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Abstract

This paper proposes a methodology to detect Technological Tran-

sitions (TTs) by systematically using the Total Variation Distance

(TVD) metric. We use a database of Renewable Energy Generation

(REG) patents to exemplify the usefulness of TVD to uncover mo-

ments where a ‘big change’ in REG technology happened. To do this,

we compare the observed frequency distribution of technology codes

of REG patents filed between 1973 and 2015 in the US, spread across

seven categories (e.g., wind and tidal). We identify two crucial TTs,

one at the beginning of the 1980s and another in the late 1990s and

early 2000s. In this manner, we reconcile qualitative evidence that reg-

isters major REG changes with a quantitative measure that reflects

them. Policy evaluations or causality analyses often rely on identify-

ing TTs accurately; therefore, this approach is not constrained to the

REG technology or TTs but helps reveal such transition moments in

a database whose characteristics are suitable for the use of TVD.

Keywords: Technological transitions, renewable energy generation, total

variation distance, patent classification.
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1 Introduction

Technological change is one of the leading forces to explain economic growth

and development. Technological changes happen continuously, and some

moments during a time span are especially relevant since those changes are

abrupt. As Perez-Molina and Loizides (2021) state, different parties, such

as researchers or private firms, continuously look for tools to understand a

specific technology’s evolution and pinpoint moments of particular interest

within it. In this context, we are interested in identifying technological tran-

sitions (TTs), which we refer to as those moments when the technology in a

particular field exhibits a notable change.

TTs are complex phenomena with effects on innovative processes, or-

ganization of production factors, products, and new ideas. Not all these

innovations can be legally protected, or owners may decide not to do so even

if they can. Despite this limitation, patents serve as a proxy for successful

innovation processes and allow us to use analytical approaches to study the

complex dynamics behind them (Alkemade et al. 2015). Patent documents

have been widely used in the academic literature since they provide valuable

information about the state of a given technology at a given time. Specif-

ically, patent classification has been a primordial instrument for creating a

useful taxonomy that can be used by those interested in protecting and ana-

lyzing intellectual property (e.g. Ruijie et al. 2021, Meguro and Osabe 2019).

Therefore, patents’ technology codes can be used to identify technological

novelty (Lobo et al. 2012).

This paper proposes a methodology to systematically identify TTs in a

particular technological field using the distance between probability distribu-

tions among the technology codes in that field. We characterize a technolog-

ical state as the probabilistic empirical density distribution over the techno-

logical patent categories, using the Cooperative Patent Classification (CPC),

at a given time. Consequently, we approach technological change by measur-

ing the distance between these distributions. As discussed in Frenken et al.
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(2014), we conceive a TT as a tipping point in which the dominant techno-

logical state changes to an alternative one within a given system. Therefore,

we claim that a disruptive change in the distribution of categories can be

used as a signal of a TT.

To the best of our knowledge, the methodology of intertemporally measur-

ing the distance between distributions within a given technology has not been

used to identify historical moments where a notable technological change

may have occurred. We measure it with the Total Variation Distance (TVD)

metric based on its properties and explain why we use local maximums to

identify TTs (Section 3). It is worth mentioning that there is literature

on measure theory and its applications, mainly in computing and biology,

and separately there is literature on technological transitions; however, it is

almost non-existent the one that combines both.

Furthermore, our proposed methodology is easily executable and straight-

forwardly interpretable since it only uses the relative frequency of each cate-

gory at a given time as input; thus, it is particularly valuable for exploratory

analysis, providing a visualization tool to identify TTs. We apply this

methodology to the REG patents case, which shows suitable data charac-

teristics (Section 2), and we identify two TTs consistent with the REG his-

torical evidence. Hence, the interest of the present paper is not to explain the

drivers behind a TT or mathematically model them but to offer an alternative

methodology to a systematic exploratory analysis of TTs identification.

The present paper is organized as follows. Section 2 compares the method-

ology to the existing literature and identification of TTs. Section 3 introduces

the TVD and its properties and explains its calculus. In Section 4, we present

the REG case and data set, for which we calculate the TVD under different

specifications and discuss the interpretation of the identified two moments of

TT. We conclude with Section 5.
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2 Related literature

One way to study the evolution of a particular field of knowledge is through

research topics (categories), which can be classified endogenously or exoge-

nously. A classification is endogenous when its categories are not ex-ante de-

fined but are the result of applying a methodology to come up with them, such

as keywords, memes, bibliographic coupling, or co-citation (e.g. Behrouzi

et al. 2020, Kuhn et al. 2014, Chang et al. 2015). Although an endogenous

classification may be advantageous, particularly in the absence of a mean-

ingful alternative, it might not be as effective as the classification carried out

by experts.

