescue cost remains high, which is in line with 



 

the time urgency requirement of activating the emergency rescue system after a disaster occurs; 

the second stage is characterized by moderate cost preference weights, which takes into account 

the urgency requirement of the rescue time, but also considers the cost limitation that can be 

afforded by the emergency rescue system, and the cost of the rescue decreases rapidly with the 

slow increase of weights, but the required rescue time increases rapidly; the third interval seg-

ment is [0.75, 1], and the three cost preference weights can be seen as corresponding to the 

early, middle, late or final stage respectively. The third stage is characterized by a large cost 

preference weight, which mainly considers the cost limitations of the emergency rescue system 

and is in line with the characteristics of the late stage or the end stage of emergency rescue, in 

which the cost decreases slowly and the time increases a little faster. 

 

Figure 2 Trends in the mean and standard deviation of the deterministic model 

 

Figure 3 Trends in the mean values of the two models 

 



 

 

Figure 4 Trend of standard deviation of the two models 

Again, in this research, the robust constraint coefficients of all the scenarios are assumed to be 

0.2 in order to examine the benefits and drawbacks of the multi-objective robust optimisation 

model and the deterministic model. Figures 3 and 4 show the trend of the mean (time and cost) 

and standard deviation (time and cost) of the two models with the variation of cost preference 

weights, respectively. The average results in Figure 3 only give an initial indication that there 

is not much difference between the two models when the cost preference weights are taken at 

[0, 0.55] and [0.75, 1], but the average cost of the deterministic model is significantly higher 

than the average cost of the robust optimization model when the cost preference weights are 

taken at [0.6, 0.7]. However, when we focus on the standard deviations (time and cost) of the 

two models given in Figure 4, We can see that both of the deterministic model's standard devi-

ations are higher than those of the robust optimisation model; in particular, when the cost pref-

erence weights are taken as [0.55, 0.7], the deterministic model's standard deviation is about 

twice as high as that of the robust optimisation model. This suggests that the robust optimization 

model is more resistant to various uncertainties. Specifically, in terms of the general trend, the 

corresponding cost preference weights of the robust model can be divided into three bands, the 

first band is [0, 0.45], the second band is roughly [0.45, 0.75], and the third band is roughly 

[0.75, 1], and the three cost preference weight bands can be regarded as corresponding to the 

early, middle, and late stages of the rescue, respectively.  

According to the results of the chart and the previous discussion, we can consider the emer-

gency rescue is divided into three types, the rescue of the early stage of the time urgency, the 

rescue of the rescue of the middle stage of the rescue of the rescue of the cost and the rescue of 

the rescue of the late stage of the rescue of the rescue of the cost, decision-making or modeling 

optimization of the solution can be chosen to choose a different cost preference weight, and 

here, according to the discussion of the above will be the cost of the weight of the range of 

values of the weight of preference for the distinction as [0, 0.45], [0.45, 0.75], [0.45, 0.75], 

[0.75]. Here, based on the above discussion, the range of cost preference weights is distin-

guished as [0, 0.45], [0.45, 0.75] and [0.75, 1], or a single value, such as 0.35, 0.55 and 0.8. 

5.2.2 Impact analysis of robust constraint coefficients  



 

In order to examine the impact of different robust constraint coefficients, we consider five dif-

ferent values of robust constraint coefficients, i.e., 0.1, 0.15, 0.2, 0.25, and 0.3. Figure 5 gives 

the robust objective values obtained by the multi-objective robust optimization model with dif-

ferent robust constraint coefficients (left) and the average objective values of all scenarios under 

the current robust optimal solution (right). The average objective value here means that the 

optimal robust solution can be obtained for a given robust constraint coefficient, which corre-

sponds to the objective value of each scenario, and the average of these objective values is 

calculated. As can be seen from Figure 5, when the cost preference weights are taken in [0, 0.45] 

and [0.75, 1], the robust objective value and the average objective value under different robust 

