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Abstract: This article proposes a methodology to identify
technological transitions (TTs) by systematically using
the total variation distance (TVD) metric. We use a data-
base of renewable energy generation (REG) patents to
exemplify the usefulness of TVD to uncover moments
where a “big change” in REG technology happened. To
do this, we compare the observed frequency distribution
of technology codes of REG patents filed between 1973 and
2015 in the US, spread across seven categories (e.g., wind
and tidal). We identify two crucial TTs, one at the begin-
ning of the 1980s and another in the late 1990s and early
2000s. In this manner, we reconcile qualitative evidence
that registers major REG changes with a quantitative mea-
sure that reflects them. Policy evaluations or causality ana-
lyses often rely on identifying TTs accurately; therefore,
this approach is not constrained to the REG technology
or TTs but helps reveal such transition moments in a data-
base whose characteristics are suitable for the use of TVD.

Keywords: technological transitions, renewable energy
generation, total variation distance, patent classification

1 Introduction

Technological changes are one of the leading forces to
explain economic growth and development. They happen
continuously, and at some moments during a time span,
they are especially relevant since these changes occur

abruptly. As Perez-Molina and Loizides (2021) state different
agents, such as researchers or private firms, continuously
look for tools to understand a specific technology’s evolution
and pinpoint moments of particular interest within it. In this
context, we are interested in identifying technological tran-
sitions (TTs), which we refer to as those moments when the
technology in a particular field exhibits a notable change.

TTs are complex phenomena with effects on innova-
tive processes, organization of production factors, pro-
ducts, and new ideas. Not all these innovations can be
legally protected, or owners may decide not to do so even
if they can. Despite this limitation, patents serve as
a proxy for successful innovation processes and allow
us to use analytical approaches to study the complex
dynamics behind them (Alkemade et al., 2015). Patent
documents have been widely used in the academic litera-
ture since they provide valuable information about the
state of a given technology at a given time. Specifically,
patent classification has been a primordial instrument for
creating a useful taxonomy that can be used by those
interested in protecting and analyzing intellectual prop-
erty (e.g., Meguro & Osabe, 2019; Ruijie et al., 2021).

This article proposes a methodology to systematically
identify TTs in a particular technological field using the
distance between probability distributions among the
technology codes in that field. We characterize a techno-
logical state as the probabilistic empirical density distri-
bution over the technological patent categories at a given
time, using the Cooperative Patent Classification (CPC).
Consequently, we approach technological change by mea-
suring the distance between these distributions.

As discussed in Frenken et al. (2014), we conceive a
TT as a tipping point in which the dominant technolo-
gical state changes to an alternative one within a given
system. Therefore, we claim that a disruptive change in
the distribution of categories can be used as a signal of a
TT. Hence, the interest of this article is not to explain the
drivers behind a TT or mathematically model them, but to
offer an alternative methodology for a systematic explora-
tory analysis of the identification of TTs.



* Corresponding author: Diana Terrazas-Santamaria, Centro de
Estudios Economicos, El Colegio de Mexico, Mexico City, 14110,
Mexico, e-mail: dterrazas@colmex.mx
Saul Mendoza-Palacios: Centro de Investigacion y Docencia
Economicas, Mexico City, 11210, Mexico,
e-mail: saul.mendoza@cide.edu
Julen Berasaluce-Iza: Centro de Estudios Economicos, El Colegio de
Mexico, Mexico City, 14110, Mexico, e-mail: jberasaluce@colmex.mx

Economics 2023; 17: 20220039

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/econ-2022-0039
mailto:dterrazas@colmex.mx
mailto:saul.mendoza@cide.edu
mailto:jberasaluce@colmex.mx


To the best of our knowledge, the methodology of
intertemporally measuring the distance between distri-
butions within a given technology has not been used to
identify historical moments where a notable technolo-
gical change may have occurred. Since technological
change is a continuous phenomenon, we focus on “big”
changes. We measure it with the total variation distance
(TVD) metric based on its properties and explain why we
use local maxima to identify TTs (Section 3).

Our proposed methodology is easily executable and
straightforward to interpret since it only uses the relative
frequency of each category at a given time as an input, and
the TVD’s values range from 0 to 2. Thus, it is particularly
valuable for exploratory analysis, providing a visualiza-
tion tool to identify TTs. We use patent data from the
renewable energy generation (REG), which shows suitable
data characteristics (Section 2), and we identify two TTs
consistent with the REG historical evidence. To show
the validity of our methodology, we perform a chi-square
test of independence, and the results are in line with the
TVD results.

This article is organized as follows. Section 2 com-
pares our methodology to the existing literature on the
identification of TTs. Section 3 introduces the TVD and its
properties and explains its calculation. In Section 4, we
present the REG case and data set, for which we calculate
the TVD under different specifications and discuss the
interpretation of two identified moments of TT. We con-
clude in Section 5.