A patent is classified in all relevant technology codes where the novelty

fits, and these codes constitute a classification scheme (Lobo and Strum-

sky 2019). Thus, a critical task of patent offices worldwide is to create a

taxonomy of technology codes able to organize and classify the technical

information of patents (Lobo and Strumsky 2019) and, when required, to

introduce new codes to capture the novelty embraced in patents. When the

latter happens, offices retroactively reclassify all previous patents that may

be affected (Lobo et al. 2012). Once the challenge of establishing a classifica-

tion has been overcome (Makarov 2004), this can be used to uncover trends

or statistically identify important events that shifted the innovative efforts

using this information.

Each category within a classification entails a collection of patents that

should be similar to each other, not necessarily identical, but still suffi-

ciently different from patents belonging to other categories. Perez-Molina

and Loizides (2021) explain that for an individual patent, all its classifica-

tion codes are proxies of its technological components; thus, the evolution of

these codes conveys information about enhanced interest in a technical area

or loss of it in a particular moment.

Schilling and Green (2011) show that vector-based distances on the tax-

onomy of patents concerning a patent classification system are an appropriate
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approach to measure patents similarity. However, this comparison has been

limited to the individual level by classification or patent. Likewise, given

a technological field determined by patent classes, its subsets’ relative com-

position should indicate its current state since all relevant classes within a

specific technology should be accounted for and should evolve when needed

due to technological changes (Perez-Molina and Loizides 2021).

TTs have been identified by focusing on the increase of a particular sub-

group of patents with respect to the total. Angelucci et al. (2012) use this

approach to identify the effect of the Kyoto Agreement on the participation

of two Climate Change and Mitigation Technologies (CCMTS) patent sub-

classes; however, their methodology requires an ex-ante identification of the

patent subgroups that experiences the frequency increase. It is worth noting

that we arrived at the same conclusion concerning identifying this particular

TT, although we do not identify trends within specific patent subgroups but

rather as a technology state. Unlike the approach used by Angelucci et al.

(2012), if the frequency of the aggregated patent subgroups remained con-

stant, but its composition changed, our methodology would be able to signal

a potential TT.

Aminikhanghahi et al. (2018) show that distances between distributions

can be used to detect tipping points, which they applied to high dimensional

time series using the Separation distance. However, not only is the Separation

distance non-symmetric, which limits the pairwise comparability, but it is

also not sensitive to changes along the distribution. Therefore, if one wants

to include the variations in all the categories of a distribution as a measure

of a technological change in a given field, it is preferable to use metrics such

as the Total Variation Distance or the Hellinger distance.

Other dynamic characteristics of technological change have been studied

using entropy measures. For instance, Lin et al. (2021) use it to study tech-

nology life cycle (TLC) stages using an entropy measure on applicants for

patents. Different patent indicators have been related to different phases that
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constitute the S-curve of a TLC (Gao et al. 2013). These methodologies can

be grouped within the technology intelligence literature and focus on single

technologies and the analysis of competitors instead of identifying TTs in

a broader technological field (see Guderian 2019). Nevertheless, identifying

TTs can complement the analysis offered by technology intelligence, which

helps to point out emerging firms and countries within specific technologies.

Benner and Waldfogel (2008) demonstrate that patent-related measures

are negatively affected by small sample sizes, and it is convenient to use large

sample sizes and coarse patent classes. To avoid potential issues of deficient

patent classification, we use the Y-section of the CPC, and on the sample

size, we address it through the use of the complete database available in the

USPTO of the relevant patents (Section 4.2).

In mathematics, a distance is a quantitative measure of how far apart

two objects are, and measuring the distance between histograms has proven

paramount in various areas to perform pattern recognition (Cha and Srihari

2002, Kurtz et al. 2013, Strelkov 2008). Histograms are structures to model

data and study its statistical properties. There exist different types of his-

tograms (nominal or ordinal) depending on the data nature; an ordinal one

contains totally ordered values while a nominal one contains categorical val-

ues (Kurtz et al. 2013). If we consider a nominal histogram, which is our case,

it represents the distribution of quantified labeled values (categories) where

each bin contains the proportion of a category out of all categories, and the

ordering is not important (shuffling invariance property)1 (Sung-Hyuk 2007,

Kurtz et al. 2013). Therefore, identifying the proper nature of the data is

fundamental to applying statistical analysis.

