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Abstract: Digitalization is a crucial driver of enhanced
energy system efficiency, facilitating the energy transition
and offering a gateway for technology companies to enter
the sector. This study, employing stochastic frontier ana-
lysis as the chosen methodology, investigates the efficiency
challenges faced by companies venturing into the energy
industry with a digital technology focus. Our empirical
analysis reveals a positive correlation between higher total
assets and increased research and development expendi-
tures, signifying the vital importance of talent acquisition
and securing R&D funding. Additionally, it is noteworthy
that smaller companies experienced a more pronounced
negative impact of COVID-19 on their efficiency. These find-
ings contribute to refining digitalization strategies in the
energy industry, emphasizing the role of efficiency from a
corporate perspective.

Keywords: digitalization, technical efficiency, energy busi-
ness, companies with digital capabilities

1 Introduction

In the Fourth Industrial Revolution era, various industries,
including telecommunications, software, terminals, security,
construction, and automobiles, are leveraging their digital
capabilities to enter the energy industry (Park & Heo, 2020;
Park & Kim, 2021). Herein, digital capabilities refer to the
skills and technologies that enable companies to create, pro-
cess, and analyze digital data, particularly in the context
of enhancing operational efficiency and innovation. This
includes expertise in areas such as artificial intelligence

(AI), big data analytics, and the Internet of Things (IoT).
Companies with digital capabilities are those organizations
that possess or have developed these competencies, enabling
them to leverage digital technologies for business processes,
product development, and customer engagement. Further-
more, energy businesses based on digital technologies are
defined as enterprises in the energy sector that integrate
digital capabilities into their core operations, such as using
AI for predictive maintenance in energy facilities, employing
big data analytics for optimizing energy distribution, or uti-
lizing IoT for real-time monitoring and control of energy
systems.

This trend has led to the development of new products
and services that utilize digital technologies for moni-
toring, diagnosing, controlling, and predicting energy pro-
duction, delivery, and consumption processes. Companies
with expertise in digital technology are venturing into the
energy industry while existing energy companies are also
focusing on strengthening their digital capabilities (Çelık
et al., 2022a; Mihai et al., 2022; Park, 2022).

In particular, the electric power industry has experi-
enced a rapid diversification of participating companies
and industries due to the convergence of information
and communications technology (ICT) and the entry of
companies from other sectors. According to Park (2019),
in Korea, the number of companies participating in the elec-
tric power industry that received media exposure increased
from 4 in 1990 to 253 in 2018. Similarly, globally, the relation-
ship between digital technology companies and established
power industry companies has become increasingly close in
recent years (Park, 2019). The oil and gas sector also employs
digital technologies to enhance business productivity and
safety (Al-Rbeawi, 2023; Areva, 2018; OGJ, 2018; Park, 2019;
Sheveleva et al., 2021).

In the energy industry, there is a noticeable increase in
the number of companies entering the sector based on
their digital technology capabilities with these digitaliza-
tion trends (Park & Heo, 2020; Park, 2019, 2022). However,
there needs to be more systematic research exploring alter-
natives to enable companies participating in the energy
industry to build ecosystems and drive innovation in the
energy sector based on digital technologies. Policy press
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releases and media articles often highlight the need to
respond to the development of Fourth Industrial Revolution
technologies and promote the intelligence of the energy
industry. However, there needs to be more detailed infor-
mation regarding the development of new energy busi-
nesses based on digital technology (IEA, 2022).

Existing studies related to new energy businesses based
on digital technology generally focus on analyzing changes
in the energy industry landscape caused by the Fourth
Industrial Revolution and examining the strategies adopted
by energy business operators to adapt to these changes
(Heymann et al., 2023; Trzaska et al., 2021). Some studies
classify the types of new energy businesses and explore
their characteristics (Burger & Luke, 2017; Loock, 2020;
Park & Lee, 2021). Others examine the industries to which
newly entering companies in the energy sector belong in
terms of the energy industry value chain and investigate
the evolving relationships between the energy industry
and other sectors (Park & Heo, 2020; Park, 2019).

Indeed, existing studies have made valuable contribu-
tions by exploring strategies for existing energy businesses,
analyzing new business types, and investigating changes in
industry relationships related to new energy businesses.
However, there is still a gap in understanding alternatives
aimed at enhancing the efficiency of companies partici-
pating in the energy industry based on digital technologies
and driving innovation in the energy sector. This aspect
has received relatively less attention in previous research.
Efficiency analysis studies of companies positioning renew-
able energy as a driving force in the process of energy
transitions have been consistently published (Lu et al.,
2022; Wang et al., 2016; Zeng et al., 2018). However, amid
the ongoing substantial digitalization as a crucial aspect of
energy transitions, it is challenging to find cases of effi-
ciency analysis studies focusing on digital technology-
based companies operating in the energy industry sector.
While general efficiency analyses of digital technology-
based companies are being conducted from various per-
spectives (Chung et al., 2022; Park et al., 2022b; Qiao, 2023),
it is challenging to find specific efficiency research cases
targeting companies with digital technology capabilities
that have entered the energy sector.

By analyzing the efficiency of companies entering the
energy industry based on digital technological capabilities,
it is crucial to diagnose the challenges these companies
face and make efforts to minimize inefficiencies. In parti-
cular, understanding the difficulties of companies entering
the energy industry from an efficiency perspective is essential
for optimizing resource allocation to pursue continuous inno-
vation in the energy industry (Li & Xie, 2022; Wang & Wu,
2022). Such research can contribute to exploring alternatives

that promote the energy industry’s digitalization and related
industries’ growth.

This study aims to bridge the research gap by ana-
lyzing the efficiency of digital capabilities-based companies
entering the energy industry, with a particular focus on the
Korean context. It seeks to identify and address the chal-
lenges these companies face, providing actionable alterna-
tives to support their growth and, by extension, accelerate
the digitalization of the energy sector. By leveraging the
unique case of Korea, where national strategies and policy
initiatives are actively forming clusters to enhance digita-
lization in the energy sector and stimulate new industries,
this research intends to contribute a valuable knowledge
base for promoting digital transformation and innovation
within the energy industry. This approach not only aims to
explore alternatives that can promote the digitalization of
the energy industry and the growth of related industries but
also to analyze the panel technical efficiency (TE) of compa-
nies pursuing energy businesses based on digital technolo-
gical capabilities in a landscape where such research is
notably lacking.

2 Literature Review

2.1 Digitalization of the Energy Industry and
New Entrants

Digital technology, which is based on data, analysis, and
connectivity (Midttun & Piccini, 2017), contributes to the
advancement of digitalization across all industrial sectors
through the reduction of data storage costs, the develop-
ment of AI and machine learning, and the improvement of
fast and economical data transmission and connectivity.