2 Related Literature

TVD is a probabilistic measure to quantify the difference
between two probability density functions (pdfs). A dis-
tance is a quantitative measure of how far apart two
objects are, and measuring the distance between histo-
grams has proven paramount in various areas to perform
pattern recognition (Cha & Srihari, 2002; Kurtz et al.,
2013; Strelkov, 2008). If we consider a nominal histo-
gram, which is our case, it represents the distribution of
quantified labeled values (categories) where each bin
contains the proportion of a category out of all categories,
and their ordering is not important (shuffling invariance
property)¹ (Sung-Hyuk, 2007; Kurtz et al., 2013).

Thus, at a given period, the histogram that portrays
the relative frequency of patents distributed in different
categories within a given technology intrinsically pro-
vides information on what the innovative interests are
at that time, or what we refer to as the technological
state. Consequently, measuring the probabilistic distance
between two nominal histograms at two points in time
provides valuable information on how close or apart the
inventive efforts were.

As Strelkov (2008) points out, humans compare mul-
tiple histograms relatively slowly, and a comparison
algorithm is preferable; however, for such an algorithm
to be reliable, it needs to reach conclusions close to those
reached using distinct methods. Cha and Srihari (2002)
explain that, in the probabilistic distance approach, a his-
togram provides the empirical estimate of the pdf and
compares corresponding and non-corresponding bins.²

Our TVD approach measures the distance between
two empirical distributions. Thus, if, at a given period,
this distance is considerably greater than the historical
ones, we can contemplate the existence of an abrupt
change in the technology at that point, or a TT. In this
manner, we contribute to the TTs’ literature using patents
by proposing a methodology used in several disciplines,
but to the best of our knowledge, which had not previously
been used in this context, or intertemporally. Examples of
TVD usefulness are found in genomics (Garcia & Pinho,
2011), criminology (Carte et al., 2020), epidemic models
(Ball & Donnelly, 1995), biology of sleep (Barger et al.,
2019), and, more generally, time series with similar oscil-
lations (Euán et al., 2018).

Since a patent is classified in all the relevant tech-
nology codes where the novelty fits (Lobo & Strumsky,
2019), its classification codes are proxies of its different
technological components (Perez-Molina & Loizides, 2021),
and the historical information of how these codes evolved
within a technology can uncover trends or statistically iden-
tify when innovative efforts shifted. The increased avail-
ability of patent data since the 1970s has served to study
technological evolution (Martino, 1971). We extend such
study to the evolution of the distribution of a technological
field over the exogenously determined codes using the dis-
tance over their distribution.

Conventional TT measurements include indicators
based on patent filings, application dates, or grant counts,
which have been recently combined with text analysis



1 Nominal data distribution is invariant to “shuffling” the category
labels, and this property is not obvious for continuous variables
(Duda et al., 2007).



2 Cha and Srihari (2002) show that a vector distance treats a histo-
gram as a fixed-dimensional vector where standard vector norms
measure the distance between two vectors, e.g., Euclidian distance.
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(e.g., Guderian, 2019; Lacasa et al., 2003). We acknowl-
edge that the number of technology codes driven by
patents has been used to capture changes in technological
capabilities (e.g., Lobo et al., 2012) or to assess the growth
of a particular subgroup of patents with respect to the total
(e.g., Angelucci et al., 2012; Bae & Kim, 2017). However,
instead of analyzing technology as a set that evolves due to
the relative change of its components, as we do, these
methodologies have focused primarily on isolated fields
within a technology.

3 Methodology

Next, we explain the TVD, its properties, and the reasons
it is preferable for our case rather than other probabilistic
distances. The TVD is a probabilistic measure to quantify the
difference between two pdfs; it measures their similarity.

If the sample space is discrete and categorical, as in
our REG case, the TVD measures the difference of histo-
grams by categories. Let ω ωΩ , , k1{ }= … be the set of
patent subgroups and μ ωt i( ) be the relative frequency

of the subgroup ω Ωi ∈ at period t, where μ ω 1i
k

t i1 ( )∑ =

=

.
Then, the distribution of relative frequencies on patent

subgroups, μ μ ωt t i i
k
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=
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In probability theory, there are different ways to mea-
sure the distance between two probability distributions.
A few of these are TVD, Hellinger distance, Kullback-
Leibler divergence, Wasserstein distance, Prokhorov
distance, among others (see Massart, 2007, for further
discussion). The first two metrize strong topology, and
the last two metrize weak convergence; Kullback-Leibler
divergence is not a distance, but its proximity implies strong
and weak convergence. Also, Lin et al. (2021) use the Kull-
back–Leibler divergence to identify technology life cycles.

We select TVD because:
• It is not sentient to the distance ω ω∣ ∣− ′ between any
two events ω ω, Ω′ ∈ , unlike weak topology metrics,
such as Wasserstein and Prokhorov. Therefore, the
TVD is suitable for unordered categories.