The statistical comparison of two histograms provides a complementary

tool over a merely visual comparison. As Strelkov (2008) points out, humans

compare multiple histograms relatively slowly, and a comparison algorithm

1Nominal data distribution is invariant to “shuffling” the categories labels, and this
property is not obvious for continuous variables(Duda et al. 2007).
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is preferable; however, for such an algorithm to be reliable, it needs to reach

conclusions close to those reached by experts using distinct methods. There

are two types of histogram distance measures (vector and probabilistic). Cha

and Srihari (2002) explain that, in the probabilistic distance approach, a his-

togram provides the empirical estimate of the probability density function

(pdf) and compares corresponding and non-corresponding bins2. Thus, at

a given year, the histogram that portrays the relative frequency of patents

distributed in the different REG categories intrinsically provides informa-

tion on the innovative interests at that time. Consequently, measuring the

probabilistic distance between two nominal histograms of two points in time

provides valuable information on how close or apart the inventive efforts were.

TVD is a probabilistic measure to quantify the difference between two

pdf; it measures their similarity. The use of TVD has been widely used

in several disciplines, but to the best of our knowledge, not in the patent

literature or intertemporally as we propose. Examples of TVD usefulness

are found in genomics (Garcia and Pinho 2011), criminology (Carte et al.

2020), epidemic models (Ball and Donnelly 1995) biology of sleep (Barger

et al. 2019) and, more generally, time series with similar oscillations (Euán

et al. 2018).

3 Methodology

3.1 Total Variation Distance

We explain below the TVD, its properties, and why it is preferable in our

case compared to other probabilistic distances. If the sample space is discrete

and categorical, as in our REG case, the TVD measures the difference of

histograms by categories (Section 4).

2Cha and Srihari (2002) explain that a vector measure treats a histogram as a fixed-
dimensional vector where standard vector norms measure the distance between two vectors,
e.g., Euclidian distance.
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TVD is a probabilistic measure to quantify the difference between two

pdf; it measures their similarity. The use of TVD has been widely used

in several disciplines, but to the best of our knowledge, not in the patent

literature or intertemporally as we propose. Examples of TVD usefulness

are found in genomics (Garcia and Pinho 2011), criminology (Carte et al.

2020), epidemic models (Ball and Donnelly 1995) biology of sleep (Barger

et al. 2019) and, more generally, time series with similar oscillations (Euán

et al. 2018).

Assume a nonempty set Ω ⊂ R, which is the sample space, and let P(Ω)

be the set of probability distribution on Ω. Suppose that µ and η are in P(Ω),

the total variation distance d(µ,η) between µ and η is given by the function

d(µ,η) := sup

{����∫
Ω

f (s)µ(ds) −
∫
Ω

f (s)η(ds)
���� : ‖ f ‖ ≤ 1

}
(1)

where the supremum is taken over the set of real-valued bounded measurable

functions on Ω, with the norm

‖ f ‖ := sup
s∈Ω
| f (s)|. (2)

In probability theory, there are different ways to estimate the distance

between two probability distributions. A few of these are TVD, Hellinger

distance, Kullback-Leibler divergence, Wasserstein distance, Prokhorov dis-

tance, among others (see Massart 2007, for further discussion). The first

two metrize strong topology, and the last two metrize weak convergence;

Kullback-Leibler divergence is not a distance, but its proximity implies strong

and weak convergence. Also, Lin et al. (2021) use the Kullback-Leibler di-

vergence to identify technology life cycles.

We select TVD because:

• It is not sentient to the distance |ω − ω′| between two any events

ω,ω′ ∈ Ω. The distances that metrize weak topology, as Wasserstein
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and Prokhorov, are sentient to the distance |ω − ω′| between two any

events ω,ω′ ∈ Ω. Therefore, the TVD is not susceptible to changes in

the order of categories and is suitable for unordered categories.

• It has properties similar to a norm in vector spaces (see Appendix A);

in particular, it is homogeneous. Thus, for probabilities µ,η and the

linear combination ν = αµ + (1 − α)η (where α ∈ [0,1]), we have that

d(µ, ν) = (1 − α)d(µ,η) and d(η, ν) = αd(η, µ), which means that if

we consider an average of two distributions, the distance between the

resulting probability and one of the original ones is proportional to the

original distance. Weak topology metrics do not satisfy this property.

• Its calculation is more straightforward compared to other strong topol-

ogy metrics, such as the Hellinger distance, and its interpretation is

more intuitive.

