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1 Introduction
Integrated circuits (ICs) are essential components of virtually all modern electronic

devices. Since Bell laboratories invented the transistors in 1947 and Texas Instruments

released the first working integrated circuit (IC) in 1958, the semiconductor industry,

which is the aggregate of companies engaged in the design and fabrication of semi-

conductor devices or IC chips, has been at the forefront of the growth of the digital

economy for decades. Prior to the 1980s, the semiconductor industry is dominated

by a few integrated device manufacturers (IDMs), such as Intel, Samsumg, and Texas

Instruments, which internally perform all of the production processes (e.g., research

and design (R&D), front-end fabrication, and back-end assembly and test (A&T)).

For example, as the global largest IC manufacturer by revenue, Intel had seven fab

production sites, eight assembly and test sites, and tens of thousands employees and

partners all over the world.

As semiconductors with ever-expanding complexity approach the limits of Moore’s

Law1 (e.g., see Mack, 2011 and Flamm, 2017), the expenses of building a semiconductor

fabrication facility had increased from around 1 Billion US Dollar in the 2000s to more

than 10 Billion US Dollars nowadays. These increasing manufacturing costs became

prohibitive for almost all the IC suppliers. It stimulated business model innovation in

the semiconductor industry and gave birth to the fabless-foundry business model in

the mid-1980s. In this new business model, fabless companies dedicate their time to IC

design and brand operation. At the same time, pure-play foundries devote themselves

to front-end fabrication, and a third group of companies are allotted for back-end

outsourced semiconductor assembly and test (OSAT) operations. A milestone of the

vertical disintegration in the semiconductor industry is the establishment of the Taiwan

Semiconductor Manufacturing Company (TSMC) in 1987. Committed to be a long-

term non-competitive partner with fabless firms, TSMC is the first and nowadays

1The Moore’s law was first observed in 1965 and later revised in 1975 by Gorden Moore, the co-
founder and chairman emeritus of Intel, that the number of components per IC doubles about every
two years.
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the largest pure-play foundry worldwide that dedicates to wafer fabrication (e.g., see

Hsieh et al., 2002). The fabless-foundry business model has significantly changed the

structure of the semiconductor value chain over the last few decades and becomes a

topic of wide interest (e.g., see Macher et al., 2007, Adner and Kapoor, 2010 and Sarma

and Sun, 2017).

Although the semiconductor industry is both technology-intensive and capital-

intensive, much research on the topic of the structural change in the semiconductor

industry emphasizes the evolution of technology (e.g., see Kapoor and Adner, 2012

and Hwang and Choung, 2014), while the impact of capital investments has not been

discussed adequately. The reduced barriers to entry by vertical specialization and

drastically reduced burden of capital expenditure (CAPEX) ensure domination of new

markets by the fabless design houses. Furthermore, vertical disintegration in the semi-

conductor value chain is accompanied and twisted by the trend of industry globalization

(e.g., see Brown et al., 2005). The collaboration between the asset-light fabless and

the pure-play foundry also provides the more robust protection of intellectual property

(IP) rights when the fabless firms pass on their design blueprints to pure-play foundries,

which earlier are exposed to the threats of replication and IP theft when fabless firms’

ICs are manufactured by their rival IDMs (e.g., see Sarma and Sun, 2017). The entry

of new fabless companies, most of which are spinoffs from industry incumbents, spur

innovation and propel the diversification of products in various applications. Since

the 1990s, fabless firms have had substantial shares or even dominated in most of the

fastest-growing market segments (e.g., see Balconi and Fontana, 2011). Nevertheless,

despite a trend toward vertical specialization driven by the entry of fabless firms, the

vertical integrated IDMs have continued to persist and coexist with the fabless entrants

in the semiconductor industry.

Many factors might affect production costs and productivity in the innovation-

driving IC industry, including device types, business models, foreign competition, cap-

ital allocation, and institutional factors. The major challenges in the capital-intensive
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semiconductor industry are the heavy CAPEX for cleanroom and costly equipment

for front-end fabrication and back-end A&T procedures. For example, each extreme

ultraviolet lithography (EUV) machines made by ASML2 costs around 200 million US

Dollars. In order to achieve full capacity utilization, the foundries and OSATs seek to

optimize productivity by serving many fabless companies, while even IDMs are renting

their idle capacity to competitors to reduce the financial burden. In comparison, the

fabless companies, many of which are niche startups, getting rid of the burden in set-

ting up, maintaining, and upgrading fabrication facilities, focus on R&D to compete

with the IDMs. Besides the huge equipment expenditures, R&D costs for developing

leading-edge products such as microprocessors and radiofrequency devices also raise

steadily. The slow progress in node technology requires continuous investments in

both R&D and advanced fabrication facilities. The uncertainties set high barriers to

entry and favor the success of large IDMs, such as Intel, STMicroelectronics, and Texas

Instruments, which are able to make risky investments and have a higher chance to

foresee and lead the technology evolutions. Hence CAPEX is a crucial factor in the

semiconductor industry with a feature of lump sum fixed input.