The energy sector is no exception to this trend. Digitalization
provides opportunities to increase the efficiency of energy sys-
tems by reducing losses related to energy production and
consumption, promoting the use of distributed resources,
and decreasing investment costs for energy infrastructure
(Anastasovski, 2023; Park, 2022). Energy consumers can
enhance the efficiency of their energy usage patterns through
data collection and analysis using digital technology, while
real-time information analysis and predictive maintenance
can help reduce unnecessary losses in the energy production
and delivery sectors (Midttun & Piccini, 2017; Xue et al., 2022).
Additionally, digital technology promotes the expansion of
various distributed resources such as demand management,
energy storage, and renewable energy resources (Du et al.,
2023; Körner et al., 2022). It enables power system planning
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that considers the integration of demandmanagement resources
and energy storage systems and facilitates the stable operation
of renewable energy resourceswith high intermittency of output
within energy systems (Asensio et al., 2016; Tahir et al., 2019).
Moreover, digitalization is considered an essential tool for
improving the efficiency and sustainability of energy infrastruc-
tures. Various studies have shown that optimizing energy infra-
structure through digitalization can reduce investment costs,
enhance the efficiency of energy systems, and achieve cost sav-
ings and carbon emission reductions (Beck et al., 2022; Jimenez,
2018; Mazina et al., 2022; Sadiq et al., 2021).

The digitalization of the energy sector is expanding the
opportunities for companies with digital technology cap-
abilities to enter the energy industry. Established telecom-
munications, home appliances, software, and e-commerce
companies that did not previously engage in energy busi-
nesses are actively expanding into the energy sector based on
their technological capabilities (Park & Heo, 2020). Further-
more, the entry of new startups into the energy sector is also
continuing. Notably, these startups are expanding the as-a-
service model based on digital technology, and the value
chains of the energy industry are evolving into various ser-
vices and platforms as the scope of servitization increases
(Park, 2022).

However, companies pursuing energy businesses based on
digital technology face several challenges. While the number of
companies entering the energy business is increasing due to
digitalization, the energy transition trend, and public policies to
foster new energy industries, the inherently conservative
nature of the energy industry makes it difficult for new
entrants to collaborate with or expand their businesses
with incumbent companies (Gitelman et al., 2019; Park &
Heo, 2020). Energy companies are adopting strategies to
expand their digital technology capabilities, which may
result in competition with new entrants in the energy
industry (Park, 2022). In addition, startups entering the
energy industry with small initial entry costs centered on
digital technology often need more capital and workforce
(Rikkonen et al., 2019; Vinodrai, 2016). Small-scale companies
with limited capital and workforce may need help in main-
taining stable business operations amidst uncertain eco-
nomic environments.

Countries worldwide are accelerating energy transi-
tions while simultaneously pursuing the growth of new
energy industries. Governments support innovation and
startups in the energy sector to achieve energy and climate
targets, regional economic prosperity, and capture market
opportunities for sustainable energy transitions. Notably,
during the COVID-19 pandemic, clean energy entrepre-
neurship has emerged as an opportunity for economic
recovery (IEA, 2022). On the other hand, the outbreak of

the COVID-19 pandemic led to a reduction in electricity
demand (Werth et al., 2021), and the energy sector’s pursuit
of new projects was also impacted by the cancellation of
previously planned investments (Çelik et al., 2022b; Li et al.,
2022). In particular, smaller and decentralized energy pro-
jects were found to be more adversely affected by COVID-19
(IEA, 2020). Furthermore, awareness of the various path-
ways for new technologies to enter the market in the
energy sector remains low, and investors and incubators
lack knowledge about energy technologies, policies, and
regulatory details. Therefore, more in-depth exploration
of alternatives to facilitate the growth of new entrants in
the energy industry is needed (IEA, 2022; Pilloni et al., 2022).

2.2 Efficiency Analysis in the Energy Sector

Efficiency analysis is actively conducted in the energy and
environment fields (Zhou et al., 2008). In the energy field,
research often focuses on analyzing energy efficiency at the
national or regional level (Chien & Hu, 2007; Honma & Hu,
2008; Hu et al., 2006) or examining corporate efficiency within
specific energy sectors (Barros & Peypoch, 2007, 2008; Barros,
2008; Bazargan et al., 2023a; Nakano & Managi, 2008), as well
as analyzing the efficiency of energy resources and technol-
ogies themselves (San Cristóbal, 2011).

Honma and Hu (2008) conducted a study analyzing
three input factors (labor employment, private and public
capital stock) and one output factor gross domestic product
(GDP) for 47 prefectures in Japan from 1993 to 2003. Similarly,
Hu et al. (2006) examined energy efficiency in China. Chien
and Hu (2007) analyzed the TE of renewable energy across 45
countries, classifying them into OECD member countries and
non-member countries. Their study considered labor, capital
stock, and energy consumption as input factors for efficiency
analysis, and GDP as the sole output factor.

Barros and Peypoch (2007, 2008) compared the effi-
ciency of hydroelectric and thermoelectric power genera-
tion companies in Portugal, while Nakano and Managi
(2008) analyzed the efficiency of nine thermal power gen-
eration companies in Japan. In contrast, San Cristóbal
(2011) examined the efficiency of 13 renewable energy tech-
nologies, including wind, hydro, solar, and biomass, using
traditional Data Envelopment Analysis (DEA) and Multiple
Criteria Data Envelope Analysis.

Sueyoshi and Goto (2011) analyzed the efficiency of
Japanese thermal power generation companies, consid-
ering factors such as number of employees and power
generation facilities as inputs and greenhouse gas emis-
sions and power generation as outputs. Halkos and
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Tzeremes (2012) compared and analyzed the efficiency of
Chinese coal mining companies with their American coun-
terparts, utilizing total assets and number of employees as
input factors and operating profit and earnings per share
as output factors. In studies focusing on specific countries
or regions, GDP is commonly used as an output factor in
regional efficiency analysis.

Efficiency analysis in the field of new and renewable
energy has targeted various entities such as countries, pro-
ducts, and specific energy sources. Chien and Hu (2007)
examined the impact of the share of renewable energy
generation on TE across 45 countries. They used labor,
capital stock, and energy consumption as input factors
and GDP as the output factor. The results showed that
higher shares of renewable energy were associated with
higher TE.

Ergu et al. (2013) analyzed the performance of solar
cell products using a combination of efficiency analysis
and the Analytical Hierarchy Process. They considered pro-
duction cost, production time, input personnel, and repair
cost as input factors, and product production rate, sales, and
operating profit as output factors. Their analysis aimed to
evaluate the excellence of 39 solar cell products.

