
Economics
 

Neutrosophic Inventory Management: A Cost-Effective Approach
--Manuscript Draft--

 
Manuscript Number: ECONJOURNAL-D-24-00059

Full Title: Neutrosophic Inventory Management: A Cost-Effective Approach

Article Type: Research Article

Keywords: Neutrosophic, Inventory, Fuzzy, Holding Cost, Ordering Cost, Uncertainty,
Optimization, mathematical model

Manuscript Region of Origin: INDIA

Abstract: Classical Inventory models (IM) serve as quantitative tools for determining the optimal
order quantities, timing of orders, and safety stock levels for specific inventory items or
item groups. In 1965, Zadeh introduced the concept of fuzzy theory. Subsequently,
Dubois and Parade(1988) introduced the fuzzy inventory model, which, however,
exhibits limitations in effectively handling uncertainty, inaccuracies, and imprecise data.
To handle more uncertainty, Smarandache introduced the concept of neutrosophic set
theory in 1999. This research article applies the neutrosophic set theory to the realm of
inventory management, with a specific focus on addressing the uncertainty linked to
holding costs, shortage costs, and ordering costs by utilizing trapezoidal neutrosophic
numbers. Additionally, we conduct a comparative analysis of our proposed model
against existing models in this paper. Based on this comparative study, our findings
assert the superior performance of our proposed model in relation to some of the
existing models. In conclusion, we wrap up our research by presenting graphical,
logical, and tabular comparisons with the existing methods.

Manuscript Classifications: 3.1: General; 3.9.2: Optimization Techniques • Programming Models • Dynamic
Analysis; 3.9.5: Miscellaneous Mathematical Tools

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



 1 

Neutrosophic Inventory Management: A Cost-Effective Approach 

1Ankit Dubey, 2,*Ranjan Kumar 
1,2VIT-AP University, Inavolu, Beside AP Secretariat, Amaravati AP, India 

*Corresponding author: ranjank.nit52@gmail.com 

 

Abstract: Classical Inventory models (IM) serve as quantitative tools for determining the optimal order quantities, 

timing of orders, and safety stock levels for specific inventory items or item groups. In 1965, Zadeh introduced 

the concept of fuzzy theory. Subsequently, Dubois and Parade(1988) introduced the fuzzy inventory model, 

which, however, exhibits limitations in effectively handling uncertainty, inaccuracies, and imprecise data. To 

handle more uncertainty, Smarandache introduced the concept of neutrosophic set theory in 1999. This research 

article applies the neutrosophic set theory to the realm of inventory management, with a specific focus on 

addressing the uncertainty linked to holding costs, shortage costs, and ordering costs by utilizing trapezoidal 

neutrosophic numbers. Additionally, we conduct a comparative analysis of our proposed model against existing 

models in this paper. Based on this comparative study, our findings assert the superior performance of our 

proposed model in relation to some of the existing models. In conclusion, we wrap up our research by presenting 

graphical, logical, and tabular comparisons with the existing methods. 

Keywords: Neutrosophic, Inventory, Fuzzy, Holding Cost, Ordering Cost. 

Introduction 

Operations Research, often abbreviated as OR, is a multidisciplinary field at the intersection of mathematics, 

statistics, and decision science. Operations research is intricately connected to inventory management by 

providing a systematic approach to optimize key inventory decisions. Through mathematical models, simulations, 

and analysis, operations research enables businesses to determine optimal reorder points, order quantities, and 

inventory policies, accounting for factors like demand variability, lead times, and cost structures. This connection 

empowers organizations to minimize holding and ordering costs while maintaining desired service levels, 

enhancing overall supply chain efficiency and profitability through data-driven decision-making in the realm of 

inventory management. 

The last few years have witnessed a growing body of research focusing on various dimensions of inventory control 

and management. A series of studies have delved into intricate aspects of this field. Das et al. (2020) (Das, Zidan, 

Manna, Shaikh, & Bhunia, 2020) concentrated on the integration of preservation technology within an inventory 

control system, specifically addressing price-dependent demand and partial backlogging. Mashud (2020) 

(Mashud, 2020) contributed by presenting an EOQ framework for a deteriorating IM that incorporates diverse 

demand types and complete backlogging. In the year 2021, Khan and Sarkar (Khan & Sarkar, 2021) explored the 

terrain of supply chain risk transfer, effectively merging pricing and inventory decisions while meticulously 

tackling shortages. Setiawan et al. (2021) (Setiawan, Lesmono, & Limansyah, 2021) offered valuable insights into 

managing exponential and quadratic demand within the context of Weibull deterioration, thereby addressing 

challenging inventory control scenarios. The subsequent year introduced the work of Sharma et al. (2021) 

(Sharma, Tyagi, Verma, & Kumar, 2022), who devised a model that takes into account demand-driven production 

while accommodating time and stock-related demand for deteriorating inventory items. Antic et al. (2022) (Antic, 

Djordjevic Milutinovic, & Lisec, 2022) contributed an adaptive IM tailored for pharmaceutical distribution, 

incorporating dynamic discreteness and accounting for both deterministic and stochastic demand. Duary et al. 