constraint coefficients are very stable; in addition, it is noted that when the cost preference 

weights are taken in [0.75, 1] and all the robust constraint coefficients are taken in 0.1, the 

robust objective value and the average objective value have large fluctuations, which indicates 

that the robust coefficients are small (i.e., given the robust constraint coefficient), and the av-

erage objective value of the cost preference weights are not very stable. This shows that when 

the robustness coefficient is small (i.e., the given robustness requirements are more stringent), 

it is more difficult to find a robust optimal solution, and even in extreme cases, it may not be 

possible to find a feasible solution that satisfies all the scenarios. When the cost preference 

weights are within [0.5, 0.75], different robust constraint coefficients have different impacts. 

When the robust requirements are more stringent (robust coefficient of 0.1), the robust objective 

value increases rapidly with the increase of the cost preference weights; when the robust re-

quirements are more lenient (robust coefficient of 0.3), the robust objective value fluctuates 

upward and downward; and when the robust requirements are general (0.15 to 0.25), the robust 

objective value is relatively high and the robust objective value is relatively low. When the 

robustness requirement is moderate (0.15 to 0.25), the robustness target value is relatively flat. 

Based on the above analysis, we recommend that the robust constraint coefficients in robust 

optimization should be taken in the range of [0.15, 0.25], or take the middle value of 0.2. 

 

 

Figure 5 Impact analysis of robust constraint coefficients 

5.3 Real Scenario 



 

Since many earthquakes have occurred in Sichuan Province in recent years, the calculation 

examples in this chapter will take Sichuan Province as the object of analysis. A total of 15 

emergency material demand points are set up, including Wenchuan, Mianzhu, Beichuan and 

other places, and 4 alternative points are proposed to establish emergency logistics centers, 

including Chengdu, Mianyang and other places. The emergency material demand of each re-

gion is determined according to population data, etc., as shown in Table 6.  

Table 6 Emergency material demand in disaster-stricken regions 

Demand Points I  Demand (million 

pieces) 

Demand Points i  Demand (million 

pieces) 

1 Wenchuan 6-14 9 Pengzhou 74-83 

2 Mianzhu 45-53 10 Jiangyou 81-92 

3 Beichuan 15-23 11 Deyang 58-66 

4 Qingchuan 16-25 12 Ya'an 58-66 

5 Mao County 5-12 13 Leshan 108-116 

6 Dujiangyan 64-72 14 Baoxing 0-9 

7 Anxian 39-45 15 Ziyang 105-113 

8 Pingwu 12-21   

The construction cost of the emergency logistics center, capacity based on the construction 

standards of the disaster relief supplies reserve depot and related policies, as shown in Table 7-

8.  

Table 7 Basic parameters of alternative points of emergency logistics center 

Alternative Points J  Logistics Center Capacity 

(10,000 pieces) 

Construction cost (million 

yuan) 

1 Chengdu 330 300 

2 Mianyang 300 230 

3 Guangyuan 280 210 

4 Meishan 260 180 

Table 8 Other costs 

Transportation costs (million 

yuan per 10,000 units. kilo-

meters) 

Delayed transportation cost 

(million yuan/million pieces-

hours) 

Storage cost (million 

yuan/million pieces) 

0.0125 5 2 

The distance between the affected area and the alternative point of the emergency logistics 

center is calculated according to the road distance between the two cities given by Baidu map, 

as shown in Table 9.  

Table 9 Distance between the affected area and the alternative points of the emergency logis-

tics center Unit: km 



 

Alternative Points J  

 

Disaster area I  

1 Chengdu 2 Mianyang 3 Guangyuan 4 Leshan 

1 Wenchuan 135 215 382 202 

2 Mianzhu 92 52 225 18 

3 Beichuan 200 92 255 292 

4 Qingchuan 288 176 94 375 

5 Mao County 175 255 422 242 

6 Dujiangyan 66 144 313 135 

7 Anxian 122 18 178 210 

8 Pingwu 276 160 202 365 

9 Pengzhou 44 95 262 133 

10 Jiangyou 158 43 148 252 

11 Deyang 73 52 222 162 

12 Ya'an 138 152 419 101 

13 Leshan 175 292 459 72 

14 Baoxing 200 317 478 168 

15 Ziyang 107 199 366 108 

Emergency supplies transport vehicle speed change range of 30 km / h a 50 km / h, road speed 

under normal circumstances for 50 km / d, when the emergency supplies transport penalty time 

for 3 hours, that is, the transport time of more than 3 hours will produce delayed transportation 

costs.  