There has been a long-lasting debate on which business model is operating more

efficiently or is more likely to dominate the semiconductor industry. On the one side,

Monteverde (1995) and Dibiaggio (2007) credit the efficiency of IDMs to the inter-

nalization of transaction costs. Ernst (2005), Macher (2006) and Kapoor and Adner

(2012) hold the knowledge-based view that the IDMs achieve performance advantages

when technological developments involve complex problems. On the other side, Li et

al. (2011) show that foundries are becoming technology transferors rather than merely

manufacturing capacity providers in the semiconductor industry value chain. Kapoor

(2013) proposes and finds that the incumbents who persist with vertical integration in-

crease their emphasis on systemic innovations. Besides the examples shown above that

2Advanced Semiconductor Materials Lithography (ASML) is a Dutch multinational corporation
and the sole supplier in the world of EUV photolithography machines used to manufacture the most
advanced chips.
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focus on analyzing the impact of technology evolution in the semiconductor industry,

this paper plans to emphasize the feature of capital intensive in the semiconductor in-

dustry and focus on exploring the impacts of CAPEX and business model on operating

efficiency.

Taking advantage of a flexible functional form, data envelopment analysis (DEA) is

one of the most popular approaches for efficiency estimation. There are rich records for

performance evaluation in the semiconductor industry using the DEA approach. For

instance, Kozmetsky and Yue (1998) examine the cost efficiency of 56 IC companies

worldwide and show that US, Japanese, South Korean, and Taiwanese IC companies

have become the major participants in the global semiconductor industry in the early

1990s. Lu and Hung (2010) compare the managerial performance efficiency of 48 lead-

ing vertically disintegrated firms in Taiwan’s IC value chain and note that fabless

companies perform better than foundries and OSATs. Jang et al. (2016) measure the

cumulative change in R&D efficiency of 49 global leading fabless companies and note

that during the period 2007-2013, the overall R&D efficiency declines slightly. Li et

al. (2019) explore 64 major Chinese enterprises in the semiconductor industry and

find that low levels of scale efficiency is the most significant factor limiting future

improvements to innovation efficiency. One common problem of these studies, among

others, such as Lu et al. (2013), Hung et al. (2014), Hsu (2015) and Tsai et al. (2017),

is the slow convergence rate of the nonparametric DEA estimator accompany by the

increasing numbers of input and output dimensions.

Recent developments in nonparametric frontier estimation (e.g., see Daraio and

Simar, 2014 and Daraio et al., 2020) provide tools to analyze the operating efficien-

cies in the semiconductor industry under various types of constraints such as capital

investments and the business model. This paper aims to use the Daraio et al. (2020)

approach to shed light on disentangling the impact of capital investments and compar-

ing the technical efficiencies between the IDMs and the vertical disintegrated fabless

and foundry firms in the semiconductor industry. Data on 470 companies in North
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America, Europe, and Asia are collected to provide a worldwide perspective of the

highly globalized semiconductor industry.

The issue of slow convergence rate in DEA estimation may become severe if the

observations are restricted to a small number either by geographic boundary or by busi-

ness model boundary. For example, the researches of Wu et al. (2006), Lu et al. (2010),

and Kuo and Yang (2012) use a small number of 38-39 companies to evaluate the

performance of the fabless corporations in Taiwan, while in some extreme cases, such

as Hung and Lu (2008), Liu and Wang (2008), Chen and Chen (2011), and Lin et

al. (2019), the studies contain only 10-25 companies, which may lead to unconvincing

results. It also explains why the Free Disposal Hull (FDH) estimator, which is known

as an unbiased substitution of the DEA estimator but with a much slower convergence

rate, is not widely used in empirical works (e.g., see Wilson, 2018). One solution to

mitigate the slow convergence rate problem in nonparametric efficiency estimation is to

increase the number of observations by considering the deeply globalized semiconduc-

tor industry as an aggregated market. This paper follows this strategy to investigate

the impacts of the business model and CAPEX in the highly globalized semiconductor

industry through a conditional nonparametric frontier approach. The heterogeneity by

CAPEX is treated as a fixed input variable by the directional distance estimator (e.g.,

see Daraio et al., 2020), while the heterogeneity by the business model is handled by

the conditional efficiency estimators (e.g., see Daraio and Simar, 2007). The estimation

results indicate that vertically integrated manufacturers dominate the semiconductor

industry and the capital-intensive IDMs and OSATs operate more efficiently than the

asset-light fabless firms on average.

The paper is organized as follows. Section 2 gives the nonparametric frontier frame-

work and discusses the diagnostics and test statistics for choosing a suitable estimator

in this research. Section 3 presents the empirical results and discusses the effect of

capital investment and business model in the semiconductor industry. The last section

concludes.

5



2 Methods

2.1 The Nonparametric Frontier Model
The economic theory of efficiency in production can be traced to the ideas of Koopmans

(1951), Debreu (1951) and Farrel (1957). Consider a production process in which p

inputs are used to produce q outputs. The production set

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y} (2.1)

describes the set of attainable combinations of inputs and outputs. The efficiency score

of a particular production plan (x, y) is then determined by the distance from (x, y)

to the efficient frontier or boundary of Ψ (denoted as Ψ∂). There are four kinds of

commonly used efficiency measures based on different directions in which the distance

is calculated. The most widely used radial measures are the input- and output-oriented

Debreu-Farrel measures. Färe et al. (1985) introduce the hyperbolic measure

γ(x, y | Ψ) = inf{γ | (γx, γ−1y) ∈ Ψ} (2.2)

as an alternative to selecting either an input- or output-oriented Debreu-Farrel mea-

sures, where input and output quantities are adjusted simultaneously to reach the

boundary Ψ∂ along a hyperbolic path. Note that these three kinds of efficiency mea-

sures are all radial measures that allow for only nonnegative values of inputs and

outputs.

