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Abstract: Do carbon taxes reduce CO2 emissions in the
countries that adopt it? Andersson (2019. Carbon taxes
and CO2 emissions: Sweden as a case study. American
Economic Journal: Economic Policy, 11(4), 1–30) provides a
clear, affirmative answer. His article has been widely cited
as evidence that carbon taxes “work.” To check whether
the estimates from Andersson (2019) are reliable, I repli-
cate his article using its publicly available data and codes.
I modify his synthetic control method (SCM) by using a
more restricted set of control units (excluding one poten-
tially treated unit). I also use a more efficient methodology,
the Prais-Winsten estimator, to estimate price effects on
gasoline consumption. In addition, I compute prediction
intervals (PIs) and add these to the SCM estimates, using
the newly developed scpi R package. My best estimate is
that carbon taxes reduced per-capita CO2 emissions in
Sweden’s transport sector by 7.7%, confirming Andersson’s
main finding. I then extend Andersson’s approach to the Nor-
wegian transport sector, estimating a smaller reduction of
2.4%. However, this effect falls within the PIs of the estimates
assuming no carbon taxes. When I extend the analysis to the
national level in Sweden, I estimate wide PIs and obtain incon-
clusive results.

Keywords: replications, synthetic control method, carbon
tax, CO2 emissions
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1 Introduction

The carbon tax is a market-based policy instrument that
aims to reduce energy-related CO2 emissions stemming
from fossil fuel consumption. It taxes fossil fuels based
on their carbon content, thereby establishing a price for
CO2 pollution. This approach aligns with the “polluter pays”
principle (Metcalf, 2021), offering the potential for cost-effi-
cient environmental benefits. In the early 1990s, Denmark,
Finland, the Netherlands, Norway, and Sweden became the
first countries in the world to adopt carbon taxes (Tirkaso &
Gren, 2020). Consequently, these countries have attracted
the attention of researchers investigating the effectiveness
of carbon taxes as a means of mitigating CO2 emissions.

A common approach is to use regression to estimate
the effect of carbon taxes on energy consumption (Davis &
Kilian, 2011; Enevoldsen et al., 2007; Li et al., 2014; Tirkaso &
Gren, 2020). Given this estimate, the reduction in energy
consumption can then be translated to a corresponding
reduction in CO2 emissions.

A concern with this approach is endogeneity. To address
this concern, other studies have treated the introduction of
carbon taxes as a quasi-natural experiment and adopted
a difference-in-differences (DID) approach (Lin & Li, 2011;
Metcalf, 2019; Pretis, 2022). This approach relies on dividing
countries/jurisdictions into treatment and control units. CO2

emissions are observed over a period before the carbon
tax is adopted (pre-treatment) and after the carbon tax is
adopted (post-treatment). The control countries/jurisdic-
tions are chosen to represent the counterfactual, pro-
viding an estimate of the potential outcome (what CO2

emissions would have been) if the treatment country
had not adopted a carbon tax.

Crucial to the DID approach is the assumption of parallel
trends (PT). In a recent article, Andersson (2019) focussed on
the Swedish transport sector and noted that pre-treatment
growth rates of CO2 emissions were different for control
and treatment units in violation of the assumption of PT.
Accordingly, he adopted a two-pronged approach.
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His main analysis employed a synthetic control method
(SCM) to estimate the effect of carbon taxes and the Value-
added Tax (VAT) on CO2 emissions. He then used regression
analysis of the price elasticity of gasoline consumption to
disentangle the effect of VAT from that of carbon taxes. He
concluded that the combined effect of extending the VAT to
gasoline and diesel and introducing a carbon tax reduced CO2

emissions in the Swedish transport sector by almost 11%, with
approximately 6% coming solely from the carbon tax.

The Andersson (2019) study is noteworthy for several
reasons. First, it finds a significant impact of carbon taxes
on CO2 emissions where previous studies had not (Green,
2021). Second, it studies Sweden, which is often raised as a
model for using carbon taxes to mitigate CO2 emissions.
And finally, it has been very influential. It has been cited
over 450 times in Google Scholar (as measured on April 2,
2024). It received the “Best Paper Award” from the Amer-
ican Economic Journal: Economic Policy, chosen among all
articles published in the journal from 2019 to 2021. The
award specifically highlighted its implications for public
policy by noting that “The effects were larger than previous
research had shown, suggesting that policymakers were
underestimating the upside of implementing carbon pri-
cing policies” (American Economic Association, 2022).

Given its influence and implications for public policy, it
is important to confirm that Andersson’s results are reliable.
As Duvendack et al. (2015) note, “there has been a recogni-
tion in the economics profession that many empirical results
in economics are not reproducible or not generalizable
to alternative empirical specifications, econometric proce-
dures, extensions of the data, or other study modifications.”
Accordingly, this study follows Mueller-Langer et al. (2019)’s
call for the need for “post-publication quality checks in addi-
tion to the pre-publication peer review process.”

Drawing upon Clemens’ (2017) framework, my analysis
employs a comprehensive approach encompassing four
types of replications and robustness tests: verification,
reproduction, reanalysis, and extension. For verification,
I run Andersson’s (2019) data and code to confirm that they
produce the results reported in his article. I also go back to
his primary data sources and re-assemble his data set from
first principles. For reproduction, I modified the data
underlying his analysis by dropping Denmark from his
comparison group, which also instituted a carbon tax at
about the same time.

For reanalysis, I apply two new methods for data ana-
lysis. The first is the Prais-Winsten estimator to estimate
gasoline consumption, which accounts for serial correla-
tion. The second one employs the newly developed R
package scpi to obtain prediction intervals (PIs) for the
SCM estimates. This allows me to assess whether random

error could account for the differences between observed
emissions under the carbon tax and those estimated from
synthesized scenarios assuming no carbon tax.

Finally, I extend Andersson’s analysis in two direc-
tions. First, I apply his same procedure to the Norwegian
transport sector, which also implemented a carbon tax at
this time. Second, I expanded the analysis to include not
just the transport industry, but the whole country of
Sweden to see if the reduction in CO2 emissions was suffi-
cient to be noticeable at the country level.

My analysis leads me to conclude that Andersson’s find-
ings for Sweden’s transport sector are reproducible and
robust. My best estimate is slightly larger than Andersson’s.
I estimate that the carbon tax reduced CO2 emissions in the
Swedish transport sector on average by 7.7%. My extension
analysis, however, finds only a small effect of carbon taxes in
Norway’s transport sector (2.4%). Further, the estimated effect
lies inside a PI associated with emissions under a no carbon
tax regime. When I further extend the analysis to consider
country-level emissions for all of Sweden, I obtain inconclu-
sive estimates with wide PIs. Thus, my analysis is unable to
find evidence of the effectiveness of carbon taxes beyond the
Swedish transport sector studied by Andersson. This suggests
that Sweden’s carbon tax experience may not be representa-
tive of the effects of carbon taxes elsewhere.

This article proceeds as follows. Section 2 gives back-
ground and context for the introduction of carbon taxes in
Sweden. Section 3 discusses the datasets and empirical
methods used in this analysis. Section 4 replicates Anders-
son’s results for the Swedish transport sector. Section 5
extends Andersson’s approach to the Norwegian transport
sector. Section 6 further extends Andersson’s approach to a
country-level analysis of Sweden covering all sectors. Sec-
tion 7 produces the PIs for the SCM estimates. Section 8
concludes by summarizing my key results and what they
contribute to our understanding of carbon taxes and CO2

emissions.