(2022) (Duary, et al., 2022) extended the scope by considering payment timing and inventory discounts in a model 

for deteriorating items, thoughtfully incorporating capacity constraints and partially backlogged shortages. The 

most recent addition, by Jani et al. (2023) (Jani, et al., 2023), offers a decision support system tailored for retailer's 

deterioration control, factoring in trade credit dynamics and the presence of shortages. Together, these studies 

form a comprehensive mosaic of inventory management research, contributing valuable perspectives to this 

intricate and dynamic field. Classical IM faces a multitude of challenges, including accurate demand forecasting 

to prevent stockouts or overstocking, optimizing reorder points and safety stock levels to balance costs and service 

levels, etc. In certain decision-making scenarios involving multiple complex factors, some of which may defy 

easy quantification, fuzzy logic offers a more adaptable and nuanced alternative to traditional inventory models. 

As a result, Lotfi A. Zadeh (Zadeh, 1965) introduced the fuzzy theory in 1965, recognizing its potential for 

enhancing decision-making processes.  
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Lately, Dubois and Parade (1988) (Dubois & Prade, 1988) introduced the fuzzy inventory model (FIM). Unlike 

traditional IM that assume precise and deterministic parameters, a FIM allows for the representation of vague and 

ambiguous information, enabling decision-makers to make more robust and flexible inventory management 

decisions. Leopoldo Eduardo Cárdenas-Barrón (2011) (Cárdenas-Barrón, 2011) made a noteworthy contribution 

by developing EOQ/EPQ inventory models that incorporated dual backorder costs, utilizing the powerful tools of 

analytic geometry and algebra. Building on this foundation, Harun Sulak (2016) (Sulak, 2015) introduced an EOQ 

model that addressed the complexities of defective items and shortages within a fuzzy sets framework, offering a 

more realistic perspective on inventory management. In 2018, Gani and his colleagues (Gani & Rafi, A new 

method to discussing the manufacturing defects in EOQ/EPQ inventory models with shortages using fuzzy 

techniques, 2020) ventured into the application of the Arithmetic Geometric Mean (AGM) inequality method for 

calculating EOQ/EPQ within a fuzzy environment, opening up new avenues for precision in inventory 

calculations. Alfares and Ghaithan (2018) (Alfares & Ghaithan, 2019) provided a comprehensive review of state-

of-the-art EOQ and EPQ production-IM, with a particular focus on incorporating variable holding costs, a critical 

factor in modern supply chain dynamics. Thinakaran et al. (2019) (Thinakaran, Jayaprakas, & Elanchezhian, 

2019) undertook an extensive survey exploring inventory models for EOQ and EPQ, with a specific emphasis on 

addressing the challenges of partial backorders, shedding light on a common yet often complex scenario faced by 

businesses. In the same year, Scott Shu-Cheng Lin (2019) (Lin, 2019) made observations regarding the 

formulation of EOQ/EPQ IM with dual backorder costs, leveraging analytic geometry and algebra to refine 

existing approaches. Gani and Rafi (2019) (Gani & Rafi, A simplistic method to work out the EOQ/EPQ with 

shortages by applying algebraic method and arithmetic geometric mean inequality in fuzzy atmosphere, 2019) 

presented a simplified approach for calculating EOQ/EPQ while considering shortages in a fuzzy environment, 

introducing algebraic and AGM Inequality methods to streamline the decision-making process. In 2020, they 

further expanded their contributions by introducing a novel approach to address manufacturing defects in 

EOQ/EPQ IM with shortages through the application of fuzzy techniques, further enhancing the precision and 

robustness of inventory management strategies. Collectively, these scholars have made significant strides in 

advancing the theory and application of inventory management, addressing various complexities and uncertainties 

that modern businesses face. So far, we have discussed the FIM, but some challenges in FIM.  Challenges in FIM 

involve handling fluctuating demand patterns, addressing imprecise or incomplete data, optimizing inventory 

allocation and distribution across complex supply chains, and adapting to unforeseen disruptions, whereas 

extended fuzzy inventory methodologies refine traditional approaches by integrating higher-order fuzzy 

reasoning, multiple granularities, and dynamic adjustments, enabling more adaptive, resilient, and agile inventory 

control strategies in volatile and uncertain environments.  