Bazargan et al. (2023b) scrutinized the efficiency of
supply chain management within a petrochemical com-
pany employing Network DEA. Notably, Network DEA
offers the distinct advantage of deriving varying efficien-
cies in response to changes in the internal structure of a
business entity (Rasi Nojehdehi et al., 2023). To gather
internal information, encompassing transmission areas,
oil refining processes, etc., of petrochemical companies,
the researchers conducted an extensive literature review
and engaged in expert interviews. Subsequently, they ana-
lyzed the supply chain efficiency of 20 petrochemical com-
panies spanning the years 2016‒2019, aiming to formulate
strategies that could enhance the efficiency of oil supply.
Furthermore, when internal company data are available,
several studies have endeavored to assess management
efficiency using DEA methodologies, such as Fuzzy DEA
and DEA Slacks-Based-Measure (Muniz et al., 2022; Ucal
Sari & Ak, 2022; Zhang et al., 2023).

San Cristóbal (2011) compared the efficiency of 13
renewable energy technologies included in the Spanish
government’s renewable energy plan. These technologies
included wind, hydro, solar, biomass, and biofuels. The
analysis was conducted by classifying the target technolo-
gies based on the size of the renewable energy facility. For
example, wind power was categorized into three groups:
5 MW or less, 5 and 10 MW, and 10 and 50 MW.

Efficiency analysis has also been applied to evaluate
the relative efficiency of new and renewable energy R&D

projects using performance data accumulated over 5 years
(Woo, 2019). The study found that most R&D projects exhib-
ited relatively low efficiency, particularly in the case of
hydrogen fuel cell projects where efficiency was remark-
ably low. The scale factor was identified as a significant
contributor to such low efficiency. Choi et al. (2014) ana-
lyzed the appropriateness of investment scale and the
causes of inefficiency in energy technology development
projects using the DEA analysis method. They discovered
that energy resource circulation projects exhibited excel-
lent relative efficiency compared to investment, while most
projects demonstrated diseconomies of scale except for
energy resource projects.

Although the studies above on efficiency analysis pro-
vided valuable insights into investment and performance
within the energy sector, limitations in terms of data avail-
ability and input/output factors have restricted the depth
of analysis. There is currently a limitation in finding efficiency
analyses targeting energy companies based on digital technol-
ogies, which are continuously expanding. Digitalization across
various industries is gaining momentum, and governments
worldwide are accelerating energy transition and enhancing
growth potential through digitalization. In this context, con-
ducting efficiency analyses of companies based on digital tech-
nologies can offer essential foundational information to foster
innovation in the energy industry through digitalization.

Furthermore, due to the absence of research analyzing
the efficiency of energy companies based on digital tech-
nology capabilities, there is also a need for studies exam-
ining the efficiency of new entrants and startups entering
the energy sector. Research on the efficiency of these new
entrants and startups is critical as a knowledge foundation
for the industry’s growth, and it has been consistently con-
ducted in other sectors such as ICT (Chung et al., 2021;
Chung et al., 2022), commerce (Liu et al., 2022; Zheng &
Khan, 2021), food (Matricano et al., 2022), and insurance
(De Ferrieres, 2020).

Research across various sectors including ICT, com-
merce, food, and insurance highlights the critical role of
factors like funding sources, cluster types, and R&D invest-
ments, as well as digital transformation challenges, in
determining the efficiency and growth of startups and
new entrants.

Chung et al. (2022) find that ICT startups are most effi-
cient when financed by chief executive officers and their
families, with the study categorizing startups based on
ownership and assessing their efficiency. In contrast,
Chung et al. (2021) determine that government-led clusters
are the most efficient for ICT startups, emphasizing the role
of geographic location and cluster type in startup growth
and efficiency. The former study highlights the importance
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of funding sources, while the latter focuses on the startups’
location and cluster environment.

Liu et al. (2022) and Zheng and Khan (2021) both focus
on the efficiency analysis of startups in the commerce
sector. Liu et al. (2022) explore how customer engagement
enhances the operational efficiency of social commerce
startups, specifically analyzing the impact of top manage-
ment team gender diversity on the adoption of environ-
mental standards. On the other hand, Zheng and Khan
(2021) assess the operational efficiency and total factor pro-
ductivity (TFP) of listed e-commerce firms in China using
DEA and the Malmquist TFP index, highlighting technolo-
gical progress and economies of scale as key factors for TFP
improvement.

Matricano et al. (2022) examine the impact of innovation-
related factors, such as R&D investments, on the performance
of food industry start-ups in Italy, using stochastic frontier
analysis (SFA) on 108 firms. Their findings highlight that only
R&D investments significantly enhance start-up performance,
indicating a shift in the traditionally supplier-dominated food
industry towards innovation-driven growth.

De Ferrieres (2020) focuses on the digital transforma-
tion challenges within the insurance industry in Singapore,
contrasting the dynamics between traditional incumbents
and digital-first insurtechs. The study outlines the complex
nature of the insurance sector that demands more than
just digital expertise, emphasizing the barriers to entry
such as regulation and the need for insurance-specific
knowledge. It points out that while new digital entrants
lack the necessary insurance experience, incumbents are
slow to digitalize, primarily using innovation for defensive
purposes. The conclusion suggests that incumbents need to
become more agile and tech-savvy to accelerate their
digital transformation.

However, due to the conservative and capital-intensive
nature of the energy industry, coupled with limited entry
by new entrants and startups, there exists a lack of active
research focusing on their efficiency within the energy
industry. Therefore, this study analyzing the efficiency of
companies entering the energy industry based on digital
technology aims to enhance its value.

3 Methodology

3.1 Data

The study utilized financial statements from companies
involved in digital-related new energy businesses that par-
ticipated in Korea’s Energy Valley project. Energy Valley is

a project initiated in 2014 through collaboration between
local governments and nearby regions, focusing on attracting
companies, research institutes, and entities primarily in
the energy-new industry sector to Gwangju-Jeonnam Joint
Innovation City in South Korea. The goal of the project is to
establish an industrial ecosystem.

As of 2022, 202 companies participated in this project
and adopted the Fourth Industrial Revolution technologies
such as AI, IoT, and big data as their vital technical
strengths. For this study, financial statement information
of these 202 companies was extracted from the NICE Credit
Rating Information-operated Kis Line.

The focus of the study narrowed down to 112 compa-
nies out of the initial 202, for which comprehensive finan-
cial information spanning from 2018 to 2020 was available.
In essence, this study delved into the collective landscape
of these digital technology-based energy companies lever-
aging Fourth Industrial Revolution technologies in South
Korea, with a specific emphasis on those with comprehen-
sive data covering the specified timeframe.