• It has properties similar to a norm in vector spaces. In
particular, it is homogeneous. That is, the distance
between the average of two distributions and one of
the two is proportional to the distance between the
two initial distributions, unlike weak topology metrics.

• Its calculation is more straightforward compared to
other strong topology metrics, such as the Hellinger
distance, and its interpretation is more intuitive.

• Since it is a distance, it allows us to measure the dif-
ference between several probability distributions, in
contrast to the Kullback-Leibler divergence.³

• It can be calculated for probability distributions for
which the probability of an event is 0, in contrast to
the Jensen–Shannon divergence.

• It is sensitive to changes in the distribution concerning
all the categories, as opposed to the separation distance.

Due to the aforementioned reasons, we find TVD a
suitable measure for qualitative categories where the
order is not relevant, as is the case with patent tech-
nology codes, and it allows for a pairwise comparison
between different distributions without having to have
the same base.

3.1 TTs’ Identification Methodology

If equation (1) is strictly positive, then we have a techno-
logical state (or technological change) change between
periods s and t.

While a distance only allows for pairwise compari-
sons for a particular order of periods r s t, ,( ), if we have
d μ μ d μ μ, , 0r s s t( ) ( )> > , that indicates a greater techno-
logical change between r and s as compared to s and t . If
this technological change is significant compared to other
periods, we identify it as a potential TT.

TVD is invariant to the number of observations at
each period since it depends on the relative distribution.
However, the number of observations in a distribution
affects its variability. To avoid misguided interpretations
related to a change of the TVD that may respond to the
total number of observations, we consider two types of
periods:
(a) Natural periods, in which each distribution includes

the observations of one or several calendar years.



3 The Kullback–Leibler divergence measures how a probability dis-
tribution is different from a second reference probability distribu-
tion. In this sense, if we fix one probability distribution, we can
measure how the fixed distribution differs from others, which is
not the purpose of this study. We want to measure the difference
between various distributions and can compare these without
necessarily fixing one, so the Kullback–Leibler divergence is inap-
propriate for our purposes.
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(b) Periods with the same number of observations (PSNO),
in which we partition the data into consecutive sub-
sets, each with the same number of observations,
making a further breakdown by month and day.

Note that TVD is not sensitive to category reordering.
TVD may vary to a certain degree in the absence of a TT;
such variation depends on the nature of the technological
field and moment, as well as the total number of observa-
tions in each period. Therefore, in absolute terms, we
cannot claim any particular TVD level to be indicative
of a TT. Instead, we focus on local maxima specific to
the technological field under study, which show a greater
distance both directions in time.

The application of the TVD as an identification strategy
of TTs requires the adequate identification of technological
fields, which contain emergent technological innovations. A
narrow field selection could exclude potential emergent
technological innovations. In our example, the sources
that REG use as primary (e.g., wind, water, or sun) have
not changed in at least the last century, and we can reason-
ably argue that those categories are fixed in our period of
analysis. Suppose a new category appears at a particular
moment in time. In that circumstance, we can either reor-
ganize the previous observations according to the new cate-
gorization, assume that none of the previous (posterior)
observations belong to the newly created (eliminated) cate-
gory, or introduce an interpolation.

4 The REG Case

4.1 CPC

Much has been discussed about how patent offices pre-
pare to tackle a sudden increase in patents due to the rapid
development of emerging technologies. For instance, evi-
dence suggests that public and private investment in R&D
in nanotechnology led to a significant rise in related patent
applications (Absalom et al., 2006; Angelucci et al., 2012).
Absalom et al. (2006) mention that the European Patent
Office (EPO) developed a new taxonomy in the early stages
of nanotechnology R&D to ensure technical expertise within
examiners and legal certainty to innovators. In this way,
patents contain information about the birth and develop-
ment of technologies.

One difficulty of reliably identifying whether a TT has
occurred is to ensure consistent patent classifications
throughout the period of study (Lacasa et al., 2003). On
October 25, 2010, the EPO and the United States Patent

and Trademark Office (USPTO) announced the CPC as a
joint effort aimed at establishing a harmonized classifica-
tion system for patent documents; the CPC is based on the
International Patent Classification system, managed by
the World Intellectual Property Organization.⁴

The CPC is divided into nine sections (A-H and Y),
where each section is divided into classes, subclasses,
groups, and subgroups, containing approximately 250,000
classification entries.⁵ In our illustrative case, we use patents
with at least one Current CPC Class within the subgroups of
the Y02E 10 group of “Energy generation through renewable
energy sources”⁶ (Section 4).