However, in 1999, F. Smarandache (Smarandache, 1999) introduced the concept of a neutrosophic set and 

highlighted some of its specific characteristics that make it superior to the classical model and fuzzy model. In the 

context of this progression, we will now proceed to discuss the neutrosophic inventory model (NIM). 

After reading many research books and articles, it has become clear that having a lot of knowledge about 

management is very important. Also, it is very important to understand that uncertainty is a big part of real-life 

problems. Because of these things, the present study aims to explore NIM as a cost-effective approach. 

The study aims to explore NIM as a cost-effective approach. To achieve this, the following objectives have been 

set: 

(1) Conducting a comprehensive literature survey on inventory management systems to enhance 

understanding of the overall management framework.  

(2) Proposing a new method to effectively address and manage uncertainty within the IM context.  

(3) Comparing the proposed method with existing approaches to establish its superiority. 

(4)  Conducting a thorough comparison, employing logical, graphical, and tabular analyses, with existing 

methods in the field.  

(5) Discussing the practical applications of the proposed method within the inventory management system. 

(6) Introducing a new method designed not only to address existing numerical challenges but also to tackle 

novel problem types.  

This research endeavours to contribute to the existing body of knowledge in the field by addressing the identified 

gaps and offering innovative solutions to enhance the efficacy of IM systems in the face of uncertainty. 
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The paper consists of six sections. The first section is the introduction, which provides an overview of the study. 

The second section discusses neutrosophic numbers and their arithmetic and logical operators. The third section 

presents the proposed NIM Model. The fourth section is dedicated to numerical analysis. The fifth section presents 

the results and discussion. Finally, the sixth section concludes the paper. 

2. Neutrosophic number and its Arithmetic and logical operators 

Definition 2.1: Normalized Fuzzy set (Zadeh, 1965) : A fuzzy set        , : , 0,1W
 

          is 

called a normalized fuzzy set if and only if    1
W

Sup




 


 . 

Definition 2.2. Neutrosophic Set (Wang, Smarandache, Zhang, & Sunderraman, 2010) (Wang, Zhang, 

Sunderraman, & Smarandache, 2011): A set neuS  in the universal discourse W , symbolically denoted by  it 

is called Neutrosophic Set if        , , , :
neuS neuS neuS

neuS t i f W         Where truth, Falsity, 

indeterminacy , membership function which has the degree of belongingness    : 0,1
neuS

t W  ,

   : 0,1
neuS

f W  ,and    : 0,1
neuS

i W   of the decision maker.      ,, ,
neuS neuS neuS

T F I    exhibits the 

following relation.          0 3
neuS neuS neuS

Sup T Sup F Sup I      . 

Definition 2.3. (Liang, Wang, & Li, Multi-criteria group decision-making method based on interdependent inputs 

of single-valued trapezoidal neutrosophic information, 2018) (Liang, Wang, & Zhang, A multi-criteria decision-

making method based on single-valued trapezoidal neutrosophic preference relations with complete weight 

information., 2018): Let ˆ ˆ ˆ, , [0,1]
d d d

T I F  , then a Single-valued trapezoidal neutrosophic (SVTpN) number 

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ, , , , ( , , )a s h o

d d d
d d d d d T I F 

 
 is a special Ns on the real number set R, whose indeterminacy-MF ˆ ( )

d
x , 

truth-MF ˆ ( )
d

x , and falsity-MF ˆ ( )
d

x  are given as follows: 

ˆ

ˆ

ˆ

ˆ

ˆ ˆ( ( ))
ˆ ˆ,

ˆ ˆ( )

ˆ ˆ,
( )

ˆ ˆ( ( ))
ˆ ˆ,

ˆ ˆ( )

1,

s a

a sd

s a

s h

d

d
h o

h od

o h

d x I x d
d x d

d d

I d x d
x

x d I d x
d x d

d d

otherwise



   
  

 
 

  
  
   

  
 

 
 

,

ˆ

ˆ

ˆ

ˆ

ˆ( )
ˆ ˆ,

ˆ ˆ( )

ˆ ˆ,
( )

ˆ( )
ˆ ˆ,

ˆ ˆ( )