The basic statistics for each variable by year are pre-
sented in Table 1. Upon examining the characteristics of
each variable, average sales experienced an annual increase
of approximately 0.32%. In 2020, average labor cost rose by
37.08% compared to the previous year, indicating a signifi-
cant increase in the burden of labor costs. Promotional
expenses also exhibited an average annual increase of
20.95%. Total assets of digital technology-based compa-
nies in the new energy business demonstrated an average
annual growth rate of 25.62%, which can be interpreted as
representing growth in the size of companies over time.
Return on assets (ROA) experienced a decline in 2019,
followed by subsequent recovery; however, the R&D ratio
relative to total assets remained nearly constant over the
course of three years.

3.2 TE Analysis

Frontier analysis, widely utilized as a method of measuring
efficiency, offers a solution to the limitations of ratio ana-
lysis, the traditional method of analyzing cost-effectiveness
through simple ratio comparisons (Kumbhakar & Lovell,
2003; Rasi Nojehdehi et al., 2023; Ucal Sari & Ak, 2022; Yoo,
2004). This style of analysis employs input and output fac-
tors to establish cost and production functions, enabling mea-
surement of the relative efficiency of a decision-making unit
(DMU). By benchmarking against the DMU with the best per-
formance, frontier analysis is better suited for gauging effi-
ciency than regression analysis, which relies on average values.
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TE refers to the maximum output achieved by inputting
production factors at a given technological level (Farrell,
1957). In other words, if the same amount of input fails to
produce the maximum output, technical inefficiency exists.
Efficiency measurement involves defining a frontier curve
representing the line where the maximum output is achieved
with given input factors and then assessing the deviation
from this curve.

Frontier analysis encompasses two main methods:
DEA and SFA. DEA is a non-parametric method, while SFA
is a parametric method. When analyzing efficiency, DEA
employs a deterministic model and does not differentiate
between inefficiency and random fluctuation within the
error term. As a result, efficiency may be overestimated.
On the other hand, SFA assumes a distribution for the error
term, allowing it to distinguish between inefficiency and
random fluctuation (Koh, 2017; Reinhard et al., 2000).

SFA utilizes a cost function to separate random fluctua-
tions and inefficiencies within the error term. The error term
consists of a stochastic error term (V), representing random
fluctuation, and an inefficiency term (U) (Kumbhakar & Lovell,
2003; Seo & Hwang, 2012). The inefficiency term typically
assumes a positive (+) value and is often modeled using a
semi-normal distribution, a truncated normal distribution, or

a gamma distribution (Kuosmanen et al., 2013; Reinhard et al.,
2000). This study employs SFA, which is considered a
more accurate method than other efficiency measure-
ment techniques.

In panel data, technical inefficiencies can vary over
time. The technical inefficiency during period T can be
expressed in SFA analysis using the following equation
(Battese & Coelli, 1992, 1995).

( ) { } { }= + − ∈ ∈Y x β V U i N t Texp , 1, …, , 1, …, ,it it it it (1)

where Yit is the i-th firm sales at time t, xit is the inputs of
production and other explanatory variables,V is theit prob-
ability error, ( )i i d N σ, , . 0, v

2 , and U is theit technical ineffi-
ciency, ( )i i d N z δ σ, , . ,i t,

2 .
Uwhere it represents technical inefficiency and follows a

truncated normal or semi-normal distribution. Also, it is
i.i.d and is obtained by a non-negative truncation of the
normal distribution (Reifschneider & Stevenson, 1991).
In this study, the production function was estimated under
both assumptions. Uit can be represented by equation (2).

= +U z δ W ,it it it (2)

zit is the explanatory variable related to technical ineffi-
ciency; W is theit probability error, ( )i i d N σ, , . 0, v

2 .

Table 1: Descriptive Statistics of Variables (unit: US dollar)

Variables Year Mean Standard deviation Max Min

Sales 2020 8,611,391 13,393,119 256,580,312 69,017
2019 8,578,452 16,275,194 121,814,799 86,298
2018 8,555,870 16,480,074 127,017,841 22,780

Labor cost 2020 3,231,126 15,111,446 152,580,671 16,967
2019 2,357,388 11,384,836 121,875,392 19,200
2018 2,325,989 10,248,342 100,348,770 11,321

Operating cost (OC) 2020 1,844,561 6062146.8 50,563,000 12,528
2019 1,448,589 5435746.6 51,404,000 11,328
2018 1,294,357 4746472.6 50,360,000 6,241

Promotional cost 2020 434,079.3 2213273.6 17,825,000 1,022
2019 317,237.6 1754719.5 18,000,000 1,061
2018 296,688.2 1,740,180 19,961,000 228

R&D 2020 2,667,287 8254341.3 56,823,000 3,830
2019 2,153,782 7968575.1 65,782,000 1,900
2018 2,289,974 9257719.9 74,511,000 1,900

R&D/Total asset 2020 0.03 0.03 0.05 0.02
2019 0.03 0.06 0.09 0.02
2018 0.04 0.05 0.07 0.02

ROA 2020 3.81 15.1217 19.47 −47.99
2019 0.85 22.7854 26.75 −52.87
2018 1.43 28.1921 29.58 −48.51

Total asset 2020 75,443,439 375,003,063 2,711,680,027 75,642
2019 58,063,041 326,013,746 2,885,629,975 10,529
2018 47,803,178 271,500,822 2,296,267,977 18,927

R&D: Research and development, ROA: Return on assets.
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The maximum likelihood estimation (MLE) method is
employed to derive parameter estimates for both the sto-
chastic frontier model and the technical inefficiency effects.
TE, which represents TE, can be estimated using the fol-
lowing formula (Battese & Coelli, 1995).

( ) ( )= − = − −U z δ WTE exp exp .it it it it (3)

As analyzed in the appendix, it was revealed that the
time variable influences TE. Considering that efficiency may
vary based on the distribution of Uit (Sickles & Zelenyuk,
2019), this article delves into the distribution ofUit. As men-
tioned earlier, the distribution described in equation (2),Ui t,

follows either a truncated normal or semi-normal distribu-
tion. Furthermore, depending on whether technical ineffi-
ciency changes over time, it can be divided into four models,
as illustrated in Table 2.

The model presented in this article was employed to
initially ascertain whether Ui t, adheres to a half-normal or
truncated normal distribution and to evaluate its temporal
variability. Regarding the distribution of Ui t, , Aigner et al.
(1977) posit an exponential or half-normal distribution, Ste-
venson (1980) suggests a truncated normal distribution,
and Greene (2008) proposes a Gamma distribution. This
nuanced exploration is crucial as the estimation of TE
proves highly sensitive to the assumed probability distri-
bution for Ui t, . Furthermore, the model outlined in this
article was adopted to explore the temporal dynamics of
Ui t, . This choice stems from the recognition that both models
and analytical methodologies are subject to variation based
on temporal considerations (Coelli et al., 2005; Hasan et al.,
2012; Kumbhakar, 1990; Sickles & Zelenyuk, 2019).