• Since it is a distance, it allows us to measure the difference between

several probability distributions, in contrast to the Kullback-Leibler

divergence.3

• It can be calculated for probability distributions at which the proba-

bility of an event is 0, in contrast with the Jensen-Shannon divergence.

• It is sensitive to changes in the distribution concerning all the cate-

gories, as opposed to the Separation distance.

Due to the reasons above, we find TVD a suitable measure for qualita-

tive categories where the order is not relevant, as is the case with patent

3The Kullback-Leibler divergence measures how a probability distribution is different
from a second reference probability distribution. In this sense, if we fix one probability
distribution, we can measure how the fixed distribution differs from others, which is not the
purpose of this paper. We want to measure the difference between various distributions and
be able to compare these without necessarily fixing one, so the Kullback-Leibler divergence
is inappropriate for our purposes.
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technology codes, and it allows for pairwise comparison between different

distributions without keeping the same base.

3.2 TTs identification methodology

In the case where Ω is a finite set, (1) has a simpler expression (see Appendix

A). Let Ω = {ω1, ...,ωk} be the set of patent subgroups and µt(ωi) be relative

frequency of the subgroup ωi ∈ Ω at period t, where
∑k

i=1 µt(ωi) = 1. Then,

the relative frequencies distribution on patent subgroups, µt := {µt(ωi)}
k
i=1,

is a technological state at period t. The TVD between the two discrete

distributions of periods s and t, d(µs, µt), is given by

d(µs, µt) =

k∑
i=1

|µs(ωi) − µt(ωi)|. (3)

If (3) is strictly positive, then we have a technological state (or technological

change) change between periods s and t.

While a distance only allows for pairwise comparison for a particular order

of periods (r, s, t), if we have that

d(µr, µs) > d(µs, µt) > 0, (4)

that indicates a greater technological change between r and s as compared to

s and t. If this technological change is significant concerning other periods,

we identify it as a potential TT.

Notice that TVD is invariant to the number of observations at each period

since it depends on the relative distribution. However, we must acknowledge

that the variability between the realization of patents and the actual technol-

ogy distribution may occur with the number of observations and be affected

by small samples. To avoid misguided interpretations, particularly related to

a decrease of the TVD related to an increase in the number of observations,

we consider two types of periods:
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(a) Natural Periods, in which each observation is partitioned into periods

according to the patent registration date.

(b) Periods with the Same Number of Observations (PSNO), in which the

patent filing date, alone, orders the data. We partition the data into

subsets with the same number of observations. Each subset is called a

‘period’.

Thus, we use the TVD metric to distinguish a moment where abrupt

changes arise in a given distribution of categories. Since TVD is used for

probabilistic distributions, we apply it to the relative distribution of patents

among REG seven subgroups used as categories in the TVD implementation

(Section 4). TVD is not sensitive to category reordering, which is convenient

in our setting because REG subgroups could be reordered.

TVD may vary to a certain degree in the absence of a TT; such variation

depends on the nature of the technological field and moment, as well as the

total number of observations in each period. Therefore, in absolute terms,

we cannot claim any particular TVD level to be indicative of a TT. Instead,

we focus on local maximums specific to the technological field under study

and show a greater distance for both directions in time.

The application of the TVD as an identification strategy of TTs requires

an adequate identification of the technological field to contain emergent tech-

nological innovations. A narrow field selection could exclude the potential

emergent technological innovations. In our example, the sources from which

REG takes their primary sources (e.g., wind, water, or sun) have not changed

in at least the last century, and we can reasonably argue that those categories

are fixed in our period of analysis. Suppose a new category appears at a par-

ticular moment in time. In that circumstance, we can either reorganize the

previous observations according to the new categorization, assume that none

of the previous (posterior) observations belong to the newly created (elimi-

nated) category, or introduce an interpolation.
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4 The REG case

4.1 The Cooperative Patent Classification

Much has been discussed on how patent offices prepare to tackle a sudden

increase in patents due to the rapid development of emerging technologies.

For instance, evidence suggests that public and private investment in R&D

in nanotechnology led to a significant rise in related patent applications (Ab-

salom et al. 2006, Angelucci et al. 2012). Absalom et al. (2006) mention that

the European Patent Office (EPO) developed a new taxonomy in the early

stages of nanotechnology R&D to ensure technical expertise within examin-

ers and legal certainty to innovators. In this way, patents contain information

about the birth and development of technologies.