Chambers et al. (1998) propose an additive measure of the technical efficiency,

known as the directional distance measure, which considers adding the feasible quan-

tities to a unit’s output and simultaneously subtracting proportional quantities from

its input. In detail, the directional distance measure is given by

β(x, y | dx, dy,Ψ) = sup{β | (x− βdx, y + βdy) ∈ Ψ}, (2.3)

6



which projects the input-output vector (x, y) onto the technology in a specified di-

rection (−dx, dy) and allows for negative values of x and y. Note that the directional

distance measure β(x, y | dx, dy,Ψ) nests both input- and output-oriented Debreu-

Farrel measures as special cases by setting the direction vector (dx, dy) as (x,0) and

(0,y), respectively. The flexibility of the directional distance measure also comes from

the choices of the directions dx and dy that some directions (but not all) can be set

equal to zero to represent non-discretionary inputs or outputs (e.g., see Simar and Van-

hems, 2012). This feature of the directional distance measure can represent the impact

of a kind of fixed input or output variables, such as CAPEX, which can be categorized

into input variables of production but are not under managers’ direct control, at least

in the short run.

The attainable set Ψ is unobserved in empirical works. Nonparametric methods

such as FDH and DEA are developed to estimate the unobservable production set Ψ.

Deprin et al. (1984) define the FDH estimator Ψ̂FDH as

Ψ̂FDH =
⋃

Xi,Yi∈Sn

{(x, y) ∈ R+
p+q | x ≥ Xi, y ≤ Yi}, (2.4)

where Sn = {(Xi, Yi)} denote a random sample of n pairs of inputs and outputs. FDH

estimators of γ̂FDH(x, y | Ψ) and β̂FDH(x, y | dx, dy,Ψ) are obtained by replacing Ψ with

Ψ̂FDH in (2.2)–(2.3) respectively. Baker et al. (1984) propose the varing-returns-to-scale

DEA (VRS-DEA) estimator Ψ̂VRS as the convex hull of Ψ̂FDH. The corresponding VRS-

DEA estimators of γ̂VRS(x, y | Ψ) and β̂VRS(x, y | dx, dy,Ψ) are obtained by replacing

Ψ with Ψ̂VRS in (2.2)–(2.3) respectively. There is another kind of the DEA estimator,

defined as the convex cone of Ψ̂FDH and called the constant-returns-to-scale DEA (CRS-

DEA) estimator. Since the CRS-DEA estimator relies on strong assumption that the

returns to scale are everywhere constant, it is less widely used in empirical works.

Therefore, the notation DEA is dedicated for VRS-DEA for the rest of the paper.

Besides inputs and outputs, there exist factors such as differences in ownership,
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business models, constraints of technology and regulatory, which are typically beyond

control of the manager but may influence the production process. These factors (de-

noted as environmental factors Z ∈ Rr,) may not be independent of (X,Y ), so that

the unknown effect of Z must be estimated appropriately. Daraio and Simar (2005)

propose a framework to investigate the joint behavior of (X,Y, Z) in probability terms

by defining the conditional attainable set as

Ψz = {(x, y) ∈ Rp+q
+ | x can produce y when Z = z}, (2.5)

where Ψ =
⋃
z∈Z

Ψz, so that Ψz ⊆ Ψ, for all z ∈ Z. Then the distribution of (X,Y )

conditional on Z = z is denoted by

HX,Y |Z(x, y|z) = Prob(X ≤ x, Y ≥ y | Z = z), (2.6)

which gives the probability that a firm facing environmental conditions z will dominate

the point (x, y). Given Z = z, the attainable set Ψz is the support of HX,Y |Z(x, y|z).

Introducing environmental factors into (2.2)–(2.3) extend the efficiency scores into

their conditional counterparts. For example, the conditional hypobolic measure can be

expressed as

γ(x, y | z) = inf{γ | HX,Y |Z(γx, γ
−1y | z) > 0} (2.7)

and the conditional directional distance measure can be expressed as

β(x, y | dx, dy, z) = sup{β | HX,Y |Z(x− βdx, y + βdy | z) > 0}. (2.8)

Therefore, plugging a nonparametric estimator of HX,Y |Z(·) from a sample Sn =

{Xi, Yi, Zi | i = 1, ..., n} into (2.7) or (2.8) can derive the estimation of the condi-

tional efficiency scores accordingly. Such a nonparametric estimator of HX,Y |Z(·) may
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be obtained by standard kernel smoothing, for example,

ĤX,Y |Z(x, y | z) =
∑n

i I(Xi ≤ x, Yi ≥ y)K(Zi−z
h

)∑n
i K(Zi−z

h
)

, (2.9)

where K(·) is a kernel function with bounded support, h is a vector of bandwidths

h = (h1, ..., hr), and r is the number of environmental variables. It is well known that

the selection of bandwidth h is of critical importance in kernal smoothing (e.g., see

Hall et al., 2004, Bădin et al., 2010, 2012, Jeong et al., 2010, and Li et al., 2013

for the discussions of choosing the optimal bandwidth by least square cross-validation

(LSCV)).