2 Sweden’s Carbon Tax

In March 1990, Sweden extended the VAT to gasoline and
petrol, with the real (inflation-adjusted) tax rate subse-
quently held constant. In 1991, it implemented a carbon tax
as part of the Environmental Tax Reform, becoming one of
the first countries in the world to do so. Simultaneously with
the introduction of carbon taxes, energy taxes on fossil fuels
were reduced by 25–50%. The implementation of multiple tax
policies at roughly the same time makes it difficult to isolate
the separate impact of carbon taxes.
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Energy taxes and carbon taxes have been central to
Sweden’s environmental policy for the past 30 years. Having
been modified several times since its implementation, the
carbon tax in Sweden today is characterized by a high tax
rate that is predominantly levied on fossil fuels used as motor
fuel and for heating purposes (Samuel et al., 2020). When first
introduced, the carbon tax rate was 30 USD per ton of CO2

(Andersson, 2019). This rate was gradually increased to around
44 USD in 2000. It experienced a sharp increase in the early
2000s, rising to around 140 USD in 2017, the highest level of
carbon taxation in the world (IEA, 2019).

Exemptions have been an important part of the Swedish
tax system. Before 2005, fuels used for electricity production
were exempted from the carbon tax. The tax rate for the
manufacturing industry was set to 25% of other sectors in
1993 and exempted from the general energy tax due to
concerns about international competitiveness and carbon
leakage (Andersen et al., 2001).1 Taking exemptions into
account, the Swedish carbon tax covers approximately
40% of Sweden’s greenhouse gases.

3 Data and Methods

3.1 Data

The data and code used by Andersson (2019) are posted at:
https://www.aeaweb.org/articles?id=10.1257/pol.20170144.
The materials were well documented and clearly explained.
Data were provided for 15 OECD countries (excluding Norway),
with Sweden being the treated unit and the other 14 carefully
chosen OECD countries serving as controls. Andersson set the
time of treatment as 1990, the year when the VAT was
introduced.

As part of my verification analysis, I attempted to retrieve
all data from the original data sources in Andersson (2019). My
goal was to build up a dataset for 16 OECD countries (including
Norway) for the period 1960–2005. This would enable me to
confirm that the data used by Andersson could be recreated
from the original sources, so that a researcher working from
the same data sources would get the same results. I also
needed to be certain that the same variables were available

for Norway as part of my extension analysis. In doing so, I
discovered that data on the level of CO2 emissions from trans-
port are no longer available in the World Bank WDI database
(2020). As a result, I sought alternative data sources.

Andersson subsequently made available to me the ori-
ginal data he downloaded from the World Bank WDI
Database (2015). These were virtually identical to the data
publicly packaged with Andersson (2019) (Table 1), which
also includes CO2 emissions for Norway’s transport sector.
My extension analysis relies on these latter data.

In order to base my analysis as much as possible on
publicly available data, I also indirectly calculated CO2

emissions from transport (million metric tons) as the pro-
duct of “CO2 emissions from fuel combustion” (from IEA)
and “CO2 emissions from transport (% of total fuel combus-
tion)” (from the 2020 World Bank WDI Database). The com-
piled CO2 emissions data from transport starts from 1971,
while the WDI data from Andersson dates to 1960. The
values of the constructed CO2 emissions variable are very
similar, with a difference of only 0.6% on average over the
period 1971–2005. My initial analysis uses these publicly
sourced, CO2 emissions data.

Later, I use Andersson’s emissions data from 1960 to
2005. The longer pre-treatment period enables me to better
assess whether emissions from the synthetic control follow
that of the treated unit. It also allows me to be more con-
sistent with Andersson (2019) in my extension to Norway.
For all the other variables, I use the publicly available data
that I directly retrieved from the original sources.

Aside from past emissions data, Andersson’s SCM ana-
lysis relies on the following set of predictor variables: real
GDP per capita, number of motor vehicles, gasoline con-
sumption, and urban population. The data for the predic-
tors cover the years 1980–1989. Table 1 provides summary
statistics of Andersson’s dataset and my compiled dataset
for the 15 OECD countries (excluding Norway). As shown in
the table, my compiled data and Andersson’s data are iden-
tical for the first three predictors, and only slightly dif-
ferent for Urban Population.

3.2 Synthetic Control Method

The SCM was originally proposed in Abadie and Gardeazabal
(2003) and Abadie et al. (2010) to estimate the effect of
large-scale or aggregate interventions. It uses a data-
driven approach to construct a control unit (synthetic
control), which is a weighted average of the untreated
units in the donor pool. The intuition is that the combina-
tion of unaffected units provides a more appropriate



1 Carbon leakage happens when businesses transfer production to
other countries with laxer emission constraints because of the raising
costs induced by climate policies. This could lead to an increase in the
total emissions European Commission (2023). Carbon Leakage. https://
climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/
free-allocation/carbon-leakage_en.
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comparison than any single unaffected unit alone. The
following is the basic framework of SCM.

Suppose there are +J 1 units, = +j J1, 2, …, 1, with
the first unit ( )=j 1 being the treated unit and the others
untreated units consisting of the “donor pool”. The time
periods are =t T1, 2, ... , , and the first T0 periods are the
pre-intervention period. For each unit j and time period t ,
we define Yjt

I as the potential outcome when the unit is

under intervention (“I”), and Yjt
N as the potential outcome

without intervention (“N”). Then the treatment effect for
the treated unit in period ( )>t t T0 is given by the differ-
ence between its observed outcome under intervention
and its unobserved potential outcome without interven-
tion. Then our goal is to estimate Y t

N
1 for >t T0. For this

purpose, SCM constructs a synthetic control group as a
weighted average of the untreated units in the donor
pool, as shown in the following equation:

∑=
=

+

Y w Yˆ ,t

N

j

J

j jt1

2

1

(1)

A set of weights ( )= ′+W w w, … , J2 1 are assigned to the
control units with ≤ ≤w0 1j and + + =+w w… 1J2 1 . Abadie
and Gardeazabal (2003) and Abadie et al. (2010) propose to
choose the vector W* to minimize the following distance:

‖ ‖ ( )∑⎜ ⎟=
⎛
⎝
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⎞
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k
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1
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where X1 is a ×k 1 vector of predictors of the outcome
variable for the treated unit, including the set of covariates
Z1 and the pre-intervention values of the outcome variable
for the treated units. In our case, the predictors consist of
some key characteristics affecting the level of posttreatment

CO2 emissions. By minimizing the objective function defined
in equation (2), we aim to construct a synthetic control that
most resembles the treated unit in those characteristics that
help predict the outcome variable prior to the treatment.

Notice that equation (2) includes a vector of coeffi-
cients ( )=V v v, …, k1 . This is the predictors’ weights repre-
senting their relative importance in predicting the values
of the outcome variable. V is chosen by minimizing the
distance between the observed outcome for the treated
group Y t1 and the counterfactual outcome from the syn-
thetic control group in the pre-treatment period.