One difficulty of reliably identifying whether a TT has occurred is to en-

sure consistent patent classifications throughout the period of study (Lacasa

et al. 2003). On October 25, 2010, the EPO and the United States Patent

and Trademark Office (USPTO) announced the CPC as a joint effort aimed

at establishing a harmonized classification system for patent documents; the

CPC is based on the International Patent Classification (IPC) system, man-

aged by the World Intellectual Property Organization (WIPO)4.

The CPC is divided into nine sections (A-H and Y ), where each sec-

tion is divided into classes, sub-classes, groups, and subgroups and contains

approximately 250,000 classification entries 5. In our illustrative case, we

use patents with at least one Current CPC Class within the subgroups of

the Y02E 10 group “Energy generation through renewable energy sources”6

(Section 4).

4https://www.uspto.gov/about-us/news-updates/uspto-and-epo-work-toward-joint-p
atent-classification-system

5https://www.epo.org/searching-for-patents/helpful-resources/first-time-
here/classification/cpc.html

6It is worth noting that the CPC results from meticulous tagging work of various patent
offices, ensuring that the Y02E 10 subgroup contains only REG-related patents.
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One important peculiarity of the Y-section is that the allocation of new

patent applications to the relevant technology code(s) is done automatically

by search strategies without affecting existing classifications outside it; thus,

the classifiers intervention is constrained to developing and updating those

strategies (EPO and USPTO 2015). Furthermore, there has been a dedi-

cated effort to reclassify all applicable patents retroactively. The Y-section

results from meticulous and continuous tagging work of various patent offices,

ensuring that the Y02E 10 subgroups contain only REG-related patents.

In this manner, we take advantage of the categorical property of the

subgroups within the Y02E 10 group “Energy generation through renewable

energy sources” of the Current CPC Class, which contains only REG-related

patents. Thus, each of the seven subgroups of the Y02E 10 group, also called

categories, belong to a different renewable energy source (e.g., wind or from

the sea). We use categories that are known beforehand, where patents are

sorted into seven separate categories. All patents classified under the ”Wind”

category are useful to generate energy through the wind but are sufficiently

different from those ”From the sea”7.

Climate change mitigation technologies (CCMTs) involve several areas of

knowledge. Thus, technologies using the existing alternative patent classi-

fications can lead to an incomplete retrieval of documents as stated by the

EPO “Y02 is a tagging scheme that enables documents relating to sustain-

able technologies to be retrieved quickly and accurately across classification

categories”8.

4.2 The data set

We illustrate the implementation of TDV using public patent data provided

by the USPTO. In particular, we consider patents with at least one Cur-

7In our database, 93.58% of the patents belong to only one category, 5.72% to two
categories, and the rest to three, four or five categories (0.7%).

8https://e-courses.epo.org/wbts/y02
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rent CPC Class within the Y02E 10 group of “Energy generation through

renewable energy sources.” The Y02 class aims to identify CCMTs as stated

in the Kyoto Agreement (Angelucci et al. 2012), which contains the Y02E

subclass “Reduction of Greenhouse Gas (GHG) emissions, related to energy

generation, transmission or distribution.”

We searched all patents within each subgroup of Y02E 10 (one, two,

and three dots). For instance, in Geothermal energy, to one dot, we re-

fer to a CPC subgroup of the form Y02E 10/10 “Geothermal energy,” to

two dots, for Y02E 10/12 “Earth coil heat exchangers,” and three dots for

Y02E 10/125 “Compact tube assemblies, e.g., geothermal probes.” The com-

plete catalogue of CPC subgroups within the Y02E 10 group is found in the

USPTO website.9

Our database consists of 39,236 patents filed from 1973 to 2015. Although

there is updated information on patent applications, we decided to exclude

patents filed from 2016 onward from the analysis to avoid false TTs due to

unobserved recent patent applications. Because according to Article 1122 of

the Manual of Patent Examining Procedure, the USPTO allows for the possi-

bility of requesting an application to be non-publishable until its acceptance,

we may have not been able to observe a fair share of recent applications

publicly. Considering patents granted until January 2020,10 the mean lag

between the issuance and filing date is 2.9 years with a standard deviation of

1.5 years. Then, we decided to exclude the patents corresponding to a period

close to the mean lag plus a standard deviation11. Notice that the mean lag

in our database is close to the 2.4 years obtained by Popp et al. (2004).

A patent could have more than one Current CPC Class, but we analyze

only those patents recorded with at least one of the REG categories (Table

9https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y02E.html#Y02
E

10January 31, 2020, is the last date we downloaded information from the USPTO web-
site.