There is a particular case, called the separability condition in Simar and Wilson

(2007), where Z has no impact on the boundaries of the Ψz and Ψz = Ψ for all z ∈ Z.

Simar and Wilson (2007, 2011) emphasize that if the separability condition is not

hold, naive regression in a second-stage analysis may provide inconsistent estimation.

Alternatively, Bădin et al. (2012, 2014) suggest a flexible nonparametric location-scale

model

γ(X,Y | Z = z) = µ(z) + σ(z)ε (2.10)

in a second-stage regression, where µ(z) measures the average effect of z on the ef-

ficiency, and σ(z) provides additional information on the dispersion of the efficiency

distribution as a function of z. Mastromarco and Simar (2015), Cordero et al. (2017),

Toma (2020), etc., had used this two-step approach for various empirical studies.

2.2 Estimation and Inference
The tradeoff between FDH and DEA estimators for performance evaluation is not trival.

Simar and Wilson (2015) summarize in a survey of the nonparametric frontier models

that the FDH and DEA estimators converge to limiting distributions at rates n
1

p+q and

n
2

p+q+1 respectively under appropriate assumptions. Hence for a fixed sample size n,

the convergence rate slows down with the increasing of dimensionality (p + q), which

increases the estimation error accordingly for both the FDH and DEA estimators. A
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feasible approach to minimize such estimation error (often referred to as the curse of

dimensionality) is either to increase the sample size n or to decrease the total dimensions

of (p+q). If the sample size n is restricted to a small number by real world constraints,

including the market scale and market scope in specific industries, geographical or

political restrictions, and the high cost of data collection, dimension reduction may

become an attractive solution.

Daraio and Simar (2007, pp. 148-150) propose using principal component analysis

(PCA) for dimension reduction. Wilson (2018) explains how to use PCA for a mapping

Ψ : Rp+q
+ 7−→ R1+1

+ for the radial measures. In detail, (p × n) matrix X and (q × n)

matrix Y are transformed to (1 × n) matrices Λ′
x1
X, Λ′

y1
Y by pre-multiplying the

first eigenvector Λx1 , Λy1 of the moment matrices XX ′ and Y Y ′. Though it is not

possible to give a theorem that precisely identifies situations where dimension reduction

should be used, Wilson (2018) provides three diagnostics for empirical research. The

first diagnostic is to compute the effective parametric sample size m as m ≈ bn2κe,

where κ = 1
p+q

for FDH estimator, κ = 2
p+q+1

for DEA estimator, and bae denotes

the integer nearest a. Hence the criterion of judging the minimum sample size m in

parametric estimation can be used as reference in judging the minumum sample size n

in nonparametric estimation.

A second diagnostic is to consider the proportion of n observations that yield effi-

ciency scores equal to one. Since FDH estimator converges slower than DEA estimator,

a robust diagnostic for the curse of dimensionality should use the FDH efficiency esti-

mator. If more than 25%–50% of the observations yield efficiency scores equal to one,

the estimation results are not convincing. A third diagnostic is to exam the ratios Rx

and Ry of the largest eigenvalue of the moment matrices XX ′ and Y Y ′ to the corre-

sponding sum of eigenvalues for XX ′ and Y Y ′, which provide measures of how close

the corresponding moment matrices are to rank-one. For example, if Rx = 0.9, then

the matrix with dimension reduction Λ′
x1X contains 90% of the independent linear in-

formation in the original matrix X. In practice, Wilson (2018) proposes standardizing

10



the matrices X or Y before PCA to ensure the inputs or outputs have the same scale,

in case of excessive number of inputs or outputs.

After the diagnostics of dimension reduction, Kneip et al. (2015, 2016) use new

central limit theorems to construct a test of convexity for the tradeoff between Ψ̂FDH

and Ψ̂VRS. Note that the main difference of the test statistics by the new central limit

theorems in Kneip et al. (2015, 2016) are the bias corrections construced by jackknife

estimators (e.g., see Kneip et al., 2016, pp. 441-442). If the null hypothesis of convexity

is rejected, the FDH estimator is the only consistent estimator. Alternatively, if the null

hypothesis of convexity is not rejected, though it does not imply that the null is true,

the DEA estimator may be the preferred estimator because of its faster convergence

rate. However, the test of convexity proposed by Kneip et al. (2015, 2016) depends on

randomly split the original sample into two independent subsamples for the calculation

of the bias terms, which introduces ambiguity in practice. Simar and Wilson (2020,

pp. 293-294) develop a generalized bootstrap algorithm that eliminates much of this

ambiguity by repeating the random splits a large number of times, which can be used

for both the convexity test and the separability test.