5.3.1 Deterministic model solution  

Based on the parameter setting in 5.1, in the deterministic siting model, the deterministic de-

mand of emergency materials in the affected area and the transportation time between the af-

fected area and the emergency logistics center can be calculated as shown in Table 10-11.  

Table 10 Demand for emergency materials in the affected area (deterministic) 

Demand Points I  Demand (million 

pieces) 

Demand Points i  Demand (million 

pieces) 

1 Wenchuan 9 9 Pengzhou 79 

2 Mianzhu 49 10 Jiangyou 85 

3 Beichuan 21 11 Deyang 62 

4 Qingchuan 18 12 Ya'an 62 

5 Mao County 9 13 Leshan 110 

6 Dujiangyan 68 14 Baoxing 5 

7 Anxian 41 15 Ziyang 107 

8 Pingwu 15   

 



 

 

 

Table 11 Transportation time between the affected region and the alternative points of the 

emergency logistics center Unit: hours 

Alternative Points J  

 

Disaster area I  

1 Chengdu 2 Mianyang 3 Guangyuan 4 Leshan 

1 Wenchuan 2.69 4.29 7.61 6.19 

2 Mianzhu 1.85 1.03 4.49 5.55 

3 Beichuan 4 1.85 5.11 7.45 

4 Qingchuan 5.71 3.49 1.85 9.3 

5 Mao County 3.49 5.09 8.43 6.97 

6 Dujiangyan 1.2 2.85 6.25 4.7 

7 Anxian 2.45 0.33 3.57 5.93 

8 Pingwu 5.6 3.3 4.05 8.95 

9 Pengzhou 0.8 1.89 5.21 4.5 

10 Jiangyou 3.13 0.85 2.95 6.73 

11 Deyang 1.45 1.05 4.5 4.8 

12 Ya'an 2.77 5.01 8.35 2.05 

13 Leshan 3.53 5.81 9.17 1.43 

14 Baoxing 4 6.33 9.59 3.33 

15 Ziyang 2.2 3.95 7.2 2.19 

The weighting of transportation time and cost in the model can be adjusted by adjusting the 

parameter input, i.e., whether transportation time or transportation cost is more important to the 

site selection results in the site selection model. Now, we take 0.5   and carry out the cal-

culation.  

The solution will be done with the help of a toolbox in Matlab software called RSOME (Robust 

Stochastic Optimization Made Easy), which is a Matlab algebraic toolbox for general optimi-

zation modeling under uncertainty. After Matlab software calculations, the optimal objective 

function is 25,193,000 yuan, the total cost of deterministic model site selection The specific 

composition is shown in Table 12. 

 

Table 12 Deterministic model site selection total cost composition Unit: 10,000 yuan 

Construction 

Costs 

Inventory Costs Transportation 

Costs 

Delay Penalty 

Cost 

Objective Func-

tion 

692 1488 689 22.1 2519.2 



 

The optimal choice of emergency logistics center is shown in Table 13, where l indicates that 

the location is chosen to establish an emergency logistics center and 0 indicates that it is not 

chosen.  

 

Table 13 Deterministic model emergency logistics center selection 

Emergency Lo-

gistics Center 

1 Chengdu 2 Mianyang 3 Guangyuan 4 Meishan 

Whether to 

choose 

1 1 0 1 

The proportions of needs being met at each emergency material demand point are shown in 

Table 14.  