11Since we do not find any signal of a TT around the last years, increasing or decreasing
one year of data does not affect the results.
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1). When all subgroups within REG belong to only one subgroup, we assign

the patent to that category. However, when the subgroups belong to two

categories, the patent appears in two categories; the same principle applies

to patents with three or more subgroups.

In Table 1, we show the seven REG categories within the Y02E 10 group

and the complete list of Current CPC Classes within each one.

1 2 3 4 5 6 7

Geothermal Hydro From the sea Solar thermal PV Thermal-PV Wind

Y02E 10/10 Y02E 10/20 Y02E 10/30 Y02E 10/40 Y02E 10/50 Y02E 10/60 Y02E 10/70

Y02E 10/12 Y02E 10/22 Y02E 10/32 Y02E 10/41 Y02E 10/52 Y02E 10/72

Y02E 10/125 Y02E 10/223 Y02E 10/34 Y02E 10/42 Y02E 10/54 Y02E 10/721

Y02E 10/14 Y02E 10/226 Y02E 10/36 Y02E 10/43 Y02E 10/541 Y02E 10/722

Y02E 10/16 Y02E 10/38 Y02E 10/44 Y02E 10/542 Y02E 10/723

Y02E 10/18 Y02E 10/45 Y02E 10/543 Y02E 10/725

Y02E 10/46 Y02E 10/544 Y02E 10/726

Y02E 10/465 Y02E 10/545 Y02E 10/727

Y02E 10/47 Y02E 10/546 Y02E 10/728

Y02E 10/547 Y02E 10/74

Y02E 10/548 Y02E 10/76

Y02E 10/549 Y02E 10/763

Y02E 10/56 Y02E 10/766

Y02E 10/563

Y02E 10/566

Y02E 10/58

N 770 2,253 1,671 8,033 20,055 246 9,009

Table 1: Current CPC Classes considered in each REG category

Figure 1 shows the number of patents by REG category depending on

the year they were filed. We observe that the mix of REG sources (sub-

groups) has changed since the 1970s. During the 1970s, the predominant

source was solar thermal, followed by PV. In the early 1980s, PV patents

surpassed solar thermal ones, and these two sources remained relevant for

the next two decades. At the beginning of the 2000s, the wind source dra-

matically increased, exceeding solar thermal but remained below that of PV,

which continues its rising trend. Since 2011, a general decline in patenting

is observed. This phenomenon may be related to the maturity of some REG
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technologies, such as the PV and wind (International Energy Agency 2020).

Figure 1: Number of patents filed by REG category

4.3 TTs identification

To use TVD, we need the number of periods within the whole sample and

the distance between them. Thus, we define the periods using two criteria,

natural periods and PSNO, which we describe below.

We first divide our data by natural years, each constituting a “natural

period;” then, we select the distance of comparison between natural peri-

ods. The distributions may look very similar when periods are too short and

distances too close. Therefore, shorter periods may need further distance cal-

culations. We test a variety of combinations of years and periods of distance.

Interestingly, we obtain high consistency in defining two TTs moments in the

REG case: one in the 1980s and another between the end of the 1990s and
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the beginning of the 2000s.

In Figures 2, we show different year-windows and distance between them.

If we take one-year periods and calculate the distances between 5 periods,

we identify two peaks (Figure 2a). The first peak compares the distribution

in 1981 with the one in 1986. The second one signals a peak in the distance

between the distribution in 1997 and 2002 and compares them. The graph

with two-year periods and comparisons of a distance of 2 (Figure 2b) exhibits

more clearly the two peaks: the first one compares the distribution of 1981-82

with 1984-85; the second one compares the 1998-99 distribution with 2002-

03. In Figure 2c, again, we observe the two peaks in the three-year periods

with consecutive (distance 1) comparisons: 1983-85 with 1986-89 and 2000-02

with 2003-05. The five-year periods with consecutive comparison, Figure 2d,

gives a similar picture, with a first peak at 1978-82 comparing with 1983-87,

and the second comparing 1998-2002 to 2003-2007.

(a) One-year periods with five-period dis-
tance

(b) Two-year periods with two-period
distance

(c) Three-year periods consecutive (d) Five-year periods consecutive

Figure 2: TVD for Natural Periods
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For illlustration purposes, we show in Figure 3 the histograms for five-year

natural periods comparing 1978-1982 and 1983-1987 (Figure 3a) and 1998-

2002 and 2003-2007 (Figure 3b), which are associated to the two red points

of Figure 2d. The most notorious change from 1978-1982 to 1983-1987 is a

relative reduction of subgroup 4 (Solar-thermal) and an increase in subgroup

5 (PV). During the second peak, from 1998-2002 to 2003-2007, we observe

a relative reduction of subgroups 4 and 5, which derive into an increase of

subgroup 7 (Wind).