( ( ) ( ) )∑ − − −
⊂

+ +Y w V Y w V Y… .

t T

t t J J t1 2 2 1 1
2

0

(3)

When this distance, namely the mean squared predic-
tion error (MSPE) is small, the outcomes for the treated and
synthetic control will follow a similar trend. Then, the syn-
thetic control estimate of the treatment effect τ̂ t1 is as
follows:

= −τ Y Yˆ ˆ .t t t

N
1 1 1

(4)

The validity of the SCM relies on the “convex hull
assumption,” which states that the values of predictors
for the treated unit X1 should not be far away from the
control units (Abadie et al., 2010; Bonander et al., 2021). If
that is not the case, the fit may be poor and the use of SCM
is not recommended. Moreover, bias can arise if the donor
pools consist of units with very different characteristics or
the relationship between the potential outcome and Z1 is
highly nonlinear (Abadie et al., 2010). Lastly, the risk of
over-fitting may also increase with the size of the donor
pool, especially whenT0 is small (Abadie, 2021). While there
is no generally accepted guidelines on how many pre-

Table 1: Summary statistics for replication of Andersson (2019)

Variable Data source Average over N Mean Std. Dev. Min Max

CO2 emissions from transport (metric tons per
capita)

The World Bank WDI Database (2015)a 1960–2005 690 2.070 1.335 0.200 6.057
The World Bank WDI Database (2015)b 1960–2005 690 2.071 1.336 0.200 6.057
The World Bank WDI Database
(2020), IEAc

1971–2005 525 2.387 1.367 0.513 6.210

Real GDP per capita (2005 USD) Penn World Table 8.0a 1980–1989 150 18,801 6,520 4,996 31,421
Penn World Table 8.0c 1980–1989 150 18,801 6,520 4,996 31,421

Motor vehicles (per 1000 people) Dargay, Gately, and Sommer (2007)a 1980–1989 150 402.6 157.5 86.21 775.5
Dargay, Gately and Sommer (2007)c 1980–1989 150 402.6 157.5 86.21 775.5

Gasoline consumption per capita WDI (2015)a 1980–1989 150 427.6 316.8 76.30 1,250
NationMasterc 1980–1989 150 427.6 316.8 76.30 1,250

Urban population (%) WDI (2015)a 1980–1989 150 75.76 12.36 42.78 96.29
WDI (2020)c 1980–1989 150 76.43 11.92 42.78 96.29

Note: The subscript a, b, c corresponds to three sources of data: data from Andersson (2019), data given by Andersson, and data compiled by myself
according to the sources in Andersson (2019).
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treatment periods are sufficient (T0), the examples used by
Abadie and colleagues have T0 equal to 15 (Abadie et al., 2011),
19 (Abadie et al., 2010), and 31 (Abadie, 2021). Andersson (2019),
and this replication, have T0 = 30.

When the above assumptions are fulfilled, SCM pro-
vides an alternative estimation method to DID when the
assumption of PT for treatment and control units is sus-
pect. As Andersson (2019) notes,

“The parallel trends assumption is difficult to verify, which is a
drawback for the DiD method. It is sometimes possible pretreat-
ment by analyzing the trends of the outcome variable, but
obviously impossible after treatment. When the treated unit
and the control group do not follow a common trend, the DiD
estimator will be biased. Therefore, finding a method that relaxes
the parallel trends assumption is preferable for comparative case
studies” (page 10).

By reweighting the controls to match the pre-treatment
trends in the treated unit, SCM increases the likelihood
that the parallel trends assumption holds (Bonander et al.,
2021). The other merits of SCM include providing data-
driven and formal criteria for selecting control units,
showing us the contribution of each control unit in con-
structing the synthetic control, and the relative impor-
tance of the predictors in predicting the pre-treatment
outcomes. Although classic SCM does not produce stan-
dard errors and confidence intervals, it is common for
researchers to conduct in-time, in-space, and leave-one-
out placebo tests (Abadie et al., 2010, 2011).

3.3 Regression Analysis

While SCM constitutes the main focus of Andersson’s ana-
lysis, he also employs a regression analysis of gasoline
consumption. The regression analysis has two uses. First,
it provides a robustness test of the SCM analysis. In the
absence of endogeneity, the two methods should produce
similar estimated effects. The regression analysis also
allows one to isolate the separate effects of the VAT and
the carbon tax. This is important given that it is the latter
which is of primary interest.

Previous research recognizes the possibility that tax-
induced price changes may generate distinct demand
responses compared with equivalent, market-determined
price movements (Rivers & Schaufele, 2015). This phenom-
enon is called “tax salience.” In the Swedish case, gasoline
consumption could respond differently to a rise in gaso-
line prices induced by the introduction of VAT and a rise
due to the carbon tax. Andersson’s analysis allowed for
this possibility.

Specifically, he estimated a log-linear gasoline demand
model. The retail price of gasoline was decomposed into
the carbon tax-exclusive price ( )= +p p τ VAT

t
v

t t t,energy and
the carbon tax ( )=τ τ VATt

v
t t,CO ,CO2 2

, where τt, energy and τt,CO2

are the values of energy tax and carbon taxes, respectively,
and VAT is a multiplier and is added to each price compo-
nent. The log-linear model is specified as follows:

( ) = + + + + +x α β p β τ β D X γln ϵ ,t t
v

t
v

t t t1 2 ,CO 3 ,CO2 2
(5)

where xt is the gasoline consumption per capita; Dt,CO2
is a

treatment dummy that takes the value of 1 for years from
1991 and onward and zero otherwise; Xt includes a vector
of control variables (real GDP per capita, urban population
(%), and the unemployment rate) and a time trend; and ϵt is
the error term.

To address the possible endogeneity of gasoline prices,
Andersson used crude oil prices and the energy tax rate as
instruments for the carbon tax-exclusive gasoline price
and performed two-stage least squares estimation. Based
on the regression results, Andersson conducted a simula-
tion, in which he approximated the amount of (counterfac-
tual) CO2 emissions in three cases: Sweden without carbon
taxes and VAT, Sweden with VAT but no carbon taxes, and
Sweden with carbon taxes and VAT. In the simulation, I
multiply gasoline consumptions (kg) by the emission factor
of gasoline to get simulated CO2 emissions.2 The gasoline
consumptions under Case 1 and Case 2 are predicted from
the gasoline consumption-price regression. Then, the differ-
ence in the simulated emissions between Case 2 and Case 3
identifies the effect of carbon taxes on CO2 emissions.

4 Replication and Robustness Tests
of Andersson’s Results for the
Swedish Transport Sector

4.1 Verification with Andersson’s Data
and Code

As noted above, Andersson (2019) provided his data and code
as supplementary materials to his published journal article.



2 According to Natural Resources Canada (2014). Learn the Fact: Fuel
Consumption and CO2. https://natural-resources.canada.ca/sites/www.
nrcan.gc.ca/files/oee/pdf/transportation/fuel-efficient-technologies/
autosmart_factsheet_6_e.pdf., 1 liter (0.75 kg) of gasoline emits 2.29 kg
CO2 emissions. I use this number to calculate the amount of CO2

emissions from gasoline consumption.
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This allowed me to confirm that his results were “push-
button” replicable. Because I obtained identical results to
him, I do not report a side-by-side comparison of Andersson’s
original results and my replication.

4.2 SCM with Alternative Synthetic Swedens

Figure 1a is a replication of Figure 4 in Andersson (2019). It
sets 1990, the year when the VAT was extended to gasoline
and diesel, as the treatment year. Figure 1a demonstrates
that synthetic Sweden successfully reproduced the trajec-
tory of CO2 emissions for Sweden before the treatment. As
shown in the graph, per-capita CO2 emissions from trans-
port in Sweden experienced an immediate drop after 1990
compared to what would have been expected without a
carbon tax. The emission gap between Sweden and syn-
thetic Sweden increased gradually in the early 1990s and
then remained constant. The resulting average reduction
in CO2 emissions from transport in Sweden is −0.29 metric
tons per capita, which accounts for 10.9% of the emissions
in the absence of VAT and carbon taxes on average.