0,

a

a sd

s a

s h

d

d
o

h od

o h

T x d
d x d

d d

T d x d
x

T d x
d x d

d d

otherwise



 
  

 
 

  
  
 

  
 

 
 

,

ˆ

ˆ

ˆ

ˆ

ˆ ˆ( ( ))
ˆ ˆ,

( )

ˆ ˆ,
( )

ˆ ˆ( ( ))
ˆ ˆ,

ˆ ˆ( )

1,

s a

a sd

s a

s h

d

d
h o

h od

o h

d x F x d
d x d

d d

F d x d
x

x d F d x
d x d

d d

otherwise



   
  

 
 

  
  
   

  
 

 
 

 

Definition 2.4 (Ye, 2017): Let 1 2 3 4[ , , , ]; ( , , )a n k i

A A A
A a a a a T I F  and 1 2 3 4[ , , , ]; ( , , )a n k i

B B B
B b b b b T I F  are two 

trapezoidal neutrosophic numbers, then  
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31 2 4

4 4

4 3 2 1

34 2 1

4 4

4 3 2 1

34 2 1

1 2 3 4

, , , ; , , , 0, 0

, , , ; , , , 0, 0

, , , ; ,

ka n i

i i

i k n a B B BA A A

ki n a

i i

i k n a B B BA A A

ki n a

a n k i BA

aa a a
T T I I F F ifa b

b b b b

aa a aA
T T I I F F ifa b

b b b bB

aa a a
T T I

b b b b

  
      

 

  
       

 

 
 

 
4 4, , 0, 0i i

B BA A
I F F ifa b











   


 

1 1 2 2 3 3 4 4

1 2 3 4

4 3 2 1

[ , , , ]; ( , , )

[ , , , ]; ( , , ) , 0

[ , , , ]; ( , , ) , 0

a a n n k k i i

B B BA A A

a n k i

A A A

i k n a

A A A

A B a b a b a b a b T T I I F F

A a a a a T I F

A a a a a T I F

     

     

    

  

  

 

1 1 2 2 3 3 4 4[ , , , ]; ( , , )a a n n k k i i

B B BA A A
A B a b a b a b a b T T I I F F          

Definition 2.5 (Ye, 2017): Let ( , , , ); ( , , )
d d d

a n k i

d A A A
A a b c d T I F  be TpFN then the score function of dA  is 

defined as 
1

( ) ( )(2 )
12 d d d

a n k i

d A A A
Sc A a b c d T I F        

Let 1 1 1 1( , , , ); ( , , )
d d d

a n k i

d A A A
A a b c d T I F  and 2 2 2 2( , , , ); ( , , )

d d d

a n k i

d B B B
B a b c d T I F  be two SVTN-number. Then,  

1. If ( ) ( )d dSc A Sc B , then dA  is smaller than dB , denoted by 
d dA B . 

2. If ( ) ( );d dSc A Sc B  

(a) If ( ) ( )d dAc A Ac B , then dA  is smaller than dB , denoted by 
d dA B . 

(b) If ( ) ( )d dAc A Ac B , then dA  and  dB  are  the same, denoted by 
d dA B . 

3. Proposed Neutrosophic Inventory Management Model 

3.1 NOTATIONS: 

Define the following parameters used in inventory model: 

  stands for “Total cost”; i  stands for “Holding cost for one unit per day”. 

 stands for “Length of the cycle”; neun  stands for “Neutrosophic ordering cost per cycle”. 
* stands for “Optimal order quantity”; 

*( )neu  stands for “Neutrosophic optimal order quantity”. 

  stands for “Order quantity per cycle”; k  stands for “Shortage (backorder) cost per unit per day”. 

n  stands for “Ordering cost per cycle”; *( )neu

s  stands for “Neutrosophic optimal shortage quantity”. 

 
neu  stands for “Neutrosophic total cost”; 

neui  stands for “Neutrosophic holding cost for one unit per day”. 

s  stands for “Shortage quantity per cycle”;  

a  stands for “Annual demand in period [0, ]”; neuk  stands for “Neutrosophic shortage (backorder) cost per unit per 

day”. 

 

3.2 ASSUMPTIONS- 

In this IM, the following norms are considered i.e., Total demand and time of plan are constant, and shortage in 

inventory is allowed.  