2.3 Data and Variable Specification
The data are collected from the Sub-Industry of Semiconductors in the Compustat

database. In order to provide a global perspective for the semiconductor value chain,

we combine data from both the Compustat North America database and the Compustat

Global database to cover companies in the industry worldwide. As the semiconductor

industry is famous for being a cyclical industry (e.g., see Tan and Mathews, 2010), we

gather twenty years of data between 1999–2018 to cover a sufficient period with multiple

business cycles in the industry. The reason for the data to begin in 1999 is twofold.

First, with ten years of development since the inception of the fabless-foundry business

model in the late-1980s, the global semiconductor value chain has been preliminarily

established in the late-1990s so that there are plenty of available annual reports for the

fabless and foundry firms on the open market and in Compustat database. Second,
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two years after the 1997 Asian financial crisis, the year 1999 is a suitable starting point

to observe the trend in the global semiconductor industry without massive exogenous

shocks for the following years until the 2008 financial crisis. We also exclude liquid

crystal display manufacturers, light-emitting diodes, manufacturers and photovoltaic

producers from the dataset, limiting the sample to only IC manufacturers in a narrow

sense. Hence the panel data include 5136 observations from 470 unique companies in

the global semiconductor industry in 1999–2018.

A side product of the flexible functional form in the nonparametric frontier ap-

proach is a lack of theoretical foundation on the production function. Identifying the

inputs and outputs has always been a subject of controversy, either in parametric or

nonparametric frontier estimations, without exception in the semiconductor industry.

Hence we sort the most commonly used variables in 37 empirical papers which apply

the nonparametric frontier approach for performance evaluation in the semiconductor

industry. Besides a few variables which are chosen for specific topics, the commonly

used variables in these papers are highly concentrated into two input categories and

two output categories. The first input category measures all kinds of variable inputs,

including labor, raw material, R&D and sales, and marketing expenditure, while the

second input category measures fixed assets. Comparably, the first output category

measures revenue and the second output category measures the market value of the

firms. Therefore, we specify p = 5 inputs (labor, measured by the number of employees

(X1); COGS (X2); R&D expenditure (X3); sales and marketing expenditure (X4) and

fixed assets, measured by property, plant, and equipment (PP&E) (Xf )) and q = 2

outputs (total revenue (Y1); and shareholders’ equity, measured by common ordinary

equity (CEQ) (Y2)). Since we plan to use the directional distance estimator, we dis-

tinguish the notation of the fixed input Xf with the other four variable inputs X1, X2,

X3, and X4. For the output variable Y2, we use shareholders’ equity instead of the

market value of a firm, because the variable of market value is suffering from missing

data in the Compustat database, and the variable shareholders’ equity is also a widely
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used proxy for the value of a firm. Note that the same dataset had been used in Qiao

and Wang (2021), but in this approach we add the variable Xf to represents PP&E

to emphasize the impact of CAPEX and measured it as fixed input by the directional

distance estimator to achieve more robust results.

Table 1 gives summary statistics for the original variables in 1999–2018 pooled

data. In order to provide a uniform standard across years, all the variables except X1

are expressed in millions of U.S. dollars and their values have been adjusted to 2018

U.S. dollar by GDP deflator. The distribution of all the variables are heavily skewed

to the right, owning to the domination of several semiconductor giants in the market.

In addition, we specify r = 2 environmental variables (business model (Z1); and time,

measured by the years 1999–2018 (Z2)). The environmental variable Z1 is a discrete

variable, which categorize the four kinds of business models including fabless, IDM,

foundry, and A&T into three groups. The first group contains fabless companies which

are labor intensive for chip design, while the second group contains both foundries and

OSATs which are capital intensive for fabrication, and a third group contains IDMs

which are both labor intensive and capital intensive. The environmental variable Z2

can either be treated as a continuous variable or a discrete variable, which will be

discussed further in the next section.

Table 2 breaks down the 5136 observations by business model. It is no surprise that

over half of the companies are fabless. As the barriers to entry, which relies heavily on

CAPEX, is much lower for fabless than for the others, fabless companies spring up like

the mushrooms in the late-1990s to the early-2000s. At the same time, the number

of firms operating in other kinds of business models remain relatively stable. After

the golden decade of fast growth in the semiconductor industry come to an end in the

mid-2000s (e.g., see Flamm 2017), the proportions of firms in each business model are

gradually fixed. Around 60% of the firms are fabless, while 20% of the firms are IDMs

and the rest 20% are either front-end wafer fabs or back-end OSATs.
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3 Results and Discussion
It is well known that most nonparametric estimators suffer from the curse of dimen-

sionality. Based on the three diagnostics introduced above, the necessity for dimension

reduction is unambiguous. With seven dimensions (p=5 and q=2) in the original data,

the effective parametric sample size m for the original annual data is small, no matter

using FDH or DEA estimators. A slight difference in processing PCA for the directional

distance estimator is that PCA is only on the variable inputs and outputs, but not on

the fixed input Xf . Hence after dimension reduction there remain three dimensions

including X̃ (PCA from X1 to X4), Ỹ (PCA from Y1 to Y2) and Xf . We calculate

the values of the largest eigenvalue of the moment matrices of XX ′ and Y Y ′ to the

corresponding sum of eigenvalues to be Rx = 91.19% and Ry = 98.31%, indicating

high correlations among the input variables X1, ..., X4 and high correlations between

the output variables Y1, ..., Y2, so that dimension reduction should reduce estimation

error. Thus all of the following analyses and results are based on data with dimension

reduciton.