3.3 Research Design

Specific input and output factors need to be determined to
measure efficiency in the context of new energy businesses
based on digital technology. In this study, the input factors
considered were labor, capital, R&D, sales promotion, and
general management expenses. The output factor was

defined as the company’s sales. Additionally, the analysis
distinguished between new companies entering the new
energy business based on digital technology and existing
companies.

The hypotheses underpinning this study’s analysis of
energy company efficiency are as follows:

H1: Efficiency is anticipated to decrease with the entry
of new companies leveraging digital technology.

H2: The efficiency is expected to increase proportion-
ally with the expansion of total assets.

H3: Efficiency is predicted to decrease with a smaller
scale of R&D.

To substantiate these hypotheses, efficiency will be
initially computed using SFA, and regression equations
will be employed to pinpoint the influential factors
impacting efficiency.

Several variables were identified to assess their impact
on the efficiency of new energy business companies based
on digital technology. These variables included asset size,
R&D expenses, new entrants, and ROA. The company’s total
asset size was used to examine the influence of company
size on efficiency. The study also analyzed how efficiency
varies based on the size of R&D expenses and the ROA.
Furthermore, a comparison was made between the effi-
ciency of newly entered companies in the new energy
sector based on digital technology and relatively estab-
lished companies.

In the context of SFA, the study designates the dependent
variable as sales, while identifying costs as independent vari-
ables. Specifically, this investigation draws inspiration from
previous studies (Barros, 2008; Hu & Wang, 2006; Hu et al.,
2006; Wanke et al., 2020), which have similarly employed
labor cost, capital, and R&D costs as independent variables.
Furthermore, to enhance the analysis of a company’s effi-
ciency, emphasis is placed on configuring major cost vari-
ables as independent factors. To achieve this, the financial
statements of the companies under consideration were
obtained, and additional variables such as promotion
expenses (PR) and administrative costs were incorporated
as independent variables (Amornkitvikai & Harvie, 2011;
Kallel et al., 2019 [Table 3]).

The regression equation, established with the afore-
mentioned variables, is as follows.

( ) ( ) ( ) ( )

( ) ( )

= + + +

+ + + −

β β L β K β R D

β β V U

ln Sales ln &

PR OC ,

it it it it

it it it it

0 1 2 2

2 2

(4)

where Y is theit ith firm sales at time; Sales isit a dependent
variable, annual sales of a firm i; L isit an independent
variable, annual labor costs of a firm, i; Kit is an indepen-
dent variable, capital of a firm, i; R&Dit is an independent

Table 2: SFA production function estimation model

Distribution of technical inefficienciesClassification

Truncated normal
distribution
(( ≠≠ ))μ 0

Half normal
distribution
(( == ))μ 0

Time
variability

Yes ( )≠η 0 Model 1 Model 2

No ( )=η 0 Model 3 Model 4
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variable, annual R&D costs of a firm, i; PRit is an indepen-
dent variable, annual advertising costs of a firm, i; OCit is
an independent variable, annual OCs of a firm, i; Vit is the
probability error, ( )i i d N σ ; U, , . 0, andv it

2 is the technical
inefficiency, ( )i i d N z δ σ, , . ,i t,

2 .

4 Results

4.1 Efficiency Analysis Using Financial
Statement Information

The efficiency analysis was conducted by collecting financial
statement information separately for digital technology-
based companies participating in the new energy field.
The results of the SFA analysis are presented in Table 4.
In all models, labor cost (L), capital (K), and R&D costs had
a statistically significant positive impact on sales. Sales PR
and general OC did not consistently affect sales, and their
statistical significance was lower than that of other expenses.
Particularly, R&D costs have a significant effect on the sales of
new energy firms based on digital technology.

Moreover, a chi-square test was conducted to examine
the hypothesis of the existence of technical inefficiency,
and the results were statistically significant in Table 4,
indicating the presence of technical inefficiency across
all models. Furthermore, the estimated inefficiency term
(lambda) was close to 1 and statistically significant in all
models, indicating that the majority of errors in the effi-
ciency analysis model could be attributed to technical
inefficiency rather than stochastic errors. Moreover, in
models 1 and 2, the estimated lambda value was positive
and statistically significant at the 10% significance level,
indicating increased TE over time.

To assess the adequacy of the assumed error term Uit

distribution, a likelihood ratio test was conducted for the

four models presented in Table 2. In reference to Table 5,
Model 1 exhibited a significantly lower likelihood ratio test
value compared to Model 3, whereas Models 2 and 4 did
not show a substantial difference. In contrast, the differ-
ence between Model 2 and Model 4 was insignificant,
according to Table 5, which presents the likelihood ratio
test results. In other words, the results of the chi-square
test between models concluded that Models 1 and 3 were
statistically significant, whereas Models 2 and 4 were not.

Table 3: Variables references

Variables References

Sales Amornkitvikai and Harvie (2011), Estache et al. (2004), Ge and Huang (2014), Habib and Ljungqvist (2005), Luo and Donthu (2005)
Labor cost (L) Arocena and Waddams Price (2002), Farsi and Filippini (2004), Knittel (2002), Pollitt (1996), Raczka (2001), Sealey and

Lindley (1977)
Capital (K) Amornkitvikai and Harvie (2011), Barros (2008), Farsi and Filippini (2004), Ge and Huang (2014), Habib and Ljungqvist (2005), Hu

et al. (2006), Knittel (2002), Pollitt (1996), Sealey and Lindley (1977), Wanke et al. (2020)
R&D cost Fu and Yang (2009), Ge and Huang (2014), Habib and Ljungqvist (2005), Hancock (1991), Mastromarco and Ghosh (2009), Wang

(2007), Wang and Wong (2012)
PR Ge and Huang (2014), Habib and Ljungqvist (2005), Hancock (1991), Luo and Donthu (2005)
OC Barros (2008), Hiebert (2002), Jamasb et al. (2004), Weill (2003)

Table 4: SFA results

Variables Model 1 Model 2 Model 3 Model 4

lnL 0.281** 0.271* 0.252** 0.283**
(3.055) (3.662) (2.911) (3.922)

lnK 0.512*** 0.482** 0.557** 0.455***
(3.242) (2.289) (3.644) (2.186)

lnR&D 0.614*** 0.700*** 0.688*** 0.651***
(2.888) (3.512) (3.611) (3.422)

lnPR −0.129 −0.271 0.062* −0.062
(−0.768) (−0.108) (0.036) (0.128)

lnOC 0.090* −0.065 0.058* 0.078*
(0.178) (−0.217) (0.148) (1.147)

= +σ σ σ
ˆ
s v

2 2 2 0.108** 1.727* 0.099*** 1.888**
(2.422) (1.588) (4.122) (1.688)