One important peculiarity of the Y-section is that the
allocation of new patent applications to the relevant tech-
nology code(s) is done automatically by search strategies
without affecting existing classifications outside it; thus,
classifiers’ intervention is constrained to developing and
updating those strategies (EPO & USPTO, 2015). Further-
more, within the Y-section results, there has been a dedi-
cated effort to reclassify all applicable patents, retroac-
tively, with meticulous work and continuous tagging by
the various patent offices, ensuring that the Y02E 10 sub-
groups contain only REG-related patents.

In this manner, we take advantage of the categorical
property of the subgroups within the Y02E 10 group of
“Energy generation through renewable energy sources”
from the Current CPC Class, which contains only REG-
related patents. Thus, each of the seven subgroups of
the Y02E 10 group, also called categories, belongs to a
different renewable energy source (e.g., wind or from the
sea). We use categories that are known beforehand,
where patents are sorted into seven separate categories.
All patents classified under the “Wind” category are
useful to generate energy using the wind but are suffi-
ciently different from those “From the sea.”⁷

Climate change mitigation technologies (CCMTs) involve
several areas of knowledge. Thus, technologies using the
existing alternative patent classifications can lead to an



4 https://www.uspto.gov/about-us/news-updates/uspto-and-epo-
work-toward-joint-patent-classification-system.
5 https://www.epo.org/searching-for-patents/helpful-resources/
first-time-here/classification/cpc.html.
6 It is worth noting that the CPC results from meticulous tagging
work by various patent offices, ensuring that the Y02E 10 subgroup
contains only REG-related patents.
7 In our database, 93.58% of the patents belong to only one cate-
gory, 5.72% to two categories, and the rest to three, four, or five
categories (0.7%). Two-category patents predominate throughout
the period of the patents with multiple categories (87%, on average).
Since 2000, two-category patents have remarkably increased, but
those with three or more categories have not shown similar growth.

4  Diana Terrazas-Santamaria et al.
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incomplete retrieval of documents. As stated by the EPO,
“Y02 is a tagging scheme that enables documents relating
to sustainable technologies to be retrieved quickly and accu-
rately across classification categories.”⁸

4.2 The Data Set

We illustrate the implementation of TDV using public
patent data provided by the USPTO. In particular, we
consider patents with at least one Current CPC Class⁹
within the Y02E 10 group of “Energy generation through
renewable energy sources.” The Y02 class aims to iden-
tify CCMTs as stated in the Kyoto Agreement (Angelucci
et al., 2012), which contains the Y02E subclass, “Reduc-
tion of greenhouse gas emissions, related to energy gen-
eration, transmissions or distribution.”

We searched all patents within each subgroup of Y02E
10 group (one-dot level, two-dot level, and three-dot level).¹⁰
Each subgroup contains materials, systems, or structures
used in energy generation depending on the renewable
source.¹¹ For instance, in photovoltaic (PV) energy, the
one-dot level is Y02E 10/50 “PV energy,” a two-dot level is
Y02E 10/54 “Material technologies,” and a three-dot level is
Y02E 10/545 “Microcrystalline silicon PV cells.”

Our database consists of 39,236 patents filed from
1973 to 2015. Although there is updated information on
patent applications, we decided to exclude patents filed
from 2016 onward from the analysis to avoid false TTs
due to unobserved recent patent applications. This phe-
nomenon exists because in Article 1122 of the Manual of
Patent Examining Procedure, the USPTO allows for the
possibility of requesting an application to be non-pub-
lishable until its acceptance, so we may not have been
able to publicly observe the accurate quantity of recent
applications. Considering patents granted up to January
2020,¹² the mean lag between the issuance and their filing

date is 2.9 years, with a standard deviation of 1.5 years.
Therefore, we decided to exclude patents corresponding
to the period close to the mean lag plus one standard
deviation.¹³ Note that the mean lag in our database is
close to 2.4 years obtained by Popp et al. (2004).

A patent can have more than one Current CPC Class,
but we analyzed only those patents recorded with at least
one of the REG categories (Table 1). When all subgroups
within REG belong to only one subgroup, we assigned a
patent to that category. However, when the subgroups
belong to two categories, these patents appear in two
categories; the same principle applies to patents with
three or more subgroups.

In Table 1, we show the seven REG categories within
the Y02E 10 group and the complete list of Current CPC
classes within each one.

Figure 1 shows the number of patents by REG cate-
gory depending on the year they were filed. We observe
that the mix of REG sources (subgroups) has changed
since the 1970s. During the 1970s, the predominant source
was solar thermal, followed by PV. In the early 1980s,
PV patents surpassed solar thermal ones, and these two
sources remained relevant for the next two decades. At the
beginning of the 2000s, the wind source category drama-
tically increased, exceeding solar thermal but remained
below that of PV, which continues its rising trend. Since
2011, a general decline in patenting is observed. This phe-
nomenon may be related to the maturity of some REG
technologies, such as the PV and wind (International
Energy Agency, 2020).