My replication of Figure 1a adds two additional syn-
thetic control groups. In addition to Andersson’s control
group, I created a second control group that drops Den-
mark from the donor pool. Denmark introduced a carbon
tax on energy products in 1992, though it exempted the
transport industry. Andersson, noting that the carbon tax
rate was relatively low, decided to keep it in the donor
pool. However, Denmark has the largest weight in the con-
struction of its synthetic Sweden. Therefore, I check how
conclusions may change if Denmark is excluded from the
control group. My third synthetic Sweden uses the data I
compiled and reported in Table 1.

Figure 1b recasts Figure 1a in terms of differences in
CO2 emissions from transport between actual Sweden and
the three synthetic counterparts. As shown in the figure,
when Denmark is excluded from the donor pool, the gap
becomes wider. This is consistent with the bias one would
expect from including a carbon tax adopter in the controls,
which would mute the estimated effect of the carbon tax.

Table 2 reports the values for the predictors corre-
sponding to the three synthetic control analyses above.3

The first four columns reproduce the results in Table 1 of
Andersson (2019). They show that compared to the popula-
tion-weighted average of the 14 OECD countries, Anders-
son’s synthetic Sweden more closely resembles Sweden
with respect to the means of the predictors and per-capita
CO2 emissions during the pre-treatment years.

Columns (5)–(7) of Table 2 show that when we exclude
Denmark from the donor pool, the predictor values of the
synthetic counterpart are still close to that of Sweden,
while the MSPE increases slightly from 0.0012 to 0.0026.

Figure 1: SCM analysis (Swedish Transport). (a) Replication of
Andersson’s Figure 4. (b) Three Synthetic Swedens.



3 A recent paper Bonander et al. (2023). Reproduction and replication
analyses of Andersson (2019): A replication report from the Toronto
Replication Games. replicated Andersson (2019) by using different pre-
treatment values of the outcome variable as the predictors. Their
estimates are quite similar to Andersson (2019), ranging from −0.34
to −0.17, with a median of −0.28 metric tons per capita.
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It indicates that we are able to reduce potential bias at a
small cost. For this reason, going forward, my analysis
excludes Denmark from the donor pool.

Returning to Figure 1b, we see that when I use the data
that I compiled rather than Andersson’s data, the emis-
sions gap is larger in the early 1990s but decreases in the
late 1990s. The corresponding average treatment effect is
−0.39 metric tons, larger than what Andersson reports
(−0.29 metric tons).

Columns (8)–(10) of Table 2 present data on the pre-
dictors using my compiled data. While the overall values
are similar to Andersson (2019), the corresponding synthetic
Sweden has a poorer fit during the pre-treatment years
(MSPE of 0.0037 versus 0.0012 and 0.0026). Given that the
goodness of fit is worse for the compiled data, the subsequent
analysis will use Andersson’s data, excluding Denmark.

4.3 Regression Analysis of Gasoline
Consumption Using an Alternative
Estimator

When SCM is used in Andersson (2019), by its nature, two
effects could not be distinguished: the introduction of a
carbon tax in Sweden and the adoption of the VAT in gaso-
line and diesel, both of which coincided. What further
complicates this case is other tax changes that affected
gasoline during the post-treatment period. As the tax rate
of the carbon tax rose in 2000, it was accompanied by a
simultaneous decrease in the tax rate of the energy tax.

In order to separate out the price effects of the carbon
tax from the VAT and general price increases, Andersson
estimates a demand equation for gasoline consumption
that includes both components. To estimate this equation,
he uses time series data on Brent Crude oil prices and gaso-
line consumption from 1970 to 2011. To address endogeneity,
he uses two instruments: the energy tax rate and the price of
crude oil. However, the IV estimates are similar to the OLS
estimates and a Hausman test finds no statistical difference,
so he concludes that endogeneity is not a problem.

To account for autocorrelation, Andersson (2019) used
the Newey-West procedure to obtain “serial correlation-
robust” standard errors for the OLS estimates. Alterna-
tively, I adopt the Prais-Winsten estimation procedure,
which is a form of generalized least squares (GLS). Its
key assumption is that the errors follow a first-order auto-
regressive process. In practice, the Prais-Winsten method
first estimates the correlation between the errors at t and

−t 1 and then applies a linear transformation to decorre-
late the error term (Bottomley et al., 2023). Ta
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Table 3 presents my verification of the regression ana-
lysis in Andersson’s article. The results in columns (1), (2),
and (3) are exactly the same as in the study by Andersson
(2019). Additionally, Column (4) shows the Prais-Winsten
regression results. Across Table 3, the two price compo-
nents (“Carbon tax-exclusive gasoline price” and “Carbon
tax”) have negative and statistically significant coefficients.

According to the Prais-Winsten estimates in Column
(4), if the carbon tax and the non-tax price components
each increase by one Swedish Krona, gasoline consump-
tion would decrease by 10.7 and 4.6%, respectively. These
effects are smaller in size compared to Andersson’s esti-
mates, which are 18.6 and 6.0%, respectively. I note that
Prais-Winsten assumes that the error terms are AR(1).
However, there is mixed evidence that the error terms
follow a higher order autoregressive process. In that
case, Prais-Winsten should still improve efficiency over
OLS/Newey-West, which makes no adjustment for serial
correlation in its coefficient estimates.

Based on the estimates in Column (1), Table 3, Andersson
(2019) approximated CO2 emissions from three scenarios.

As shown in Figure 2a, my calculation produces results
quite similar to Andersson (2019). It indicates that the effect
of the VAT remained relatively constant after its extension
to gasoline in 1990. On the other hand, the effect of the
carbon tax experienced a significant increase after 2000
as the real tax rate increased from 0.92 SEK/liter in 2000
to 2.11 SEK/liter in 2005. As Andersson (2019) noted, the

sharp increase reflects the separate effect of carbon tax
while keeping the (real) rate of energy tax constant.
Figure 2b replicates Figure 14 in the study by Andersson
(2019) by comparing the effects of carbon tax and VAT
from the SCM and the simulation based on OLS regres-
sion. Note that the estimated VAT + Carbon tax emission
effects from the SCM and regression analyses are quite
similar, especially in the first half of the post-treatment
period when the real tax rate of the energy tax remained
constant.

Figure 2b also adds my estimates of emission reduction
based on the Prais-Winsten price estimates. The associated
reduction is only half the size of the estimated emission
reduction from the SCM and the OLS estimates over most
of the treatment period. This is a direct consequence of the
smaller estimated price and tax effects in Column (4) of
Table 3. However, it also shows a sharp increase in impact
after 2,000 due to increasing carbon taxes.

Andersson (2019) used the price estimates to assign the
proportions of total emission reduction estimated from the
SCM (−0.29 metric tons) to VAT and to carbon taxes. He
concluded that carbon taxes alone reduced per-capita
CO2 emissions from transport in Sweden by 6.3% (0.17
metric tons) on average in the post-treatment period. I
repeat this calculation based on my synthetic control ana-
lysis (without Denmark) and the Prais-Winsten estimates,
and conclude that the Swedish carbon taxes alone reduced
CO2 emissions from transport by 7.7% (0.21 metric tons).