=γ σ σˆ / s
2 2 0.912*** 0.997*** 0.919*** 0.997***

(28.224) (338.56) (71.44) (372.28)
μ̂ 0.467 n/a 0.519* n/a

(0.987) (1.513)
η̂ 0.019* 0.011* n/a n/a

(1.851) (1.311)
Log Likelihood 48.145 49.885 47.148 48.448

( )=X H σ: 0
2

0

2 20.74*** 152.88*** 132.01*** 142.68***

*p < 0.10, **p < 0.05, ***p < 0.01.
Parentheses: Z-score.
lnL: the natural logarithm-transformed value of labor cost, lnK: the
natural logarithm-transformed value of capital, lnR&D: the natural loga-
rithm-transformed value of R&D, lnPR: the natural logarithm-trans-
formed value of sales promotion expenses, lnOC: the natural loga-
rithm-transformed value of OC.
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Therefore, assuming a semi-normal distribution for the
error termUit, it was determined that the difference between
Model 2 and Model 4 was not substantial. However, when
assuming a truncated normal distribution forUit, Model 3 was
more appropriate than Model 1.

Based on equation (6), the efficiency of each of the four
models was estimated. Table 6 presents the efficiency of
companies according to Models 1 and 2, considering time
volatility. It can be observed that TE increased in 2019
compared to the previous year but then slightly decreased
in 2020 compared to 2019. This can be attributed to
a decrease in company sales due to the impact of the
COVID-19 pandemic.

Additionally, the efficiency of 112 companies in the
new energy business based on digital technology was ana-
lyzed, taking into account their asset size, R&D costs, and
status as new entrants. Initially, the efficiencies of 112 com-
panies were analyzed by dividing total assets and R&D
expenditure into quartiles. The analysis revealed a general
trend whereby higher total assets and higher R&D expen-
ditures corresponded to higher efficiency (Figure 1). These
results align with hypotheses 2 and 3. Moreover, companies
with smaller assets and lower R&D expenditures experi-
enced significant decreases in corporate efficiency in 2020
compared to the previous year as shown in Figure 1. Con-
versely, companies with higher assets and R&D expendi-
tures demonstrated increased efficiency in 2020 over the
previous year. These findings indicate that the impact
of COVID-19 is more prevailed for smaller companies.
Furthermore, it was observed that higher R&D expendi-
tures lead to more significant efficiency gains over time.
This underscores the importance of R&D investment in
enhancing corporate efficiency.

Finally, the efficiency of companies was analyzed by
looking at the year they entered the new energy business
based on digital technology. This analysis was conducted
on companies active in the field for less than three years,
between three and seven years, and more than seven
years. The findings indicated that companies with more
than seven years of experience in the market exhibited rela-
tively high efficiency. This result substantiates Hypothesis 1.

As a noteworthy point, it was observed that the efficiency of
2020 was analyzed to have increased compared to the pre-
vious year, particularly among companies with less than
7 years. This implies that despite the challenges posed by
the COVID-19 pandemic, younger companies managed to
enhance their efficiency while older companies experienced
a decline. New companies responded well to the pandemic
while existing companies struggled to adapt.

Based on the results above, the following regression
equation was constructed to determine the factors influen-
cing efficiency.

{ }

{ }

∑= + + ∈

∈
=

γ δ X i N

t T

Efficiency ϵ ,   1, …, ,

1, …, .

i t i t

j

J

j j i t i t, ,

1

, , ,

(5)

To analyze the factors influencing efficiency, this study
employed Tobit regression since efficiency values are lim-
ited to a range between 0 and 1. The analysis utilized panel
data for companies that entered the new energy sector
based on digital technology, and this dataset was the
same one used for the efficiency analysis. Panel regression

Table 5: Likelihood ratio test results

Classifications Model 1 Model 2 Model 3

X 2 p-value X 2 p-value X 2 p-value

Model 2 12.18 0.000 n/a n/a n/a n/a
Model 3 2.28 0.049 10.27 0.000 n/a n/a
Model 4 12.00 0.000 0.218 0.542 11.88 0.002

Table 6: Mean efficiency of companies entering new energy businesses
based on digital technology

Year 2018 2019 2020

Model 1 0.612 0.724 0.711
(0.2281) (0.2152) (0.2270)

Model 2 0.481 0.536 0.524
(0.3118) (0.4122) (0.3721)

Total assets 0–25% 0.382 0.411 0.388
(0.1999) (0.2155) (0.2110)

25–50% 0.428 0.515 0.418
(0.3211) (0.3002) (0.3199)

50–75% 0.510 0.572 0.566
(0.3111) (0.2987) (0.3187)

75%∼ 0.537 0.580 0.571
(0.3448) (0.3120) (0.3008)

R&D 0–25% 0.399 0.410 0.397
(0.2187) (0.2002) (0.2155)

25–50% 0.431 0.509 0.470
(0.1889) (0.1188) (0.1188)

50–75% 0.508 0.601 0.588
(0.3910) (0.4228) (0.3877)

75%∼ 0.542 0.600 0.603
(0.4244) (0.4512) (0.4188)

Business period 0–3 years 0.441 0.518 0.522
(0.1885) (0.1711) (0.1999)

3–7 years 0.471 0.520 0.523
(0.4227) (0.4322) (0.4118)

7 years∼ 0.493 0.548 0.530
(0.3188) (0.3455) (0.3225)

Parentheses are standard deviation.
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analysis allows for division into a fixed and random-effects
model. The fixed-effects model assumes that each company
in the analysis has unique and fixed characteristics, while
the random-effects model assumes that these characteristics
are given probabilistically. Both fixed-effects and random-
effects models were analyzed in this study.

Efficiency was analyzed assuming both a truncated normal
distribution and a semi-normal distribution. The R-squared

results indicated that model 3 was more suitable than model 1
when assuming a truncated normal distribution, while the dif-
ference between model 2 and model 4 was not substantial when
assuming a semi-normal distribution. Since models 3 and 4 did
not account for changes over time, the fixed-effects model was
not applied in these cases. Therefore, inmodels 1 and 2, the Tobit,
fixed-effects, and random-effects models were all considered,
while the fixed-effects model was not used in models 3 and 4.
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Figure 1: Mean efficiency of companies entering new energy businesses based on digital technology.
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The results of the regression analysis are presented in
Table 7. Depending on the assumption of the error term
distribution, Uit, models 1 and 3, which assumed a trun-
cated normal distribution, showed similar regression
analysis results. Similarly, models 2 and 4, assuming a
semi-normal distribution, yielded similar results. Firstly,
total assets and R&D costs were found to positively affect
the efficiency of digital technology-based new energy com-
panies and were statistically significant on every model.
Specifically, the impact of R&D costs on efficiency was
highly significant at a 1% significance level on every model
and analysis. When it comes to newly entering the digital
technology-based new energy sector, it was observed that
efficiency was reduced, and this finding was generally sig-
nificant at a 5% significance level. This suggests that
existing companies exhibit higher efficiency in cost-to-sales
management than new entrants. Therefore, higher total
assets and R&D costs are associated with increased com-
pany efficiency. Furthermore, in model 1, the Hausman test
result indicated that the fixed-effect model was more
appropriate than the random-effect model.