Among studies that use nonparametric frontier approach to estimate efficiency

and benchmark performance of firms in the semiconductor industry, the vast majority

choose DEA estimator, without comparing the pros and cons between FDH estimator

and DEA estimator. The DEA estimator is probably a better choice without dimension

reduction, as the slower convergence rate of FDH estimator may increase measurement

error rapidly with the increasing of dimensions. However, it is worth to reevaluate the

tradeoff between FDH estimator and DEA estimator with dimension reduction. The

drawback of DEA estimator is imposing convexity on the production set Ψ, while FDH

estimator is free of this assumption. As discussed above, the test of convexity versus

non-convexity of the product set proposed by Kneip et al. (2016) can be applied to

measure this tradeoff. The FEAR package (e.g., see Wilson, 2008) uses a bootstrap

algorithm by Simar and Wilson (2020) to extend the Kneip et al. (2016) approach for

the convexity test. Table 3 provides results of the convexity test, using the FEAR pack-
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age and the choosing hyperbolic-oriented measure in (2.2). At 95% confidence level,

the null hypothesis of convexity are rejected for over 80% of the 20 years annual data,

except 3 years (2009, 2011 and 2012) in hyperbolic-orientation. Simar and Vanhems

(2012) link the directional distance measure with the standard hyperbolic measure by

a monotonic transformation, so that the results in Table 3 are also valid for the direc-

tional distance estimator. Hence we choose FDH estimator for the remainder of the

analysis.

Daraio et al. (2020) propose a fast and efficient computation of the directional

distance measures using FDH estimator. In detail, after monotonic transformation of

the data that

X∗ = X̃ � dx and Y ∗ = Ỹ � dy, (3.1)

where � refers to Hadamard component-wise division of vectors, the FDH estimator

in (2.4) can be expressed explicitly as

β̂(x, y|dx, dy) = sup{β > 0 | Ĥn,X∗Y ∗|Xf
(x∗ − β, y∗ + β | xf ) > 0},

= max
{i|Xf,i≤xf}

[min {x∗ −X∗
i , Y

∗
i − y∗}] ,

(3.2)

where n is the sample size and i ∈ {1, 2, ..., n}. It is straightforward to extend the

expression in (3.2) to the conditional directional distance estimator (e.g., see Daraio et

al., 2020, pp. 814) as

β̂(x, y|dx, dy, z) = max
{i|Xf,i≤xf ,|Zi−z|≤h}

[min {x∗ −X∗
i , Y

∗
i − y∗}] . (3.3)

Therefore, in order to consider a discrete environmental variable such as the business

model Z1 for the estimator in (3.3), the separability condition needs to be examined.

Similarly, in order to consider a continuous environmental variable such as Z2 (in case

Z2 is treated as continuous) for the estimator in (3.3), the optimal bandwidth h needs

to be fixed in advance.
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Simar and Wilson (2020) propose a bootstrap algorithm which can be used for

the separability test on the discrete environmental variable Z1. In application to the

additive directional distance measure, step [5] in Simar and Wilson (2020, pp. 293)

which is originally designed for the radial measures should be revised as

X∗
i = Xi − β̂i × dx + β∗

i × dx, (3.4)

and

Y ∗
i = Yi + β̂i × dy − β∗

i × dy, (3.5)

where the directions of dx and dy are chosen commonly as the sample mean of X and

Y . The first portion in Table 4 shows the separability test results with respect to

the business model Z1. Though the test statistics τ1 and τ2 not always give the same

results, there is strong evidence to reject the separability condition. In other words,

each of the three business models in semiconductor industry has its unique production

frontier for pooled data.

For the environmental variable Z2 which represents the years 1999–2018, there is

flexibility to either treat it as a discrete variable or as a continuous variable (e.g., see

Mastromarco and Simar, 2015). To treat Z2 as a discrete variable, the 20 years of

1999–2018 can be splitted into ten 2-year groups (two adjacent years as a group), five

4-year groups (four adjacent years as a group) or four 5-year groups (five adjacent

years as a group). In this case the separability test with respect to Z2 is similar to

the separability test with respect to Z1. Although Z2 can naturally be treated as 20

individual years, it is not recommended for the directional distance measure here. Since

each individual year has around 100–300 observations, the effective parametric sample

size m = n
2
3 for the directional distance measure in each year will be a small number

and hence increase the measurement error and make this approach less attrative.

Another approach is to treat Z2 as a continuous variable and using LSCV to de-
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termine the optimal bandwidth h by minimizing

n∑
i=1

n∑
j ̸=i

I(x̃i ≤ x̃j, xf,i ≤ xf,j, ỹi ≥ ỹj)−
1
n

n∑
k ̸=i

I(x̃k≤x̃j ,xf,k≤xf,j ,ỹk≥ỹj)Kh(zi,zk)

1
n−1

n∑
k ̸=i

Kh(zi,zk)

2

n(n− 1)
.