4.3 TTs’ Identification

To use TVD, we need the number of periods within the
whole sample and the distance between them. Thus, we
define the periods using two criteria, natural periods and
PSNO, which we describe in the following paragraphs.

We first divide our data by natural years, each con-
stituting a “natural period”; then, we select the distance
of comparison between natural periods. The distributions
may look very similar when periods are too short and the
distances too close. Therefore, shorter periods may need
further distance calculations. We test a variety of combi-
nations of years and periods of distance. Interestingly, we
obtain high consistency in defining two TT moments in



8 https://e-courses.epo.org/wbts/y02.
9 In the USPTO, the order in which codes appear in a patent is
arbitrary.
10 According to the USPTO’s Handbook of Classification, a subclass
has a number, a title, and an indent level indicated by zero or more
dots. A second subclass is the child of a first subclass if the second
subclass is indented one level more than the first subclass, that is, it
has one more dot.
11 Appendix shows all the inventions included at one, two, and
three-dot levels in each subgroup.
12 January 31, 2020, is the last date we downloaded information
from the USPTO website.



13 Since we did not find any signal of a TT in the last few years,
increasing or decreasing 1 year of data would not affect the results.
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the REG case: one in the 1980s and another between the
end of the 1990s and the beginning of the 2000s.

In Figure 2, we show different year-windows and the
distance between them. If we take 1-year periods and
calculate the distances between five periods, we identify
two peaks (Figure 2(a)). The first peak compares the

distribution in 1981 with one in 1986. The second one
signals a peak in the distance between the distribution
in 1997 and the one in 2002. The graph with 2-year per-
iods with comparisons of two period distance (Figure 2(b))
exhibits more clearly the two peaks: the first one compares
the distribution of 1981–1982 with 1984–1985; the second

Table 1: Current CPC classes considered in each REG category

1 2 3 4 5 6 7
Geothermal Hydro From the sea Solar thermal PV Thermal-PV Wind

Y02E 10/10 Y02E 10/20 Y02E 10/30 Y02E 10/40 Y02E 10/50 Y02E 10/60 Y02E 10/70
Y02E 10/12 Y02E 10/22 Y02E 10/32 Y02E 10/41 Y02E 10/52 Y02E 10/72
Y02E 10/125 Y02E 10/223 Y02E 10/34 Y02E 10/42 Y02E 10/54 Y02E 10/721
Y02E 10/14 Y02E 10/226 Y02E 10/36 Y02E 10/43 Y02E 10/541 Y02E 10/722
Y02E 10/16 Y02E 10/38 Y02E 10/44 Y02E 10/542 Y02E 10/723
Y02E 10/18 Y02E 10/45 Y02E 10/543 Y02E 10/725

Y02E 10/46 Y02E 10/544 Y02E 10/726
Y02E 10/465 Y02E 10/545 Y02E 10/727
Y02E 10/47 Y02E 10/546 Y02E 10/728

Y02E 10/547 Y02E 10/74
Y02E 10/548 Y02E 10/76
Y02E 10/549 Y02E 10/763
Y02E 10/56 Y02E 10/766
Y02E 10/563
Y02E 10/566
Y02E 10/58

N 770 2,253 1,671 8,033 20,055 246 9,009
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Figure 1: Number of patents filed by REG category.
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one compares the 1998–1999 distribution with that
of 2002–2003. In Figure 2(c), we again observe the
two peaks in the 3-year periods with consecutive (dis-
tance 1) comparisons: 1983–1985 with 1986–1989, and
2000–2002 with 2003–2005. The 5-year periods with
consecutive comparisons, Figure 2(d), give a similar
picture, with a first peak in 1978–1982 compared with
1983–1987, and the second comparing 1998–2002 to
2003–2007.

For illustration purposes, in Figure 3, we show the
histograms for 5-year natural periods comparing 1978–1982
and 1983–1987 (Figure 3(a)) and 1998–2002 and 2003–2007
(Figure 3(b)), which are associated with the two red points of
Figure 5(d). The most notorious change from 1978–1982 to
1983–1987 is a relative reduction of subgroup 4 (solar-
thermal) and an increase in subgroup 5 (PV). During the
second peak, from 1998–2002 to 2003–2007, we observe a
relative reduction of subgroups 4 and 5, which transition to
an increase of subgroup 7 (wind).

We repeat the exercise for PSNO Figure 4. In this way,
we correct for a variability bias due to the greater number
of patents being registered in recent years. Similar to
the case of natural periods, a greater number of periods

would result in shorter periods, which would demand a
comparison conceding a greater distance.