Table 3: Gasoline consumption regressions (Swedish Transport Sector)

(1) (2) (3) (4)
OLS IV (EnTax) IV (OilPrice) Prais-Winsten

Gas price with VAT −0.060*** −0.062*** −0.064*** −0.046***
(0.012) (0.020) (0.014) (0.009)

Carbon tax −0.186*** −0.186*** −0.186*** −0.107**
(0.043) (0.038) (0.038) (0.048)

Dummy carbon tax 0.100 0.098 0.095 0.040
(0.066) (0.070) (0.059) (0.052)

Trend 0.034*** 0.034*** 0.034*** 0.003
(0.003) (0.003) (0.003) (0.010)

GDP per capita −0.004*** −0.004*** −0.004*** 0.001
(0.001) (0.001) (0.001) (0.001)

Urban population 0.030 0.031 0.033 −0.007
(0.067) (0.064) (0.058) (0.050)

Unemployment rate −0.024*** −0.024*** −0.024*** 0.006
(0.006) (0.005) (0.005) (0.008)

Constant 4.407 4.313 4.198 6.505
(5.446) (5.152) (4.693) (4.018)

Observations 42 42 42 42
R2 0.76 0.76 0.76 —

Note: Standard errors in parentheses *p < 0.10, **p < 0.05, and ***p < 0.01.
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Why is a larger estimated emission effect of the carbon
tax obtained, compared to Andersson (2019), despite esti-
mating a smaller coefficient of the carbon tax from using
the Prais-Winsten method (cf. Table 3)? The reason is that
according to the simulated counterfactual emissions, the
Swedish carbon taxes account for 59% of the mixed emis-
sion reduction from VAT + carbon tax on average during
1991–2005. This share is roughly the same as that from
Andersson’s approach (60% on average). As my SCM esti-
mate (without Denmark) is larger, the resulting carbon tax-
induced emission reduction is larger. Following Andersson,

I apply this larger share to the SCM estimate of the total
effect, and that produces a larger carbon tax estimate. While
Andersson (2019) fortuitously found that his SCM and regres-
sion estimates were similar, he placed greater confidence in
the SCM estimates and used the results for the regression
analysis solely to determine the split between VAT and
carbon taxes. This issue will reappear later when I extend
Andersson’s analysis to Norway’s transport sector.

In conclusion, while I modify Andersson’s analysis in
several substantive ways, my final estimate of the effect of
carbon taxes on CO2 emissions ends up being very close to
the 6.3% reduction Andersson estimated.

5 Extension #1 of Andersson (2019)
– Norwegian Transport Sector

In this section, I report the results of the first of two exten-
sion analyses. I apply the same methodology and predic-
tors to investigate the relationship between carbon taxes
and CO2 emissions in Norway’s transport sector, as Norway
also adopted a carbon tax.

5.1 Norway’s Carbon Tax

Norway levied CO2 taxes on petroleum, mineral fuel, and
natural gas in 1991. In 1991, the tax rate was 39.6 USD per
ton of CO2 for natural gas offshore on the continental shelf,
35 USD for oil offshore on the continental shelf and 15–17
USD for heating oil. Petrol was also subjected to a heavy tax
of 259 NOK per ton of CO2 (namely, 40 USD/ton) (Andersen
et al., 2001). After the implementation, CO2 tax on petrol
had increased steadily to a rate of 405 NOK per ton of CO2

(46 USD/ton) in 2,000 and 336 NOK per ton of CO2 (52 USD/
ton) in 2005. It is worth noting that the initial rate of Nor-
wegian CO2 tax on petrol was even higher than that of
Sweden’s, while it grew more slowly than Sweden’s. This
leads to an interesting comparison to Sweden’s carbon tax.

Similarly to Sweden, there are extensive exemptions
and differentiation of carbon tax rates in Norway (Bruvoll
& Larsen, 2004; Lin & Li, 2011). Since Norway is one of the
world’s major oil and natural gas producers and exporters,
29% of total CO2 emissions from oil and gas extraction in
2001 (Statens, 2003). Carbon taxes on oil and gas extraction
are set at a comparatively high level, 49 USD for natural gas
and 43 USD for oil in 1999 (Bruvoll & Larsen, 2004). Other high-
polluting industries, such as the metal-producing industry, are
partly or totally exempted for fear of losing competitiveness.

Figure 2: Disentangling the effects of VAT and Carbon Tax (Swedish
Transport). (a) Regression Analysis. (b) SCM and Regression Analysis.
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There are also exemptions for fishing, air, and ocean transport.
As a result, only 60% of the total CO2 emissions in Norway are
subjected to CO2 tax. On average, tax revenue from CO2 emis-
sions accounts for 16.9% of total environmental tax revenues.

5.2 SCM Analysis

The predictor variables. The first step in the SCM analysis
is choosing a set of predicting variables to construct a
synthetic Norway. I apply the same predictors used for con-
structing synthetic Sweden: real GDP per capita, Motor vehi-
cles (per 1,000 people), Gasoline consumption per capita,
Urban population (%), per-capita CO2 emissions from trans-
port in 1970, 1980, and 1989. Table 4 shows the values of the
key predictors in the pre-treatment period. The majority of
the weights (75%) are given to the past values of CO2

emissions.
In contrast, the number of motor vehicles and urban

population receive weights of 0.9 and 0%, respectively. It
seems as if these two predictors do not play much of a role
in predicting per-capita CO2 emissions from transport in
Norway. Nevertheless, I decide to keep them on the pre-
dictor list to maintain comparability with Andersson (2019).

Overall, Table 4 suggests that synthetic Norway is a
better comparison group than the simple average of the
untreated, OECD countries. According to the weights given
to the 13 OECD countries, synthetic Norway is best repro-
duced by a combination of Belgium (0.771), Switzerland
(0.113), and the United States (0.116).

Checking the parallel trends assumption in the pre-
treatment period. While we are unable to test the assump-
tion of PT in the post-treatment period, it is possible to
check for it in the pre-treatment period. Figure 3a com-
pares per-capita CO2 emissions from Norway’s transport
sector with the average per-capita CO2 emissions from
transport for the 13 OECD countries. It is clear from the
figure that the PT assumption does not hold during the pre-

treatment period because Norway’s per-capita CO2 emis-
sions clearly grew faster than the OECD average. This pro-
vides support for using SCM over DID or a two-way fixed
effects model.

Results from the SCM analysis. Figure 3b shows the
results from SCM applied to Norway’s transport sector.
CO2 emissions in Norway and synthetic Norway follow a
common trend prior to 1990 and diverge after 1990. In
1990, 1 year before the implementation of Norwegian CO2

tax, per-capita CO2 emissions from transport in Norway
dropped below that of synthetic Norway. This is consistent
with there being an anticipation effect prior to the actual
implementation of the carbon tax.

Contrary to Sweden, the SCM analysis finds that emis-
sions in the Norwegian transport sector exceeded that of the
synthetic control counterfactual during the years 1996–1999.
This constitutes evidence against the effectiveness of carbon
taxes to reduce CO2 emissions. Nevertheless, I still estimate
an accumulated effect of 0.96 metric tons of emission
reduction per capita over the full, 1991–2005, post-treat-
ment period. The corresponding annual per-capita emis-
sion reduction is −0.064 metric tons and is on average
2.4% lower than the scenario without the carbon tax.
My conclusion is that the Norwegian carbon tax had an
overall small, negative effect on per-capita CO2 emissions
from transport in Norway.

Placebo robustness tests. To check the credibility of the
SCM results for Norway, I conduct placebo tests. For the in-
time placebo tests, the treatment is assigned to the years
1970 and 1980. Figure 4 shows that although the fits are not
perfect, possibly due to the large variations in the outcome,
there is no sign of placebo effects after 1970 and 1980.