(3.6)

The optimal bandwidth is h = 5.5 for fabless, IDM, and pooled data, implying the

smoothing window of year t is [t-5,t+5], while the optimal bandwidth is h = 7.5 for

OSAT with the smoothing window of year t to be [t-7,t+7]. The second portion in

Table 4 shows the separability test results with respect to the optimal time Z2, while

the third portion in Table 4 shows the separability test results with respect to both the

business model Z1 and the time Z2. In any case the separability conditions are strongly

rejected. Hence the efficiency scores in (3.3) are estimated with separated production

frontiers per the restriction of both the conditions Z1 and Z2.

Table 5 shows the summary of the efficiency scores conditional on both the business

model Z1 and time Z2. Whether the time Z2 is treated as a discrete variable or a

continuous variable, the distributions of the efficiency scores are skewed to the right in

all kinds of business models, especially for the fabless firms. Nevertheless, on conditions

that Z2 are treated as a discrete variable, the first quartiles are either equal to zero or

very close to zero, no matter how the years are grouped. Based on the second diagnostic

in Wilson (2018), it is a sign that the measurement error by slow convergence rate still

exist. Choosing a estimation method with larger subsample size is a feasible solution to

minimize such measurement error with dimension reduction. Thus a preferred approach

is to treat Z2 as a continuous variable, rewarding faster convergence rate and more

accurate estimates.

Figure 1 visualizes the trends of the annual mean efficiencies by business model.

Either treating Z2 as a discrete variable or as a continuous variable, the curves of

the annual mean efficiencies for the fabless firms are above the curves for the other

business models. This phenomenon is more visable in the bottom right panel, where
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Z2 is defined as a continuous variable with more reliable estimates. As higher efficiency

score infers lower technical efficiency in the directional distance measure, the curves

in Figure 1 imply the fabless firms are operating less efficiently on average. Another

interesting discovery is that the curves of different business models in the bottom right

panel of Figure 1 tend to converge in 2008, the year of global finanical crisis. It can

be interpreted that under extreme conditions the differences in operating efficiency

become unconspicuous among business models. Based on the bottom right panel of

Figure 1 which produce more accurate estimates, we use new central limit theorem

(e.g., see Kneip et al., 2015, pp. 409) to derive 95% confidence interval for the annual

mean efficiency curves in Figure 2. The variance for the fabless firms are also higher

comparing with the IDMs or OSATs, implying higher risk and uncertainty for the

fabless business model.

As the separability condition does not hold, we use a flexible nonparametric location-

scale model in (2.10) for a second-stage regression. The pure efficiency defined by Bădin

et al. (2012) can be derived from (2.10) and expressed as

ε̂(z) =
β̂(x, y | z)− µ̂(z)

σ̂(z)
. (3.7)

In practice, we obtain µ̂(z) by regressing β̂(x, y | z) on the environmental variable z

and σ̂(z) by regressing the squared residuals of the preceding regression on z. The

upper panel in Figure 3 illustrates the pure efficiency ε̂(z1, z2) that cleanses efficiency

scores from the influence of both the environmental factors Z1 and Z2, while the lower

panel in Figure 3 illustrates the pure efficiency ε̂(z2) that cleanses efficiency scores from

the influence of only the environmental factor Z2. In the upper panel, the curves of

ε̂(z1, z2) by different business models twist together with no clear structures, similar to

white noise vibrating at small values around zero. On the contrary, in the lower panel,

the curves of ε̂(z2) demonstrate clear separation by business models. Since ε̂(z2) only

cleanses the influence of time, the lower panel in Figure 3 maintains the structure of the
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differences in technical efficiency by the business model in Figure 1-2. Consequently,

the contrast between the upper and lower panels in Figure 3 provides further evidence

that the technical efficiencies do vary in the semiconductor by business models, and

the asset-light fabless firms are operating less efficiently on average in the past two

decades.

4 Conclusion
The semiconductor industry is famous for the high barriers to entry, especially in

the capital-intensive manufacturing portion. The incumbent IDMs, benefitted by the

economy of scale and protected by the economic moat by huge CAPEX, dominate

the semiconductor industry since the onset of the industry in the 1960s. However,

wagering on novel technologies and processes with the ever-expanding complexity of

ICs becomes a weighty burden even for the giant IDMs. The fabless-foundry business

model alleviates the financial risks of capital investment, reduces the barriers to entry,

accelerats technology iterations, and leads to a flourishing of fabless design houses for

various applications. This paper compares the operating efficiencies between the IDMs

and the fabless-foundry business models to shed light on which business model will be

the market trend and dominate the semiconductor industry in the long run.

Based on the capital-intensive feature of the semiconductor industry, this paper

chooses a directional distance measure to handle the constraint of CAPEX. At the same

time, conditional FDH estimators are used to handle the effects of business model and

time in the nonparametric frontier approach. The empirical results provide clear evi-

dence that the IDMs are operating more efficiently, while fabless firms are operating

less efficiently by and large. Though the fabless-foundry business model encourages

entrance of the fabless startups, the CAPEX barriers accompanying with technical

barriers still limit the fields and applications for the fabless firms to growth and devel-

opment. The IDMs have more room to optimize the operation and lead the technology

development with a strategic product roadmap by vertical integration. The fabless-

foundry business model is more like a complement of the IDMs to explore a broader
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scope in the semiconductor industry instead of a substitutional structure change. The