If we consider 40 PSNO and a consecutive comparison
(Figure 4(a)), we find two notable peaks: one between June
1982 andMarch 1988,¹⁴ and the second betweenMarch 2000
and April 2003.¹⁵ For the same 40 PSNO and a comparison of
distance 3 (Figure 4(b)), we obtain the same two peaks: one
between June 1979 and March 1988,¹⁶ and the second,
between January 1995 and April 2003.¹⁷ For 30 PSNO with
a consecutive comparison (Figure 4(c)), we obtain two main

Figure 2: TVD for natural periods: (a) 1-year periods with five-period distance, (b) 2-year periods with two-period distance, (c) 3-year periods
consecutive, and (d) 5-year periods consecutive.



14 The first distribution has patents filed between June 30, 1982,
and December 13, 1984; the second has patents filed between
December 14, 1984, and March 28, 1988.
15 The first distribution has patents filed between March 13, 2000,
and November 28, 2001; the second has patents filed between
November 28, 2001, and April 21, 2003.
16 The first distribution has patents filed between June 11, 1979, and
October 28, 1980; the second has patents filed between December 14,
1984, and March 28, 1988.
17 The first distribution has patents filed between January 31, 1995
and October 23, 1997; the second has patents filed between
November 28, 2001 and April 21, 2003.
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peaks betweenOctober 1980 andDecember 1986,¹⁸ and between
June 1999 and October 2003.¹⁹ For 25 PSNO (Figure 4(d)),
the identification is less precise: one between October 1980
and December 1991²⁰ and the second between October
1997 and August 2004.²¹

For robustness, we performed a multinomial chi-
square test of independence between each pair of distri-
butions to test whether these two come from the same
distribution.²² If we assume that the realization of patents
in a particular year is a “sample,” in the absence of tech-
nological change, the relative distribution of patents
among the categories must be the same between the
two periods.

Thus, by performing the independence test between
two samples, we are testing whether these two belong to
the same population, and when we reject this null hypoth-
esis, there has been technological change. However, as

we explained earlier, we are interested in finding those
moments with a drastic technological change; thus, if
the test statistic is much larger than the critical value,
then it would signal a TT.

Since the chi-square test of independence is affected
by the size of each sample, we only performed it on the
distributions grouped in natural years. Also, we did not
have extreme values for the frequency distributions of
most of the natural (and synthetic) periods analyzed;
thus, this multinomial test performed satisfactorily, and
we found no need to introduce additional tests (see Cai &
Krishnamoorthy, 2006).

In Figure 5, we offer a comparable graph for Figure 2
of the chi-square statistics for every paired of distribu-
tions. Also, we show two levels of significance =α 0.01
(solid blue line) and an unusual =α 0.001 (dotted blue
line), due to the fact that even at those demanding sig-
nificance levels, we rejected the hypothesis that the
compared distributions belong to populations with the
same frequency distribution. That is, for most compari-
sons, there is technological change but not necessarily a
TT, which is consistent with our findings with the TVD
approach.

The TTs identified correspond very consistently to
local maxima of the statistic. In the first graph, the first
TT, at the pair 1981–1986, coincides with a local max-
imum of the statistic with a value of 77.2952 that corre-
sponds to a p-value of ×

−1.29 10 14; the second, at the pair
“1997–2002,” gives a local maximum of the statistic with
a value of 55.4242 that corresponds to a p-value of

×

−3.8055 10 10. The correspondence is maintained for
the different considerations of periods and distances. It
must be noticed that since the statistic is sensitive to the
size of the sample, it shows a third local maximum for the

Figure 3: Distributions during TT for 5-year natural periods: (a) distributions during 1978–1982 (red) and 1983–1987 (yellow) and common
(orange) and (b) distributions during 1998–2002 (red) and 2003–2007 (yellow) and common (orange).



18 The first distribution has patents filed between October 31, 1980
and May 5, 1983; the second has patents filed between May 6, 1983
and December 17, 1986.
19 The first distribution has patents filed between June 10, 1999 and
November 30, 2001; the second has patents filed between December
3, 2001 and October 1, 2003.
20 The first distribution has patents filed between October 29, 1980
and December 18, 1984; the second has patents filed between
December 19, 1984 and December 13, 1991.
21 The first distribution has patents filed between October 30, 1997
and November 30, 2001; the second has patents filed between
November 30, 2001 and August 13, 2004.

22 The chi-square statistic is
⎜ ⎟
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where Ri and Si are the observed frequencies of samples 1 and 2,

respectively.
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pair 2008–2013. However, we did not find a clear signal
of a TT with the analysis of the TVD under different
configurations.²³

In this section, we show that the TVD approach has
consistently identified two TTs, despite considering a
wide range of period sizes and comparison distances.
Note that since we have not considered any external
information, the measure is ideal for an initial explora-
tory analysis and only uses the relative frequency of each
category within REG field.

4.4 Interpretation

Our methodology systematically indicates two moments
of notable change in the distribution of patents for REG.
Although TTs could have occurred naturally, we aim to
acknowledge some policies linked to the two moments
identified through the TVD calculation, which qualitatively

reinforce the correct identification of the TTs. The first peak
in the early 1980s could result from the research that would
have started in the late 1970s. Between the late 1990s and
the beginning of the 2000s, the second peak could relate to
the Kyoto Treaty. However, we do not pretend to establish
any causality between the policies mentioned and the TTs.