3.3 MATHEMATICAL FORMATION AND SOLUTION OF MODEL- 

3.3.1 EOQ Model in Classical Environment- 

For a crisp IM with shortage quantity, then IM in classical sense is, 

Total cost = Ordering Cost + Holding Cost + Shortage Cost 
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2 2( )

2 2

s s a
i k n
  


  


              (1)

( )   is minimum when to optimize the total cost we can use 
2

2

( ) ( )
0, 0

d d

d d

   

 
   

Now, differentiating equation (1) w.r.t. , we have, the optimal order quantity is 

* 2( )i k na

ki



            (2) 

And optimal shortage quantity is 

* 2.

( )
s

ina

k i k
 


            (3) 

From Eq. (1), the minimal total cost is 

* 2.ikna

i k
 


            (4) 

3.3.2 EOQ Model in Neutrosophic Environment- 

In an environment characterized by its clarity and precision, we can determine the total cost using Equation (1). 

However, in real-world scenarios, this cost may exhibit slight fluctuations, thereby impacting the ordering quantity 

( n ), shortage quantity ( s ), and holding quantity ( i ). To address this variability, we adopt a model that accounts 

for permissible shortages within a Neutrosophic framework. This decision is informed by the fact that the 

Neutrosophic nature of the ordering cost per order, carrying cost (or holding cost) per unit quantity per unit time, 

and shortage cost per unit quantity necessitates a Neutrosophic approach. Consequently, we transform the values 

of o, s, and h into Neutrosophic numbers using a trapezoidal Neutrosophic representation as follows: 

1 2 3 4( , , , ); ( , , )neu neu neu

neu neu neu neu neu

n n n
n n n n n T I F  ,  1 2 3 4( , , , ); ( , , )neu neu neu

neu neu neu neu neu

k k k
k k k k k T I F  and  

1 2 3 4( , , , ); ( , , )neu neu neu

neu neu neu neu neu

i i i
i i i i i T I F  

Proposed model for find total cost while considering the uncertainty  

The neutrosophic total cost is denoted as 
neu

 , where , &neu neu neui k n  are neutrosophic variables 

2 2( ) ( )

2 2

neu neu neu neus s a
i k n

  


  


           (5) 

   

 

2 2

1 2 3 4 1 2 3 4

1 2 3 4

( ) ( )
, , , ; , , , , , ; , ,

2 2

, , , ; , ,

neu neu neu neu neu neu

neu neu neu

neu neu neu neu neu neu neu neus s

i i i k k kneu

neu neu neu neu

n n n

i i i i T I F k k k k T I F

a
n n n n T I F

  

 



 
       

 
 

    

(6) 

Now applying the def. 2.4 and def. 2.5 respectively on equation (6), we get  
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 

 

2 2 2 2

1 2 3 4

2 2 2 2

1 2 3 4

1

( ) ( ) ( ) ( )
, , , ; , ,

2 2 2 2

( ) ( ) ( ) ( )
, , , ; , ,

2 2 2 2

neu neu neu

neu neu neu

neu neu neu neus s s s

i i i

neu neu neu neu neus s s s

k k k

ne

i i i i T I F

k k k k T I F

n

       

   

   


   

    
    

 

 
      

 

  2 3 4, , , ; , ,neu neu neu

u neu neu neu

n n n

a a a a
n n n T I F

   

 
 

 

2 2

1 1 1

2 2

2 2 2

2 2

3 3 3

2 2

4 4 4

( ) ( )

2 2

( ) ( )

2 2
;

( ) ( )

2 2

( ) ( )

2 2

neu neu neus s

neu neu neus s

neu

neu neu neus s

neu neu neus s

a
i k n

a
i k n

a
i k n

a
i k n

  

  

  

  


  

  

  

  

 
     

 

 
    

 


 
    

 

 
    

 

,

,

neu neu neu

neu neu neu
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  (8) 
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This shows that ( , )s    is minimum at &neu neu

s  . 

Optimal (minimum) total cost while considering uncertainty, 
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 (11) 

4. Numerical Analysis  

Example 4.1: Comparison with the existing method:  As per the Rajput et.al (2019) (Rajput, Singh, & Pandey, 

2019) consideration, A manufacturing factory needs to develop an EOQ model for optimize the total cost of their 

product. The length of cycle is 6 months, ordering cost is Rs.20 per unit, holding cost is Rs.04 per unit and shortage 

cost is Rs.10 per unit. 

We use a SVTpN membership function to capture the data’s inherent uncertainty when addressing this challenge 

using Neutrosophic parameters. For every feasible cost, the corresponding membership functions are specified as 

follows: 

   1,3,5,6 ; 1,0,0neui  ,    8,9,11,12 ; 1,0,0neuk    and    15,18, 22, 25 ; 1,0,0neun   

Table 1: Tabular comparison study with some of the existing methods such as Sen and Malakar (2015) (Sen & 

Malakar, 2015), Saranya and Varadarajan (2018) (Saranya & Varadarajan, 2018), Rajput et al. method (2019) 

(Rajput, Singh, & Pandey, 2019).   