The in-space placebo test iteratively assigns the treat-
ment to untreated countries in the donor pool and compares
the sizes of the resulting “treatment” effects. Figure 5a shows
that when we focus on seven placebo units (including
Norway) with MSPEs less than 0.01, the effect in Norway
(−0.064 metric tons per capita) is the second largest, smaller
than Switzerland with a placebo effect of −0.24 metric tons

Table 4: Predictor means and weights: SCM analysis (Norwegian Transport Sector)

Variables Norway Synth. Norway OECD sample Weight

GDP per capita 22470.4 21247.7 18531 0.043
Motor vehicles (per 1,000 people) 409.3 421.3 406.9 0.193
Gasoline consumption per capita 372.6 408.7 436.0 0.009
Urban population 71.2 91.0 75.3 0
CO2 from transport per capita 1989 2.5 2.5 2.4 0.271
CO2 from transport per capita 1980 2.1 2.1 2.2 0.195
CO2 from transport per capita 1970 1.7 1.6 1.7 0.289
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per capita. The “treatment” effects for the other placebo
units are either close to zero or positive.

Figure 5b shows the results of the leave-one-out placebo
test, in which the untreated units with positive weights are
dropped from the donor pool one at a time to reconstruct
the synthetic controls. This practice gives us a range of the
estimated effects of carbon tax on per-capita CO2 emissions

from transport in Norway, which is −0.093 to −0.037 metric
tons per capita. These placebo tests prove the robustness of
my baseline results.

Possible confounders. Andersson noted that economic
growth could be a confounder that affected his estimates of
the impact of the Swedish carbon tax. While SCM is not
well-suited to handle confounders, I nevertheless follow
Andersson’s approach to investigate whether Norwegian
economic performance might bias the carbon tax effect
estimated by SCM analysis.

Figure 3: SCM analysis (Norwegian Transport). (a) Norway and the OECD
average. (b) Norway and Synthetic Norway.

Figure 4: In-time placebo tests (Norwegian Transport). (a) Year of
Intervention is 1970. (b) Year of Intervention is 1980.
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For constructing a synthetic Norway’s real GDP per
capita, the same weights used for the synthetic Norway’s
CO2 emissions per capita are applied. As shown in Figure 6,
the relative trends in per-capita CO2 emissions from trans-
port and per-capita real GDP in Norway were closely co-
moving from the late-1980s to the early-1990s (grey-shaded
area in the figure). This suggests that the observed downturn
in CO2 emissions in 1990 might not have been an “anticipatory
effect” associated with the introduction of the carbon tax, but

rather was a reflection of a relative downturn in Norwegian
economic activity. If so, by spuriously attributing this to the
carbon tax, SCM overstates its impact.

On the other hand, starting in the mid-1990s and con-
tinuing through to the end of the post-treatment period,
Norway’s actual GDP per capita did substantially better than
synthetic Norway. To the extent that the increased, relative
economic activity contributed to greater CO2 emissions, SCM
analysis understates the impact of the carbon tax. While it is
possible that the economy is a confounder, the mixed effects
described above do not provide clear evidence that SCM
either under- or over-estimates the emission effects of the
carbon tax for the Norwegian transport sector.

In conclusion, while I find a small, overall negative effect
on emissions due to the carbon tax in the Norwegian trans-
port industry, the higher emissions of the Norwegian trans-
port sector compared to its synthetic control counterfactual
from 1996 to 1999 is noteworthy.

5.3 Regression Analysis

As noted above, Andersson (2019) used regression analysis
to disentangle the effect of the carbon tax from other taxes.
Fortuitously, the overall, estimated effect of VAT + carbon
tax from his regression analysis was approximately equal
to that of the SCM analysis.

There is no need to do the same for Norway because the
introduction of carbon taxes in 1991 was not accompanied
by major changes in other taxes that might affect the SCM
analysis. Nevertheless, in order to maintain comparability

Figure 5: In-space and leave-one-out placebo tests (Norwegian
Transport). (a) In-Space Placebo Test. (b) Leave-One-Out Placebo Test.

Figure 6: Co-movements between GDP and CO2 emissions (Norwegian
Transport).
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with Andersson (2019), I use regression analysis to calculate
an alternative estimate of the emissions effect of Norway’s
carbon tax.

Andersson (2019) used annual time series data for
Sweden from 1970 to 2011. In contrast, the data available
to me only span the period from January 1995 to December
2017, though most of the variables are available monthly.
Statistics Norway provides monthly data on gasoline prices,
motor gasoline consumption, and quarterly data, which are
used for the control variables in this regression analysis,
resulting in a dataset of 276 observations. The data on the
carbon tax rate are from the IEA (2009).

Table 5 shows the estimation results. The OLS esti-
mates with Newey-West standard errors are shown in
Column (1), indicating that a one Norwegian Krone (NOK)
increase in the real carbon tax-exclusive gasoline price and
carbon tax would result in decreases in gasoline consumption
of 2.3 and 27.3%, respectively. Column (2) shows the Prais-
Winsten estimates. The coefficients for the real carbon tax-
exclusive price and carbon tax are −0.019 and −0.289, both
statistically significant at the 1% level. This means that one
NOK increase in the carbon tax is estimated to reduce gaso-
line consumption by 28.9%. In contrast, if the gasoline price
rises by one NOK yet this change is not caused by the carbon
tax, gasoline consumption would only decrease by 1.9%.

Column (3) presents results from instrumental vari-
able (IV) estimation, using crude oil prices as an instru-
ment for the carbon tax-exclusive price. As with Sweden,
the results are quite similar to the OLS estimates in Column
(1). A test for weak instruments shows that the crude oil
price is not a weak instrument.

Assuming a roughly one-to-one exchange rate between
the Norwegian Krone and the Swedish Krona, these esti-
mated price effects suggest that gasoline consumption is
more responsive to carbon taxes in Norway. Also, the per-
sistent finding that carbon taxes have a larger impact than
other price components of gasoline is consistent with the
estimates from Sweden and “tax salience” theory.

Using the Prais-Winsten estimates in Column (2), I
simulated CO2 emissions from Norway’s transport sector
in two scenarios: with carbon tax and without carbon tax.
The effect of a Norwegian carbon tax in reducing per-
capita CO2 emissions is obtained by taking the difference
between these two scenarios, which is −0.55 metric tons
per capita on average during 1991–2005. This effect size
accounts for 27% of per capita CO2 emissions from trans-
port that would occur without a carbon tax. In light of the
SCM estimates this seems implausibly large (Figure 7 for a
comparison of the two methods).

As I obtained two contrasting estimates from two dif-
ferent methods, a natural question is: To which should one
attach greater weight? There are reasons to prefer the SCM
estimate. First, despite efforts to address endogeneity bias
through IV estimation, there remain concerns about mis-
specification and endogeneity with regression estimates of
a gasoline demand equation. This was why Andersson
(2019) preferred his SCM estimates to the regression esti-
mates. But there is a second reason to prefer SCM.

The regression analysis is based solely on gasoline con-
sumption. It does not include diesel consumption. CO2

emissions from road transportation in Norway increased
19% from 1990 to 2001. This rise is primarily attributed to
an increase of 73% in emissions from diesel, whereas emis-
sions from gasoline vehicles decreased by 7% during this
period (Statens, 2003).4 This substitution from gasoline to
diesel is not captured in the regression analysis, which
focuses solely on the carbon tax effect on gasoline con-
sumption. In contrast, SCM has the advantage of capturing
the impact on emissions for the whole transport sector, not
just the portion due to gasoline consumption and its atten-
dant CO2 emissions.