The oil embargo of 1973 triggered interest in alterna-
tive energies, which motivated a wide range of energy
conversion techniques from renewable sources. Among
these, PV panels started to be considered a viable option
for commercial use (Sørensen, 1991). The oil crisis in the
1970s triggered public funding for R&D programs aimed
to advance PV generation, mainly from Japan and the
USA, and it is calculated that around 60% of the cost
reduction in this technology was due to public and pri-
vate R&D (International Energy Agency, 2020). President
Nixon’s Project Independence in 1973, President Ford’s
Energy Policy and Conservation Act in 1975, and the
Public Utility Regulatory Policies Act in 1978 also pro-
moted renewables and have been related to technological
changes that led to cost reductions in wind and solar PV
(Clayton, 2004; Smith, 2004; Solomon & Krishna, 2011).

In 1997, the Kyoto Protocol was adopted by almost
200 countries, committing the signers to reduce their

Figure 4: TVD for PSNO: (a) 40 PSNO consecutive, (b) 40 PSNO with three-period distance, (c) 30 PSNO consecutive, and (d) 25 PSNO
consecutive.



23 The chi-square statistic grows with the sample size. The third
maximumwith the chi-square approachmatches the period with the
maximum number of patents (Figure 1).
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carbon emissions by 2012. Evidence suggests that the
protocol triggered a rapid increase in patenting activity
in CCMTs. A positive effect has been found on applica-
tions for renewable technology patents in countries with
emission targets (Miyamoto & Takeuchi, 2019). This increase
has significantly affected solar and wind technology patents
in European countries (Johnstone et al., 2010). Even though
the USA signed the protocol on November 12, 1998, the treaty
was never ratified by the US Senate, as needed.

However, the protocol could have awakened eco-
nomic incentives in other countries that had signed and
ratified the protocol, which led to increased interest in
patenting in the US. Also, US polls on political concerns
and political initiatives, such as President Clinton’s tax
on BTUs proposal, or the Climate Change Action Plan,
indicated potential changes in energy regulation in favor
of renewable sources. Chalvatzis et al. (2020) argue that
the Kyoto Protocol redirected innovation efforts towards
REG, promoting the interest of the corresponding R&D to
meet the growing demand in that sector. The prevailing
dominant positions in the patenting of PV and wind
could reflect the extensive use of these technologies in
the marketplace (UNEP et al., 2010).

5 Final Comments

As we have seen, TVD is commonly used in measure
theory, computation, and the natural sciences. However,
this article provides evidence that TVD is a useful explora-
tory tool for measuring and detecting TTs based solely on
patent data. We use the information of a particular tech-
nology’s entire probability density distribution instead of
focusing on specific subgroup trends. Since the metho-
dology does not depend on any additional information
apart from patent documents, it is ideal for analyzing a
given technology’s evolution.

This article provides two main insights. On the one
hand, we first apply a distribution distance to the cate-
gories of a technological field to measure technological
change. On the other hand, since we focus on temporal
changes, we propose amethodology to identify tipping points
in different systems, not only for technology. Furthermore,
we contrast the results of the TVD to a multinomial chi-
square test of independence, and the results are mostly in
line, except for a third maximum that the chi-square iden-
tified, which was driven by the growth of the sample size
and not due to a big change in composition within the REG

Figure 5: Multinominal chi test: (a) 1-year periods with five-period distance, (b) 2-year periods with two-period distance, (c) 3-year periods
consecutive, and (d) 5-year periods consecutive.
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technology, which is precisely what the TVD approach
measures.

Our proposed methodology might be applied to identify
a regime change, for instance, an ecosystem regime change.
However, the optimal application requires keeping the same
categories within the whole evaluation period, or reorga-
nizing the data for new categorizations, as in the REG case.
We use an exogenous classification for the technology; how-
ever, the same methodology applies once a researcher has
developed non-ordered categorical variables containing each
patent.

One limitation of using TVD on distributions over tech-
nological categories is that we are not considering the
technological distance between those categories. We are
assuming, for example, the same technological distance
between solar thermal and solar PV as between solar
thermal and wind energy generation. Nevertheless, the
relative distribution of multiple assigned patents seems to
indicate that this is not the case. Including such a dimen-
sion, even if it is not done using distances over distribu-
tions, may offer a more sensitive indicator to signal TTs.

We acknowledge that a TT is a complex phenomenon
and that the distribution of categories within a particular
technological field may not completely describe it. For
instance, Antal et al. (2017) suggest that energy transitions
involve highly complex processes involving different actors
(government, private firms, and research institutions) and
regime shifts that depend on energy resources and infra-
structure to utilize and benefit from them. However, since
this methodology has low information requirements, it is
helpful for exploratory and visual analysis.