IDMs will continuously dominate the semiconductor industry in the foreseeable future.
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Table 1: Summary Statistics for 1999–2018 Pooled Data

Variable Min Q1 Median Mean Q3 Max

X1 0.001 0.160 0.486 3.082 2.011 107.600

X2 0.001 24.170 88.008 475.252 301.645 18,226.000

X3 0.000 4.302 18.330 160.217 67.001 13,543.000

X4 0.549 5.885 20.087 125.406 67.185 1,982.015

Xf 0.005 6.065 27.787 554.060 174.405 48,976.000

Y1 0.003 47.283 161.799 1064.110 563.655 70,848.000

Y2 0.175 44.279 151.749 1114.748 487.730 74,563.000

Obs. 5,136
Uniq. Obs. 470

NOTE. The unit of X1 is thousand employees.
The units of the variables except X1 are US$ million.
All values have been adjusted to 2018 US$ by GDP deflator.
Obs. denotes the total number of observations in 1999–2018.
Uniq. Obs. denotes the unique number of companies in 1999–2018.
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Table 2: Number of Observations By Business Model

Number of Companies
Year All IDM Foundry A&T Fabless

1999 125 38 10 9 68
2000 149 43 10 15 81
2001 155 46 10 16 83
2002 213 48 17 27 121
2003 241 49 19 30 143
2004 264 54 21 30 159
2005 260 54 17 27 162
2006 267 56 20 30 161
2007 269 52 21 33 163
2008 278 51 20 35 172
2009 290 53 21 36 180
2010 300 59 23 38 180
2011 298 60 22 39 177
2012 301 61 22 38 180
2013 313 65 24 41 183
2014 302 62 25 43 172
2015 288 59 24 42 163
2016 283 54 23 44 162
2017 275 51 23 45 156
2018 265 48 22 44 151

Obs. 5,136 1,063 394 662 3,017
Uniq. Obs. 470 83 36 63 288

NOTE. Obs. denotes the total number of observations in 1999–2018.
Uniq. Obs. denotes the unique number of companies in 1999–2018.
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Table 3: Results of Convexity Test (Hyperbolic-Orientation)

Year N Statistic p-value

1999 125 2.222 0.011
2000 149 1.594 0.006
2001 155 1.853 0.040
2002 213 3.138 0.005
2003 241 2.901 0.001
2004 264 3.440 0.000
2005 260 3.238 0.000
2006 267 3.651 0.000
2007 269 3.915 0.003
2008 278 3.227 0.008
2009 290 2.162 0.057
2010 300 2.890 0.006
2011 298 2.102 0.088
2012 301 1.014 0.174
2013 313 1.989 0.020
2014 302 3.552 0.001
2015 288 1.452 0.041
2016 283 2.053 0.018
2017 275 4.831 0.000
2018 265 4.963 0.000

NOTE. I use 100 splits and 1000 bootstrap replications.
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Table 4: Test of Separability conditional on Z1 and Z2 (with Dimension Reduction, p
= 2, q = 1, and directional distance measure)

— τ1 — — τ2 —
Statistic p-value Statistic p-value

Conditional on Z1

Fabless VS. IDM 7.567 0.000 0.992 0.925
Fabless VS. OSAT 4.126 0.000 1.000 0.000
IDM VS. OSAT 3.883 0.000 0.870 0.715

Conditional on Z2

Pooled VS. Optimal Time 3.230 0.000 0.983 0.000

Conditional on Z1, Z2

2-Year Groups 26.273 0.000 1.000 0.000
4-Year Groups 18.572 0.000 1.000 0.000
5-Year Groups 17.242 0.000 1.000 0.000
Optimal Time 19.891 0.000 1.000 0.000

NOTE. I use 10 splits and 1000 bootstrap replications.
τ1 is the averaging of the statistics across 10 splits.
τ2 is the Kolmogorov-Smirnov statistic obtained above.
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Table 5: Summary statistics of the efficiency scores by directional distance estimator

Sample Sample Min Q1 Median Mean Q3 Max
Set Size

2-year groups
fabless 3,017 0.000 0.000 0.023 0.097 0.085 13.859
IDM 1,063 0.000 0.000 0.002 0.046 0.033 1.943
OSAT 1,056 0.000 0.000 0.000 0.041 0.029 1.167

4-year groups
fabless 3,017 0.000 0.005 0.036 0.129 0.107 15.171
IDM 1,063 0.000 0.000 0.009 0.067 0.061 1.939
OSAT 1,056 0.000 0.000 0.005 0.064 0.055 1.901

5-year groups
fabless 3,017 0.000 0.009 0.042 0.147 0.115 15.179
IDM 1,063 0.000 0.000 0.012 0.074 0.069 2.377
OSAT 1,056 0.000 0.000 0.008 0.074 0.071 2.000

optimal time
fabless 3,017 0.000 0.027 0.073 0.258 0.175 19.151
IDM 1,063 0.000 0.006 0.043 0.131 0.171 2.087
OSAT 1,056 0.000 0.004 0.036 0.142 0.146 2.660
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Figure 1: Mean β conditional on both year and business model
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Figure 2: Mean efficiency conditional on optimal year and business model with 95%
confidence interval
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Figure 3: Pure efficiency
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