Table 5: Gasoline consumption regressions (Norwegian Transport
Sector)

(1) (2) (3)
OLS Prais-

Winsten
IV(OilPrice)

Carbon tax-exclusive
price

−0.023*** −0.019** −0.024*

(0.009) (0.008) (0.013)
Carbon tax −0.273*** −0.289*** −0.272***

(0.063) (0.047) (0.069)
Unemployment 0.005 0.005 0.005

(0.009) (0.006) (0.011)
Urban population 0.021 0.019 0.021

(0.039) (0.026) (0.047)
Real GDP (ln) 2.04*** 1.998*** 2.039***

(0.263) (0.194) (0.317)
Time trend −0.007*** −0.007*** −0.007***

(0.001) (0.001) (0.001)
Constant −20.54*** −19.93*** −20.53***

(3.727) (2.133) (3.625)
Month dummy Yes Yes Yes
Observations 276 276 276
R2 0.98 — 0.98

Note: Column (1) shows the OLS estimates with Newey-West standard
errors. Standard errors in parentheses *p < 0.10, **p < 0.05, and ***p
< 0.01.



4 According to Bruvoll and Larsen (2004), auto diesel faced a tax rate
of 22 USD/ton of CO2 in 1999, whereas the tax rate for gasoline is 51
USD/ton of CO2.
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In conclusion, I estimate that the carbon tax had different
effects on the transport sector in Sweden and Norway: a rela-
tively large effect for Sweden, and a relatively small effect for
Norway (as shown in Table 7). The reasons for this difference
are not clear. The goal of this analysis was to extend Anders-
son’smethods to see if I could obtain similar results for Norway.

6 Extension #2 of Andersson (2019)
– Total Sweden Impact

The previous analysis focused on emissions from the trans-
port sector. This section investigates the impact of carbon
taxes on per capita, total CO2 emissions for all of Sweden –

not just the transport sector. The reason for extending the
analysis to all of Sweden is this: If carbon taxes are able to
reduce CO2 emissions to a meaningful extent, we should be
able to see its effect not just in the transport sector, but also
in the country as a whole.

The initial set of predictors in Andersson’s SCM ana-
lysis included gasoline consumption per capita, real GDP
per capita, urban population (%), number of motor vehi-
cles, and per-capita CO2 emissions in several pre-treatment
years. After conducting several experiments, I added in
several predictors with positive weights: fossil fuel con-
sumption per capita, per-capita CO2 emissions from transport,
and population growth, while dropping gasoline con-
sumption. I also included country-level CO2 emissions
for selected years during the pre-treatment period (1960,
1970, 1975, and 1989). As before, the donor pool consists of
13 OECD countries.

Figure 8 shows the path plots of per-capita total CO2

emissions for Sweden and synthetic Sweden during the
period 1960–2005. As can be seen in the graph, per-capita
total CO2 emissions in Sweden peaked in 1970 and then
exhibited a sharp decrease. Synthetic Sweden behaved
generally similarly, though the change in trends is not as
extreme.

Synthetic Sweden’s path does not necessarily match
actual Sweden in the decade before the carbon tax was
imposed. This is evident in the MSPE prior to the treatment
of 0.791, which is in contrast to the MSPE of 0.001 asso-
ciated with the SCM analysis of the Swedish transport
sector.

This is further highlighted by the predictor means
reported in Table 6. Synthetic Sweden misses on a number
of key predictor variables. Particularly worrisome are per-
capita total CO2 emission, 1975; per-capita total CO2 emis-
sion, 1989; per-capita total CO2 emission, 1960; and motor

Figure 7: Comparing SCM and regression (Norwegian Transport).

Table 6: Predictor means and weights (per-capita total CO2 emissions for Sweden)

Sweden Synthetic Sweden OECD mean Predictor weights

Motor vehicles (per 1,000 people) 405.6 423.0 406.9 0.047
Real GDP per capita 20121.5 19627.4 18531.0 0.084
Per-capita fossil fuel consumption 37261.9 33297.7 37389.1 0.005
Urban population (%) 83.1 78.2 75.3 0.012
Population growth (%) 2.2 1.7 2.2 0.006
CO2 emissions from transport (Metric tons per capita) 0.2 0.4 0.7 0.024
Per-capita total CO2 emission, 1989 6.5 7.6 9.9 0.260
Per-capita total CO2 emission, 1975 9.9 9.1 9.3 0.317
Per-capita total CO2 emission, 1970 11.5 9.4 8.7 0.010
Per-capita total CO2 emission, 1960 6.6 6.7 6.1 0.236
MSPE 0.862
ATT (metric tons per capita) −1.39
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vehicles. The means of these predictors for synthetic Sweden
differ from the means for Sweden for these variables by 8.1,
16.9, 1.5, and 2.5%. These differences are substantially larger
than the corresponding differences for the Swedish transport
sector (cf. Table 2).

Thus, while per-capita total CO2 emissions in Sweden
were lower than synthetic Sweden’s from 1990 onwards,
there are two reasons to be hesitant to attribute this to the
effect of the carbon tax. First, the fit is poor in the pretreat-
ment period. This indicates that synthetic Sweden may not
provide a reliable counterfactual of Sweden without carbon
taxes. Second, and particularly worrisome, per-capita total
CO2 emissions in Sweden started to fall below synthetic
Sweden’s in the late 1970s, long before the introduction of
carbon taxes. Thus, the subsequent reduction may have
been caused by factors that were in place prior to the
treatment.

In summary, it is possible that carbon taxes contrib-
uted to lower CO2 emissions for Sweden compared to

Table 7: Summary of key results

Analysis Reference Description Conclusion/Comment

Swedish Transport Sector
SCM (VAT +
Carbon Tax)

Figure 1a Use Andersson’s (2019) data and code 1 – Strongly confirms
Identical results to Andersson

SCM (VAT +
Carbon Tax)

Figure 1b Use Andersson’s (2019) data and code but
drop Denmark

1 – Strongly confirms
Very similar results to Andersson

SCM (VAT +
Carbon Tax)

Figure 1b Use data compiled from original sources
with alternative calculation of
emissions data

2 – Confirms
Similar results to Andersson but emissions data covers fewer
years and is thus less reliable

Regression
(Carbon Tax)

Figure 2a Use Andersson’s (2019) data and code but
drop Denmark

1 – Strongly confirms
Very similar results to Andersson

Regression
(Carbon Tax)

Figure 2b Estimate gasoline consumption regression
using Prais-Winsten

2 – Confirms
Estimated effect approximately half the size of Andersson

scpi (VAT +
Carbon Tax)

Figure 9a Add PIs to the SCM estimates 1 – Strongly confirms
Very similar results to Andersson

Norwegian Transport Sector
SCM (Carbon Tax) Figure 3b Uses same predictor variables as

Andersson
4 – Does not support
No evidence of an emissions effect

Regression
(Carbon Tax)

Figure 7 Estimate gasoline consumption regression
using Prais-Winsten

3 – Uninformative
The actual regression results strongly support Andersson.
However, the estimates are at variance with the SCM estimates
and so large as to be implausible. Further, the regression
analysis ignores diesel consumption which makes the results
suspect

scpi (Carbon Tax) Figure 9b Add PIs to the SCM estimates 4 – Does not support
No evidence of an emissions effect

Country-Level Sweden
SCM (Carbon Tax) Figure 8 Extends analysis beyond the Swedish

transport sector to all of Sweden
3 – Uninformative
SCM analysis fails to produce a reliable counterfactual so the
results are uninformative

scpi (Carbon Tax) Figure 9c Add PIs to the SCM estimates 4 – Uninformative
No evidence of an emissions effect

Figure 8: SCM analysis (Country-Level Sweden).