 

 

 

Table 14 Proportion of needs met at the point of need for deterministic modeled emergency 

supplies 

Alternative Points J  

 

Disaster area I  

1 Chengdu 2 Mianyang 3 Meishan 

1 Wenchuan 1 0 1 

2 Mianzhu 0 0 1 

3 Beichuan 0 0 1 

4 Qingchuan 0 1 0 

5 Mao County 0 0 0 

6 Dujiangyan 0 0 0 

7 Anxian 1 0 0 

8 Pingwu 0 1 0 

9 Pengzhou 0 1 0 

10 Jiangyou 1 0 0 

11 Deyang 1 1 0 

12 Ya'an 0 0 1 

13 Leshan 0 0 1 

14 Baoxing 0 1 0 

15 Ziyang 1 0 0 

This allows us to determine the volume of emergency supplies that the emergency logistics 

centre will transfer to each location where they are needed, as well as the volume of supplies 

that the emergency logistics centre will stock, as shown in Table 15.  

 



 

Table 15 Deterministic model emergency logistics center to each demand point transport vol-

ume Unit: 10,000 pieces 

Alternative Points J  

 

Disaster area I  

1 Chengdu 2 Mianyang 3 Meishan 

1 Wenchuan 9 0 0 

2 Mianzhu 0 47 0 

3 Beichuan 0 21 0 

4 Qingchuan 0 17 0 

5 Mao County 9 0 0 

6 Dujiangyan 66 0 0 

7 Anxian 0 43 0 

8 Pingwu 0 15 0 

9 Pengzhou 79 0 0 

10 Jiangyou 0 87 0 

11 Deyang 0 60 0 

12 Ya'an 0 0 62 

13 Leshan 0 0 110 

14 Baoxing 0 0 5 

15 Ziyang 107 0 0 

Total transportation volume 270 290 177 

Warehouse utilization 81.9% 96.9% 68.2% 

5.3.2 Robust optimization model solution  

The parameters required by the model are given in 5.1 and 5.2.1, also solved by Matlab pro-

gramming, by setting different r to adjust the degree of conservatism of the robust optimization 

model, so that  5, the optimal objective function value of 2572.02, robust optimization 

model of the total cost of the site selection of the specific composition of the model as shown 

in Table 16.  

Table 16 Robust optimization model site selection total cost composition Unit: million yuan 

The optimal selection of the emergency logistics center in the robust optimization model is 

shown in Table 17, with 1 indicating that the location is selected to establish the emergency 

logistics center and O indicating that it is not selected.  

Table 17 Robust optimization model of emergency logistics center selection 

Control 

level 

Construction 

Costs 

Inventory 

Costs 

Transportation 

Costs 

Delay Pen-

alty Cost 

Objective 

Function 

 5 692 1519 705.1 22.9 2572.02 



 

Emergency Lo-

gistics Center 

1 Chengdu 2 Mianyang 3 Guangyuan 4 Meishan 

Whether to 

choose 

1 1 0 1 

The percentage of demand being satisfied at each emergency material demand point is shown 

in Table 18.  

Table 18 Proportion of emergency material demand point requirements satisfied by robust op-

timization model 

Alternative Points J  

 

Disaster area I  

1 Chengdu 2 Mianyang 3 Meishan 

1 Wenchuan 1 0 0 

2 Mianzhu 0 0 0 

3 Beichuan 0 0 0 

4 Qingchuan 0 0 0 

5 Mao County 0 0 1 

6 Dujiangyan 1 1 0 

7 Anxian 0 0 0 

8 Pingwu 0 0 0 

9 Pengzhou 0 0 1 

10 Jiangyou 0 1 0 

11 Deyang 1 0 0 

12 Ya'an 0 0 1 

13 Leshan 0 1 0 

14 Baoxing 0 0 0 

15 Ziyang 0 0 1 

From this, the inventory quantity of the emergency logistics center can be calculated, as shown 

in Table 19.  