The regression coefficients changed for models 2 and 4,
but the sign and statistical significance of the coefficients
remained the same. This implies that total assets and R&D
expenses positively influence the efficiency of digital tech-
nology-based new energy companies, while new entrants
are negatively influencing. Additionally, in model 2, the
Hausman test resulted in a value of X 2 of 6.454, which
was not statistically significant. Therefore, the random-
effect model is more appropriate for explaining the model
than the fixed-effect model.

In summary, regardless of theUit distribution assump-
tion, it was found that R&D expenditure and total assets
appear to have a statistically significant positive effect on
efficiency. However, although ROA had a positive effect on
efficiency, it was not statistically significant. Furthermore,
it was observed that companies entering the new energy
business based on digital technology tend to be lower in
efficiency than those already entered the industry.

5 Discussion and Conclusions

This study aimed to evaluate the efficiency of domestic
companies in the digital technology-based new energy
sector. Efficiency was measured using financial statements
from 112 energy companies over 3 years, and the factors
affecting efficiency were analyzed.

The findings revealed that companies in the new
energy business based on digital technology were ineffi-
cient when their R&D costs were low. R&D costs were
identified as the most significant factor influencing com-
pany efficiency. Additionally, an analysis of efficiency
determinants indicated that companies with low total
assets generally were characterized by lower efficiency.
Moreover, newly entered companies were less efficient
than those already established their presence in the
digital technology-based new energy sector. Enhancing
the efficiency of small businesses thus emerged as a cru-
cial challenge for promoting the digitalization of the
energy industry.

Table 7: Analysis results of efficiency determinants

Variables Model 1 Model 2 Model 3 Model 4

Tobit Fixed Random Tobit Fixed Random Tobit Random Tobit Random

Total assets 0.111** 0.015*** 0.139*** 0.088** 0.009** 0.102*** 0.102*** 0.121*** 0.086** 0.099***
(2.285) (2.248) (4.115) (2.201) (1.991) (3.001) (2.005) (3.817) (2.122) (2.992)

R&D 0.412*** 0.301*** 0.422*** 0.381*** 0.258*** 0.389*** 0.389*** 0.397*** 0.299*** 0.388***
(4.115) (3.878) (5.235) (3.263) (2.651) (3.045) (3.455) (4.741) (3.322) (3.111)

New entrants −0.122** −0.082* −0.134* −0.033** −0.009* −0.015* −0.118** −0.138** −0.032** −0.019**
(1.874) (1.555) (2.112) (1.029) (1.002) (1.445) (1.412) (2.225) (1.018) (1.229)

ROA 0.012 0.009 0.013 0.002 0.001 0.002 0.009 0.011 0.002 0.002
(0.025) (0.009) (0.059) (0.003) (0.002) (0.005) (0.014) (0.038) (0.002) (0.004)

R2 0.971 0.622 0.711 0.959 0.622 0.711 0.975 0.715 0.958 0.711

F-value Wald value 27.225*** 755.454*** Wald value 26.175*** 13.458*** Wald value 688.258*** Wald value 359.455***
3,112*** 1,982*** 2,881*** 1,999***

Hausman test n/a X 2 =
30.282***

n/a X 2 = 6.454

*p < 0.10, **p < 0.05, ***p < 0.01. Parentheses: Z-score.
R&D: Research and Development; ROA: Return on Assets.
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The core digital technologies companies utilize, such
as the IoT, AI, and big data, align with global trends. These
technologies are harnessed to deliver value propositions
centered on reducing energy costs and enhancing the sta-
bility of energy systems. This finding is consistent with the
emphasis placed in the new energy sector on IT services,
energy management, and efficiency improvement.

A noteworthy observation is that the companies sur-
veyed have set a target of increasing their share of digital
technology-based new energy business to 53% of their total
sales within the next 5 years, to achieve a sales growth rate
of 2.5 times higher than the current level (Park et al.,
2022a). This outcome indicates a significant growth poten-
tial for businesses based on digital technology, with antici-
pated increases in sales from related sectors.

However, the business outlook could be more opti-
mistic, as the operating profit margin of digital tech-
nology-based new energy businesses dropped from 27.0%
in 2019 to −313.0% in 2020. This significant decline in oper-
ating margin in 2020 can be largely attributed to the adverse
impact of the COVID-19 pandemic on the market. This study’s
exploration of the COVID-19 pandemic’s impact offers a novel
perspective on the resilience and adaptability required in the
digital technology-based new energy sector. This study sheds
light on the immediate effects of the pandemic. The COVID-19
pandemic has necessitated smaller companies in the energy
digitalization sector to rapidly adapt to changing market
conditions and accelerate their digital transformation.
Embracing digital platforms for remote operations, cus-
tomer engagement, and innovative marketing strategies
has become crucial for navigating these unprecedented
challenges. In this context, the resilience of companies in
the face of COVID-19 suggests that policy measures should
focus on supporting digital transformation and remote
operational capabilities. This could involve subsidizing
cloud-based solutions or providing training programs
on digital tools for energy sector businesses, enabling
them to adapt more effectively to the new market realities
and maintain their competitive edge.

While COVID-19 may present a temporary challenge,
other fundamental issues face these businesses, such as
acquiring and retaining high-quality human resources,
securing R&D funding, technology commercialization, and
international market development. Successfully addressing
these challenges will be crucial for the long-term success of
these companies.

The efficiency analysis revealed that higher total assets
and higher R&D expenditures were associated with higher
efficiency. This finding aligns with the earlier survey results,
indicating the importance of securing and retaining high-
quality human resources and attracting R&D funds. In other

words, companies with smaller asset sizes and limited
investment in technology development tend to have lower
efficiency, highlighting the pressing need for improvement
in these areas.

R&D support for small- and medium-sized enterprises
(SMEs) with limited R&D investment capacity has been
found to have positive effects on their technical and finan-
cial performance, as well as promote technological innova-
tion and growth. Several studies (Chang et al., 2019; Du
et al., 2022) have highlighted the positive characteristics
of R&D support in enhancing beneficiary companies’ per-
formance and capabilities.

However, there are also limitations and criticisms asso-
ciated with R&D support programs. These include challenges
in identifying financially unstable companies during the
selection process, the issue of overlapping benefits for specific
companies, and a supplier-centered support approach
that focuses on short-term, small-scale projects (Thoma
& Zimmermann, 2020).