 Total Cost 

Demand Classical 

environment 

Sen and 

Malakar (2015) 

(Sen & 

Malakar, 2015) 

Saranya and 

Varadarajan (2018) 

(Saranya & 

Varadarajan, 2018) 

Rajput et al. 

method(2019) 

(Rajput, Singh, & 

Pandey, 2019) 

Proposed 

Method 

 

1000 828.078 NA 815.5122568 809.039 809.039 

1025 838.3657572 NA 825.6432323 819.0904 819.0904 

1125 878.3100657 NA 864.9813704 858.1163 858.1163 

1225 916.515139 NA 902.6066669 895.443 895.443 

1325 953.1901324 NA 938.7251031 931.2748 931.2748 

1425 988.5053653 NA 973.5044136 965.7781 965.7781 

 

In addition to tabular comparison, we also conducted a pictorial comparison study with some of the existing 

methods such as Sen and Malakar (2015) (Sen & Malakar, 2015), Saranya and Varadarajan (2018) (Saranya & 

Varadarajan, 2018), and Rajput et al. method (2019) (Rajput, Singh, & Pandey, 2019). 
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Finally, after doing the logical comparison i.e., classical total cost is greater than Rajput et al. (2019) (Rajput, 

Singh, & Pandey, 2019) proposed method but it is equal to our proposed method. 

In Example 4.1, many authors have proposed different methods to solve Rajput’s numerical problem. In the 

comparison study of tabular, pictorial, and logical methods, it is observed that our proposed method provides an 

optimal solution similar to Rajput et al (2019) (Rajput, Singh, & Pandey, 2019). Our proposed method not only 

solves existing problems but also solves a new type of environment, which is discussed below in Example 4.2. 

Example 4.2: Transforming the environment into Type I Neutrosophic environment.  

Table 2: Finding the total optimal cost under different cases 

Different 

Cases 
1 2 3 4( , , , ); ( , , )neu neu neu

neu neu neu neu neu

i i i
i i i i i T I F , 1 2 3 4( , , , ); ( , , )neu neu neu

neu neu neu neu neu

k k k
k k k k k T I F , and 

1 2 3 4( , , , ); ( , , )neu neu neu

neu neu neu neu neu

n n n
n n n n n T I F  

Case 1:     1,3,5,6 ; 0.99,0.98,0.73 ,    8,9,11,12 ; 0.98,0.91,0.71 ,    15,18,22,25 ; 0.99,0.97,0.7  

Case 2:     7,9,11,12 ; 0.83,0.82,0.61 ,    14,15,17,18 ; 0.83,0.85,0.56 ,    21,24,28,3 ; 0.85,0.82,0.53  

Case 3:    8,10,12,13 ; 0.79,0.81,0.58 ,    15,16,18,19 ; 0.81,0.81,0.54 ,    22,25,29,32 ; 0.82,0.79,0.51   

Case 4:    9,11,13,14 ; 0.77,0.79,0.57 ,    16,17,19, 20 ; 0.79,0.78,0.53 ,    23,26,30,33 ; 0.8,0.75,0.49  

Case 5:    10,12,14,15 ; 0.73,0.77,0.55 ,    17,18, 20,21 ; 0.77,0.75,0.51 ,

   24,27,31,34 ; 0.79,0.73,0.46  

Case 6:    11,13,15,16 ; 0.71,0.75,0.51 ,    18,19,21, 22 ; 0.74,0.71,0.49 ,    25,28,32,35 ; 0.7,0.69,0.44  

 

Table 3: Tabular comparison study with some of the existing methods such as Sen and Malakar (2015) (Sen & 

Malakar, 2015), Saranya and Varadarajan (2018) (Saranya & Varadarajan, 2018), Rajput et al. method (2019) 

(Rajput, Singh, & Pandey, 2019).   

Demand Sen and Malakar (2015) (Sen & Malakar, 2015), 

Saranya and Varadarajan (2018) (Saranya & 

Varadarajan, 2018), Rajput et al. method (2019) 

(Rajput, Singh, & Pandey, 2019) 

Proposed Method 

1000 NA 342.4935301 

1025 NA 632.5781217 
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1125 NA 719.6689366 

1225 NA 800.3864355 

1325 NA 881.5672484 

1425 NA 981.3623184 

 

We compared our proposed method with some of the existing methods such as Sen and Malakar (2015) (Sen & 

Malakar, 2015), Saranya and Varadarajan (2018), and Rajput et al. method (2019) (Rajput, Singh, & Pandey, 

2019) using both tabular and pictorial comparison studies. 