Table 19 Robust optimization model emergency logistics center to each demand point 

transport volume Unit: 10,000 pieces 

Alternative Points J  

 

Disaster area I  

1 Chengdu 2 Mianyang 3 Meishan 

Total transportation/inven-

tory 

282 300 177 

Warehouse utilization 85.9% 100% 68.1% 

Robust Optimal Site Selection Model The optimal site selection scheme and transportation 

routes are shown in Figure 7. 



 

5.4 Comparison between deterministic model and robust optimization model   

According to the above can be derived from the two models of the total cost of site selection 

composition comparison, F = 0 indicates that there is no change in demand, all the demand is 

fixed, the model is equivalent to the deterministic site selection model, as shown in Table 20.  

Table 20 Comparison of the total cost of site selection between the two models Unit: 10,000 

yuan 

Control 

level 

Construction 

Costs 

Inventory 

Costs 

Transportation 

Costs 

Delay Pen-

alty Cost 

Objective 

Function 

 0 690 1477 682 21.5 2518.8 

 5 690 1517 705.2 23.8 2573.02 

 10 690 1557 725.3122 23.8 2621.62 

 15 690 1597 759.411 28.9 2682.63 

The cost of building the emergency logistics centre does not change with the increase in control 

level, as can be seen from the comparison of the results of the deterministic model and robust 

optimisation model. Both models use the same site selection scheme and choose Chengdu, 

Mianyang, and Meishan as the three locations for the construction of the emergency logistics 

centre. In contrast, the inventory cost, transportation cost, and delayed penalty cost keep in-

creasing with the increase of the number of emergency material demand points with uncertain 

demand (Ershadi, M. M, et al, 2022), (Boonmee, C, et al, 2020).  

Table 21 Comparison of warehouse utilization rate of two models 

Control level 1 Chengdu 2 Mianyang 3 Meishan 

 0 82.2% 97.2% 67.8% 

 5 85.9% 100% 67.8% 

 10 89.2% 100% 70.2% 

 15 94.3% 100% 72.4% 

As can be seen from Table 21, the utilization rate of Mianyang Emergency Logistics Center is 

the highest in both models. And when the storage capacity of emergency materials in Mianyang 

Emergency Logistics Center reaches the upper limit, the emergency materials are preferentially 

stored in Chengdu Emergency Logistics Center, i.e., the utilization rate of Chengdu Emergency 

Logistics Center-61N increases faster than the utilization rate of Meishan Emergency Logistics 

Center. 

6 Conclusion 

This paper considers how to activate the emergency rescue system to carry out emergency res-

cue operations after a special event, especially a natural disaster, and examines the problems of 

emergency logistics center site selection and the corresponding material transfer routes and 

transfer volumes, incorporating the uncertainties of material demand, transport costs and 

transport times at the disaster site (demand site), by developing a deterministic multi-objective 

emergency logistics centre site selection model as well as a strong optimisation model of multi-



 

objective emergency logistics centre site selection, with the goals of reducing the overall rescue 

costs as well as the length of time it takes to save people. In order to transform the bi-objective 

into a single-objective and take into account factors like changes in the order of magnitude of 

the problem data, a method of transforming the bi-objective into a single-objective using the 

optimal value of a single-objective is constructed, which uses a robust optimisation model for 

multi-objective emergency logistics centre site selection. In order to solve the two models effi-

ciently, a generalized hybrid frog jumping algorithm is designed, and the effectiveness of the 

model and the algorithm is verified with examples. Based on the results, we discuss the effects 

of different cost preference weights and different robust constraint coefficients, and give the 

rules for setting cost preference weights and the recommended values of robust constraint co-

efficients in different phases of emergency rescue. However, there are also shortcomings in this 

study, such as the differences in transportation modes, the road conditions or interruptions of 

rescue roads, the number and capacity constraints of material carriers, and the price factors of 

collecting emergency materials in different rescue phases, etc., Which approach to further re-

search on the location of emergency logistics centres will be practical. 
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