Carbon Taxes and CO2 Emissions: A Replication of Andersson  15



synthetic Sweden, but our synthetic control analysis is too
unreliable to place much confidence in the corresponding
path plots. As a result, I interpret these results in much the
same way one would interpret a statistically insignificant
coefficient in a standard hypothesis test: The SCM analysis
is uninformative and does not provide evidence for or
against the existence of a carbon tax effect on CO2 emis-
sions for the country of Sweden as a whole.

7 Extension #3 of Andersson (2019)
– PIs for SCM

This section generates PIs for the estimates from SCM using
an approach proposed by Cattaneo et al. (2021).

The SCM performs prediction of the counterfactual
outcomes for the treated unit in the post-treatment period,
based on the weights constructed in the pre-treatment

Figure 9: PIs for SCM. (a) Synthetic Sweden (Transport). (b) Synthetic Norway (Transport). (c) Synthetic Sweden (Country-level).
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period and the post-treatment outcomes of the control
units. Cattaneo et al. (2022) show that the ATT estimate
may deviate from its “true” value due to the: 1) out-of-
sample error coming from misspecification and additional
noise occurring during the post-treatment period; 2) in-
sample error coming from the construction of the synthetic
control weights. Classic SCM is not able to quantify the
uncertainty associated with the ATT estimates, nor calcu-
late a range for the predicted potential outcomes.

Cattaneo et al. (2021) proposed a method for calculating
PIs. The PIs are produced using the newly developed scpi R
package (Cattaneo et al. (2021). It consists of a two-step pro-
cedure. In the first step, scpi restricts the weights given to
the control units the same as SCM, namely ≤ ≤w0 1j and

+ + =+w w… 1J2 1 , to minimize the distance between the
treated and its synthetic control in the pretreatment period,
which produces the ATT estimates from SCM. It diverges
from SCM in that researchers can specify all the pre-treat-
ment outcomes as “features” in the scpi context to match
between the treated and control units, while with SCM,
researchers are warned against using all past values of
the outcome as predictors (Kaul et al., 2015). Given this dif-
ference in the model setup, scpi does not exactly replicate
the counterfactual outcomes from SCM. In the second step,
scpi produces the 95% PIs for the potential outcome by esti-
mating the probability bounds of the aforementioned in-
sample and out-of-sample error terms.

I first use scpi to replicate the baseline results from SCM
corresponding to CO2 emissions per capita from transport in
synthetic Sweden (Figure 1a) and synthetic Norway (Figure 3b).
The associated replications are shown in Figure 9a and b.
The average differences between the SCM and scpi estimates
in the pre- and post-treatment periods are −0.0002 and
0.0019 metric tons per capita for synthetic Sweden, and
0.0039 and 0.0065 metric tons per capita for synthetic
Norway, respectively.

The 95% PIs are built around the predicted potential
emission levels for synthetic Sweden and synthetic Norway
assuming no carbon taxes. In Figure 9a, the post-treatment
per-capita CO2 emissions from transport in Sweden always
lie below the PIs for synthetic Sweden. This is evidence that
the difference between Sweden and synthetic Sweden is
greater than what would be expected from random error.

In Figure 9b, the observed per-capita CO2 emissions from
transport in Norway overlap with the PIs of CO2 emissions for
synthetic Norway after 1991. This indicates that the differ-
ences between Norway and synthetic Norway lie within the
range one could reasonably expect from random error, and
thus cannot be confidently attributed to the carbon tax.

A similar conclusion holds for total emissions for
country-level Sweden as shown in Figure 9c. While scpi

produced a somewhat different trajectory for synthetic
(country-level) Sweden, and a better fit during the pre-
treatment period, the wide PIs mean that we are unable
to attribute differences between country-level Sweden and
its synthetic counterpart to the carbon tax.

How does scpi reinforce/change my conclusion about the
effect of carbon taxes? The answer to this question consists of
two parts. Firstly, it further confirms Andersson (2019)’sfinding
that the Swedish carbon taxes largely reduced CO2 emissions
from transport in Sweden. Secondly, when we extend the ana-
lysis to Norway’s transport sector and country-level Sweden,
we are unable to find corroborating evidence outside of Swe-
den’s transport sector.

8 Conclusion

Andersson (2019) is one of the few articles that find a large
and economically significant effect of carbon taxes on CO2

emissions. For example, in her review, Green (2021) con-
cludes that “[…] the majority of studies suggest that the
aggregate reductions from carbon pricing on emissions
are limited – generally between 0 and 2% per year.” The
unusually large effect size and the high quality of Anders-
son’s analysis have made his study influential. Thus, it’s
interesting to know whether his results are reproducible
and reliable and whether his estimated effects can be iden-
tified in other settings. To address this, I applied Clemens’s
(2017) framework of replication and robustness tests to an
analysis of Andersson’s (2019) research.

Table 7 summarizes my main findings. In that table, I
apply a five-point scale (5 – Contradicts, 4 – Does Not Sup-
port, 3 – Uninformative, 2 – Confirms, 1 – Strongly Con-
firms) to facilitate the interpretation of my results for the
internal and external validity of Andersson’s study.

Turning first to Andersson’s direct study of the Swedish
transport sector, my results confirm and strongly confirm
Andersson’s findings. I both reproduce his results and demon-
strate that they are robust to a number of modifications in his
analysis. Andersson estimated a combined VAT and carbon tax
emission reduction of 10.9% for the Swedish transport sector and
attributed a 6.3% reduction to the carbon tax alone. I estimated
reductions of 12.9 and 7.7%, respectively. These slightly larger
estimates result from omitting carbon-tax adaptor Denmark
from the control group to avoid potential bias and applying
more advanced techniques to estimate the respective effects of
VAT and carbon taxes on gasoline consumption.

The one relatively minor discrepancy with Andersson
that I found is that using the Prais-Winsten estimator to
estimate gasoline consumption in the face of serial
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correlation produced price and tax effects approximately
half of what Andersson found. However, Andersson (and I)
consider results based on regression analysis of gasoline
demand to be less reliable than those using synthetic control
counterfactuals. As a result, I do not interpret my results from
Prais-Winsten estimator as weakening Andersson’s conclu-
sions for the Swedish transport sector.

This was not the case when I extended Andersson’s
analysis to estimating the effect of carbon taxes on emis-
sions in the Norwegian transport sector. I found a relatively
small (2.4%) emissions reduction effect. Moreover, for several
years during the post-treatment period (1996–1999), emissions
for the Norwegian transport industry actually exceeded that
of its synthetic control counterfactual assuming no carbon
tax. Further, even the small differences that were observed
lay within the range of values one might reasonably expect
from random error. Thus, my effort to find corroborating
evidence of the effectiveness of the carbon tax in Norway’s
transport sector was not successful.

I also attempted to extend Andersson’s analysis to country-
level emissions for Sweden. Unfortunately, the pre-treatment
fit of synthetic Sweden was sufficiently poor to render this
analysis uninformative. Further, when I re-estimated the syn-
thetic control model using recent methods to estimate PIs, I
found no evidence of an effect, and the observed differences all
lay well inside the PIs. Thus, my effort to find corroborating
evidence for country-level Sweden was also unsuccessful.

While pricing the carbon content of fossil fuels can
theoretically reduce the consumption of fossil fuels and
mitigate CO2 emissions, my analysis demonstrates that
the success of such policies varies case by case. I confirm
Andersson’s analysis that the Swedish transport sector
experienced an immediate drop and a subsequent stable
trend in CO2 emissions after the introduction of the carbon
tax. However, a similar outcome was not observed for the
Norwegian transport sector, nor was the effect discernible
for country-level emissions in Sweden. This serves as a
cautionary reminder that one should be careful about
extending the analyses of one region or sector or time
period to other places and times.
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