To enhance the effectiveness of R&D support, researchers
propose several recommendations. These include establishing
a comprehensive database containing information on partici-
pation in R&D projects, performance history, and company
status of SMEs and researchers. This database would be
utilized during the selection process for support recipi-
ents, aiming to prevent duplication of support efforts.
Additionally, the establishment of an SME R&D gradua-
tion system has been proposed to ensure that supported
SMEs can transition to a self-sustaining stage (Thoma &
Zimmermann, 2020; Yi et al., 2020).

There are also calls for the government to transition
from the application of the current direct financial support
method to the adoption of an investment and loan-based
means of R&D funding. This change would aim to provide
SMEs with not only direct financial support but also invest-
ment opportunities and loans. In response to the pan-
demic, R&D support programs need to be more flexible
and responsive, tailored to help SMEs pivot their business
models and adapt technologies for pandemic-related appli-
cations, ensuring business continuity and resilience in the
face of global health crises (Kulachinskaya et al., 2020). Gov-
ernment policies during pandemics should extend beyond
traditional support, incorporating emergency funding mea-
sures, fast-tracked grant processes, and virtual networking
opportunities to facilitate SMEs’ connection with investors
and mentors in a socially distanced world.

Furthermore, diversification of support methods through
tax incentives, innovation vouchers, and innovation procure-
ment has been suggested (Cin et al., 2017; Yi et al., 2020). In
terms of the diversification of support methods, it is also
significant to promote opportunities for startups to utilize
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governmental laboratory equipment and lessen R&D costs.
Obtaining laboratory equipment and securing office space
represent two significant expenses that startup companies
often need help to afford. For hardware product creators,
having access to labs is vital from the initial testing phase
through to prototyping and, eventually, product creation for
showcasing and selling. Additionally, in tightly controlled
industries like energy, it is frequently necessary to undergo
certified tests to meet industry criteria, whether it is for
equipment safety, integrating with the power grid, or
adhering to fuel supply standards (IEA, 2022). Collaborations
between startups and government partners in the energy
sector can boost patenting and financing more than those
with private firms or universities (Lab Partnering Service,
2023; Surana et al., 2020). Governments can also facilitate
startups’ access to laboratories by primarily supporting
incubators and accelerators that cater to clean energy tech-
nology innovators (CATAPULT Energy Systems, 2023; IEA,
2022). Also, the pandemic underscores the importance of
digital platforms and online resources in startup support.
Virtual incubators, webinars, and online mentorship pro-
grams have emerged as vital tools for startups, providing
essential guidance and resources when traditional in-person
interactions are constrained.

Securing access to expert guidance and professional
advice is also imperative for startups. External knowledge
holds significant value for nascent enterprises, especially
when their founders lack substantial prior business
acumen. For smaller entities, procuring such insights via
consultancy can be economically burdensome or unfeasible
without robust expert networks. From a corporate perspec-
tive, effectively bridging internal knowledge assets with
external ones can render support in accessing external
expertise highly beneficial for business growth (Grigoriou
& Rothaermel, 2017; IEA, 2022). Management support can
encompass activities like helping to establish a leadership
team, refining investor presentations, designing a financial
structure, recruiting teammembers, and formulating a busi-
ness plan. Technical expertise assistance can help startups
refine their technology in the product development phase or
when deciding on materials and manufacturing techniques
(Craig-Cooper & De Backer, 1993; IEA, 2022).

Companies engaged in new energy projects based on
digital technology have identified attracting and retaining
high-quality human resources and developing competitive
technologies as crucial factors for their growth and success.
This finding aligns with the results obtained from the finan-
cial statement efficiency analysis. Therefore, further research
is needed to explore how R&D support can be effectively
promoted from a policy perspective. While the specific needs
of companies may vary, it is essential to design detailed

policies that maximize the impact of R&D support within
limited budgets. This includes evaluating technologies specific
to new energy projects, selecting outstanding technology com-
panies, and establishing a long-term support system.

This study utilized available panel data to analyze the
business characteristics of companies, considering the lim-
ited data available on new entrants in the energy industry.
The approach of this study in analyzing the TE of new
entrants in digital technology-based energy businesses sets
a new precedent in sector-specific research. This work
addresses current gaps and paves the way for more in-
depth, longitudinal studies to better understand the evolving
dynamics of this critical sector. However, the analysis
needed to adequately consider the temporal dynamics
of various variables and the extended duration of the
panel is requisite. To address this limitation, future
research could explore the idea of undertaking panel ana-
lysis using a more extensive and more comprehensive
dataset to capture the time-dependent relationships
between variables. To further inform policy, future
research should aim to understand the long-term effects
of the support mechanisms on the sustainability and
innovation capacity of new entrants in the energy sector.
It will provide valuable insights for policymakers to
refine and optimize R&D support strategies.
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Appendix

To investigate the temporal effects of Uit, the following
equation was subjected to regression analysis.

( ) ( ) ( )= + + +

+

U δ δ δ δ

W

Firm age Business period Time

,

it it it it

it

0 1 2 3

where Uit is the technical inefficiency, ( )i i d N z δ σ, , . , ;i t,
2

Firm age is the age of the firm; Business period is the
period of entering new energy businesses based on digital
technology; Time is the year of the data.

Firm age, business period, and time were applied as
independent variables. Both equations (SFA equation and
the appendix equation) account for both technical change
and time-varying inefficiency effects. The results of the
inefficiency frontier model for the above equation, ana-
lyzed using MLE, are as follows (Table A1):

The coefficient for the firm Age variable is found to be
positive, indicating that inefficiency increases with advan-
cing age. Conversely, for business periods and time, the
coefficient values are negative, suggesting that as the long-
evity of renewable energy firms increases, specifically those
embracing new energy technologies early on, inefficiency
decreases. Additionally, the proximity of γ̂ value of 1 indi-
cates that the inefficiency frontier model is statistically
significant.

Finally, the results of the generalized likelihood ratio
test are presented in the table above. As shown in the table,

the first test rejects the null hypothesis that inefficiency
effects are absent in the base model. The second test pro-
vides evidence supporting the idea that inefficiency effects
are stochastic. Through the third test, it is established
that inefficiency effects are not in a linear model. All
tests are statistically significant at the 5% level of signif-
icance. This substantiates that the model in the article is
temporally influenced and stochastic. The article will
proceed to further explore panel analysis based on the
distribution of Uit.

Table A1: Inefficiency frontier model results

Variables Uit

Firm age 0.082***
(4.812)

Business period −0.042*
(1.954)

Time −0.282***
(5.228)

Constant 2.432*
(1.820)

γ̂ 0.990***
(372.221)

Log Likelihood 31.875

*p < 0.10, **p < 0.05, ***p < 0.01. Parentheses: Z-score.
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