Finally, since we focus only on the relative frequency
of patents, and each patent may have a different value,
an extension of this article could be to calculate a mea-
sure that assigns different weights to each patent so that
the pdf approximates a value distribution across the cor-
responding subgroups.
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Appendix

Y02E 10 Classification Scheme

Y02E 10/10 ⋅ Geothermal energy
Y02E 10/12 ⋅⋅ Earth coil heat exchangers
Y02E 10/125 ⋅⋅⋅ Compact tube assemblies, e.g., geothermal probes
Y02E 10/14 ⋅⋅ Systems injecting medium directly into ground, e.g., hot dry rock system, underground water
Y02E 10/16 ⋅⋅ Systems injecting medium into a closed well
Y02E 10/18 ⋅⋅ Systems exchanging heat with fluids in pipes, e.g., fresh water or waste water
Y02E 10/20 ⋅ Hydro energy
Y02E 10/22 ⋅⋅ Conventional, e.g., with dams, turbines, and waterwheels
Y02E 10/223 ⋅⋅⋅ Turbines or waterwheels, e.g., details of the rotor
Y02E 10/226 ⋅⋅⋅ Other parts or details
Y02E 10/28 ⋅⋅ Tidal stream or damless hydropower, e.g., sea flood and ebb, river, stream
Y02E 10/30 ⋅ Energy from sea
Y02E 10/32 ⋅⋅ Oscillating water column
Y02E 10/34 ⋅⋅ Ocean thermal energy conversion
Y02E 10/36 ⋅⋅ Salinity gradient
Y02E 10/38 ⋅⋅ Wave energy or tidal swell, e.g., Pelamis-type
Y02E 10/40 ⋅ Solar thermal energy
Y02E 10/41 ⋅⋅ Tower concentrators
Y02E 10/42 ⋅⋅ Dish collectors
Y02E 10/43 ⋅⋅ Fresnel lenses
Y02E 10/44 ⋅⋅ Heat exchange systems
Y02E 10/45 ⋅⋅ Trough concentrators
Y02E 10/46 ⋅⋅ Conversion of thermal power into mechanical power, e.g., Rankine, Stirling solar thermal

engines
Y02E 10/465 ⋅⋅⋅ Thermal updraft
Y02E 10/47 ⋅⋅ Mountings or tracking
Y02E 10/50 ⋅ Photovoltaic [PV] energy
Y02E 10/52 ⋅⋅ PV systems with concentrators
Y02E 10/54 ⋅⋅ Material technologies
Y02E 10/541 ⋅⋅⋅ CuInSe2 material PV cells
Y02E 10/542 ⋅⋅⋅ Dye-sensitized solar cells
Y02E 10/543 ⋅⋅⋅ Solar cells from Group II–VI materials
Y02E 10/544 ⋅⋅⋅ Solar cells from Group III–V materials
Y02E 10/545 ⋅⋅⋅ Microcrystalline silicon PV cells
Y02E 10/546 ⋅⋅⋅ Polycrystalline silicon PV cells
Y02E 10/547 ⋅⋅⋅ Monocrystalline silicon PV cells
Y02E 10/548 ⋅⋅⋅ Amorphous silicon PV cells
Y02E 10/549 ⋅⋅⋅ Organic PV cells
Y02E 10/56 ⋅⋅ Power conversion electric or electronic aspects
Y02E 10/563 ⋅⋅⋅ For grid-connected applications
Y02E 10/566 ⋅⋅⋅ Concerning power management inside the plant , e.g., battery charging/discharging, eco-

nomical operation, hybridization with other energy sources
Y02E 10/58 ⋅⋅⋅ Maximum power point tracking systems
Y02E 10/60 ⋅ Thermal-PV hybrids
Y02E 10/70 ⋅ Wind energy
Y02E 10/72 ⋅⋅ Wind turbines with rotation axis in wind direction
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Y02E 10/721 ⋅⋅⋅ Blades or rotors
Y02E 10/722 ⋅⋅⋅ Components or gearbox
Y02E 10/723 ⋅⋅⋅ Control of turbines
Y02E 10/725 ⋅⋅⋅ Generator or configuration
Y02E 10/726 ⋅⋅⋅ Nacelles
Y02E 10/727 ⋅⋅⋅ Offshore towers
Y02E 10/728 ⋅⋅⋅ Onshore towers
Y02E 10/74 ⋅⋅ Wind turbines with rotation axis perpendicular to the wind direction
Y02E 10/76 ⋅⋅ Power conversion electric or electronic aspects
Y02E 10/763 ⋅⋅⋅ For grid-connected applications
Y02E 10/766 ⋅⋅⋅ Concerning power management inside the plant, e.g., battery charging/discharging, eco-

nomical operation, hybridization with other energy sources
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