(a) Distributions during 1978-1982 (red)
and 1983-1987 (yellow) and common (or-
ange)

(b) Distributions during 1998-2002 (red)
and 2003-2007 (yellow) and common (or-
ange)

Figure 3: Distributions during TT for five-year natural periods

We repeat the exercise for Periods with the Same Number of Observations

(PSNO), Figures 4. In this way, we correct for a variability bias due to a

greater number of patents in recent years. Similar to the case of natural

periods, a greater number of periods would mean shorter periods, which

would ask for a comparison conceding a greater distance.

If we consider 40 PSNO and a consecutive comparison (Figure 4a), we

find two notable peaks: one between June 1982 and March 1988 12 and

the second between March 2000 and April 2003.13 For the same 40 PSNO

12The first distribution has patents filed between June 30, 1982, and December 13, 1984;
the second one has patents filed between December 14, 1984, and March 28, 1988.

13The first distribution has patents filed between March 13, 2000, and November 28,
2001; the second one has patents filed between November 28, 2001, and April 21, 2003.
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and a comparison of distance 3 (Figure 4b), we obtain the same two peaks:

one between June 1979 and March 198814 and the second between January

1995 and April 200315. For 30 PSNO and a consecutive comparison (Figure

4c), we obtain two main peaks between October 1980 and December 198616

and between June 1999 and October 200317. For 20 PSNO (Figure 4d), the

identification is less precise: one between October 1980 and December 199118

and the second between October 1997 and August 200419.

(a) 40 PSNO consecutive (b) 40 PSNO with three-period distance

(c) 30 PSNO consecutive (d) 40 PSNO consecutive

Figure 4: TVD for PSNO

14The first distribution has patents filed between June 11, 1979, and October 28, 1980;
the second one has patents filed between December 14, 1984, and March 28, 1988.

15The first distribution has patents filed between January 31, 1995, and October 23,
1997; the second one has patents filed between November 28, 2001, and April 21, 2003.

16The first distribution has patents filed between October 31, 1980, and May 5, 1983;
the second one has patents filed between May 6, 1983, and December 17, 1986.

17The first distribution has patents filed between June 10, 1999, and November 30, 2001;
the second one has patents filed between December 3, 2001, and October 1, 2003.

18The first distribution has patents filed between October 29, 1980, and December 18,
1984; the second one has patents filed between December 19, 1984, and December 13,
1991.

19The first distribution has patents filed between October 30, 1997, and November 30,
2001; the second one has patents filed between November 30, 2001, and August 13, 2004.
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In this Section, we show that TVD approach has consistently identified

two TTs, despite considering a wide range of period sizes and comparison

distances. Notice that since we have not considered any external information,

the measure is ideal for an initial exploratory analysis and only uses the

relative frequency of each category within REG field.

4.4 Interpretation

Our methodology systematically indicates two moments of notable change

in the distribution of patents for REG. Although TTs could have occurred

naturally, we aim to acknowledge some policies linked to the two moments

identified through the TVD calculation, which qualitatively reinforce the

correct identification of the TTs. The first peak in the early 1980s could

result from the research that would have started in the late 1970s. Between

the late 1990s and the beginning of the 2000s, the second peak could relate

to Kyoto’s Treaty. However, we do not pretend to establish any causality

between the policies mentioned and the TTs.

The oil embargo of 1973 triggered interest in alternative energies, which

motivated a wide range of energy conversion techniques from renewable

sources. Among these, PV panels started to be considered a viable option for

commercial use (Sørensen 1991). The oil crisis in the 1970s triggered pub-

lic funding for R&D programs aimed to advance in PV generation, mainly

from Japan and the USA, and it is calculated that around 60 percent of

cost reduction in this technology was due to public and private R&D (In-

ternational Energy Agency 2020). President Nixon’s Project Independence

in 1973, President Ford’s Energy Policy and Conservation Act in 1975, and

the Public Utility Regulatory Policies Act in 1978 also promoted renewables

and have been related to technological changes that led to cost reductions in

wind and solar PV (Solomon and Krishna 2011, Smith 2004, Clayton 2004).