 
 

Figure 1 

 
 

Figure 2: 

 

In example 4.2 it is clear evident that our proposed method not only to address existing numerical challenges but 

also to tackle a new types of uncertain problem types. Moreover, from the above comparison it is clear that our 

proposed method is superior than some of the existing method. To explain more about our method, we have also 

conducted a sensitive analysis in the below section 5.  

5. Sensitive Analysis. 

A manufacturing factory needs to develop an EOQ model for optimize the total cost of their product. The length 

of cycle is 6 months, ordering cost is Rs.    15,18,22,25 ;  0.99,0.97,0.70   per unit, holding cost is Rs. 

   1,3,5,6 ;  0.99,0.98,0.73 per unit and shortage cost is Rs.    8,9,11,12 ;  0.98,0.91,0.71 per unit. 

Table 4: Sensitive Analysis. On proposed method 

Parameter Change in 

Parameters 

  
s  Proposed TC 

  Proposed 

Method 

 

Proposed 

method 

 

Proposed Method 

 

neui  

   1,3,5,6 ;  0.99,0.98,0.73  

13% 47.32780723 14.08615158 357.7882502 

29% 44.83152683 14.87048766 377.7103867 

37% 43.0753968 15.47673884 393.1091665 

-13% 48.68631097 13.69310292 347.804814 

-29% 53.37369196 12.4905481 317.2599217 

-37% 57.98788415 11.49665446 292.0150232 

     
neuk  

   8,9,11,12 ;  0.98,0.91,0.71  

13% 48.65951376 12.12446356 347.9963531 

29% 47.90170815 10.78867301 353.5016597 

37% 47.58566783 10.22614638 355.8494418 

-13% 50.43868855 15.19237607 335.7211264 
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-29% 52.12240319 18.01465548 324.8762969 

 53.25390911 19.87086161 317.9735275 

     
neun  13% 52.55684753 14.33368569 364.0756165 

   15,18, 22,25 ;  0.99,0.97,0.70  29% 56.15454864 15.3148769 388.9978733 

37% 57.86958518 15.78261414 400.8783992 

-13% 46.11579628 12.57703535 319.4566979 

-29% 41.65999947 11.36181804 288.5901781 

 39.24283374 10.70259102 271.8458119 

 

Logical comparison  

Table 5: logical comparison with TC 

Examples Comparison 

Example 4.1 828.078 809.039) )( ) ( (809.039C OurpropC oselassicalTC Fuzzy CdT T  

Example 4.2 828.078 809.039) 342.4935)( ) ( (OurprC z oposelassicalTC Fuz yTC TCd  

 

In Table 5, we have conducted a comparative analysis of total cost across various environmental scenarios. Our 

observations reveal that in a fuzzy environment, the value of total cost is lower than that in a classical environment. 

Furthermore, in our proposed model, the total cost is observed to be lower than both classical and fuzzy 

environments. 

 

Conclusion:  

Neutrosophic set theory is a powerful tool in the domain of inventory management. It is especially useful when 

dealing with uncertainty, inaccuracies, and imprecise data in factors such as holding costs, shortage costs, and 

ordering costs. Our proposed model outperforms existing methods, offering a more effective approach to 

inventory optimization. Our research contributes valuable insights to enhance inventory management strategies 

and moderate uncertainties in EPQ operations through graphical, logical, and tabular comparisons. 

 

 

References 
Alfares, H. K., & Ghaithan, A. M. (2019). EOQ and EPQ production-inventory models with variable 

holding cost: state-of-the-art review. Arabian Journal for Science and Engineering, 44, 1737–

1755. 

Antic, S., Djordjevic Milutinovic, L., & Lisec, A. (2022). Dynamic discrete inventory control model with 

deterministic and stochastic demand in pharmaceutical distribution. Applied Sciences, 12, 

1536. 

Cárdenas-Barrón, L. E. (2011). The derivation of EOQ/EPQ inventory models with two backorders 

costs using analytic geometry and algebra. Applied Mathematical Modelling, 35, 2394–2407. 

Das, S. C., Zidan, A. M., Manna, A. K., Shaikh, A. A., & Bhunia, A. K. (2020). An application of 

preservation technology in inventory control system with price dependent demand and 

partial backlogging. Alexandria Engineering Journal, 59, 1359–1369. 

Duary, A., Das, S., Arif, M. G., Abualnaja, K. M., Khan, M. A.-A., Zakarya, M., & Shaikh, A. A. (2022). 

Advance and delay in payments with the price-discount inventory model for deteriorating 



 13 

items under capacity constraint and partially backlogged shortages. Alexandria Engineering 

Journal, 61, 1735–1745. 

Dubois, D., & Prade, H. (1988). Fuzzy logic in expert systems: the role of uncertainty management. 

Fuzzy Sets and Systems, 28, 3-17. 

Gani, A. N., & Rafi, U. M. (2019). A simplistic method to work out the EOQ/EPQ with shortages by 

applying algebraic method and arithmetic geometric mean inequality in fuzzy atmosphere. 

Bulletin of Pure and Applied Sciences. 

Gani, A. N., & Rafi, U. M. (2020). A new method to discussing the manufacturing defects in EOQ/EPQ 

inventory models with shortages using fuzzy techniques. Adv Appl Math Sci, 19, 1189–1203. 

Jani, M. Y., Patel, H. A., Bhadoriya, A., Chaudhari, U., Abbas, M., & Alqahtani, M. S. (2023). 

Deterioration control decision support system for the retailer during availability of trade 

credit and shortages. Mathematics, 11, 580. 

Khan, I., & Sarkar, B. (2021). Transfer of risk in supply chain management with joint pricing and 

inventory decision considering shortages. Mathematics, 9, 638. 

Liang, R. X., Wang, J. Q., & Li, L. (2018). Multi-criteria group decision-making method based on 

interdependent inputs of single-valued trapezoidal neutrosophic information. Neural 

Computing and Applications, 30, 241-260. 

Liang, R. X., Wang, J. Q., & Zhang, H. Y. (2018). A multi-criteria decision-making method based on 

single-valued trapezoidal neutrosophic preference relations with complete weight 

information. Neural Computing and Applications, 30, 3383-3398. 

Lin, S. S.-C. (2019). Note on “The derivation of EOQ/EPQ inventory models with two backorders costs 

using analytic geometry and algebra”. Applied Mathematical Modelling, 73, 378–386. 

Mashud, A. H. (2020). An EOQ deteriorating inventory model with different types of demand and 

fully backlogged shortages. International Journal of Logistics Systems and Management, 36, 

16–45. 

Rajput, N., Singh, A. P., & Pandey, R. K. (2019). Optimize the cost of a fuzzy inventory model with 

shortage using signed distance method. International Journal of Research in Advent 

Technology, 7, 204-208. 

Saranya, R., & Varadarajan, R. (2018). A fuzzy inventory model with acceptable shortage using 

graded mean integration value method. Journal of Physics: Conference Series, 1000, p. 

012009. 

Sen, N., & Malakar, S. (2015). A fuzzy inventory model with shortages using different fuzzy numbers. 

American Journal of Mathematics and Statistics, 5, 238–248. 

Setiawan, R. I., Lesmono, J. D., & Limansyah, T. (2021). Inventory control problems with exponential 

and quadratic demand considering weibull deterioration. Journal of Physics: Conference 

Series, 1821, p. 012057. 

Sharma, S., Tyagi, A., Verma, B. B., & Kumar, S. (2022). An inventory control model for deteriorating 

items under demand dependent production with time and stock dependent demand. 

International Journal of Operations and Quantitative Management, 27, 321–336. 



 14 

Smarandache, F. (1999). A unifying field in logics. neutrosophy. Neutrosophic probability, set and 

logic.  

Sulak, H. (2015). An EOQ model with defective items and shortages in fuzzy sets environment. 

International Journal of Social Sciences and Education Research, 2, 915–929. 

Thinakaran, N., Jayaprakas, J., & Elanchezhian, C. (2019). Survey on inventory model of EOQ & EPQ 

with partial backorder problems. Materials Today: Proceedings, 16, 629–635. 

Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. 

Infinite study, 12. 

Wang, H., Zhang, Y., Sunderraman, R., & Smarandache, F. (2011). Single valued neutrosophic sets. 

Fuzzy Sets. Rough Sets and Multivalued Operations and Applications, 3(1), 33-39. 

Ye, J. (2017). Some weighted aggregation operators of trapezoidal neutrosophic numbers and their 

multiple attribute decision making method. Informatica, 28, 387–402. 

Zadeh, L. (1965). Fuzzy sets, Information and Control. 8, 338-353. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