In 1997, the Kyoto Protocol was adopted by almost 200 countries, com-

mitting the signers to reduce their carbon emissions by 2012. Evidence sug-
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gests that the Protocol triggered a rapid increase in the patenting activity in

CCMTs. A positive effect has been found on applications for renewable tech-

nology patents in countries with emission targets (Miyamoto and Takeuchi

2019). This increase has significantly affected solar and wind technologies

patents in European countries (Johnstone et al. 2010). Even though the

USA signed the Protocol on November 12, 1998, the treaty was never rati-

fied by the US Senate, as needed.

However, the Protocol could have awakened economic incentives in other

countries that had signed and ratified the Protocol, which led to increased

interest in patenting in the US. Also, US polls on political concerns and po-

litical initiatives, such as President Clinton’s tax on BTUs proposal or the

Climate Change Action Plan, indicated potential changes in energy regula-

tion in favor of renewable sources. Chalvatzis et al. (2020) argues that the

Kyoto Protocol redirected innovation efforts towards REG, promoting the

interest of the corresponding R&D to meet the growing demand in that sec-

tor. The prevailing dominant positions in patenting of PV and wind could

reflect the extensive use of these technologies in the marketplace (UNEP

et al. 2010).

5 Final Comments

As we have seen, TVD is commonly used in measure theory, computer and

natural sciences. However, this paper shows evidence that TVD is a useful

exploratory tool for measuring and detecting TTs based solely on patent

data. We use the information of the entire probability density distribution

of a particular technology instead of focusing on specific subgroup trends.

Since the methodology does not depend on exogenous information, it is ideal

for exploratory analysis of the evolution of a given technology.

This paper provides two main results. On the one hand, we first apply

a distribution distance on the categories of a technological field to measure
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technological change. On the other hand, since we focus on temporal changes,

we propose a methodology to identify tipping points in different systems, not

only on technology.

Our proposed methodology might be applied to identify ecosystem regime

changes in different fields. The optimal application requires keeping the same

categories within the whole evaluation period or reorganizing the data for the

new categorization, as in the REG case.

We acknowledge that a TT is a complex phenomenon and that the distri-

bution of categories within a particular technological field may not completely

describe it. For instance, Antal et al. (2017) suggest that energy transitions

involve highly complex processes involving different actors (government, pri-

vate firms, and research institutions) and that regime shifts depending on

energy resources and infrastructure to utilize and benefit from them. How-

ever, since the methodology has low requirements for information, it is helpful

for exploratory and visual analysis.

We do not intend to forecast technology changes or study the causality

of phenomena around the TTs; our primary purpose is to avoid subjective

approaches to identifying such moments. Policy evaluations or causality anal-

ysis rely on correctly identifying tipping points; in various technologies, it is

unclear whether such changes happened or when. We do not distinguish

between incremental or radical innovations since our interest is to detect

possible tipping points within the REG technology’s recent history.

The properties of TVD make it a desirable distance for the case we have

considered, at which the order of categories can be changed without affect-

ing the results. However, if the order of categories was relevant, the same

methodology could be applied using a different distance. In that case, it

would be better to use weak topology metrics, for example, the Wasserstein

distance. Furthermore, TVD does not rely merely on a visual procedure,

which is inconvenient in technology with many subgroups or over an ex-

tended period. Nevertheless, we obtain a graphic visualization of the TVD
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for the analysis period.

Finally, we notice that we have focused on the relative frequency of

patents. However, each of those patents may have a different value, which

can be approximated using forward citations or their international scope.

Alternatively, those measures could be used to assign different weights to

each patent so that the pdf approximated a value distribution across the

correspondent subgroups.
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Appendix A Total Variation Distance prop-

erties

The TVD 1 d(·, ·) satisfies the following properties for any µ,η and ν in P(Ω)

i) 0 ≤ d(µ,η) ≤ 2

ii) d(µ,η) = 0, if and only if µ = η

iii) d(µ,η) ≤ d(µ, ν) + d(ν,η)

iv) d(aµ,aη) = |a|d(µ,η) for any a ∈ R

If µ and η have density functions f and g, the TVD distance between

them can be computed as (see Massart 2007):

d(µ,η) :=

∫ ∞

−∞

| f (s) − g(s)|ds. (5)

Moreover, if Ω := {ω1, . . . ,ωk} is a finite set then (5) can be written as

(see Gibbs and Su 2002):

d(µ,η) :=
k∑

i=1

|µ(ωi) − η(ωi)| (6)

where µ(ωi) = µ({ωi}) and η(ωi) = η({ωi}) are the µ-probability and the

η-probability of the event {ωi} ⊂ Ω.
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