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Abstract: This study replicates the paper “Brown, J. P.,
Lambert, D. M., & Wojan, T. R. (2019). The effect of the
conservation reserve program on rural economies: deriving
a statistical verdict from a null finding. American Journal of
Agricultural Economics, 101(2), 528–540” and their proce-
dure for calculating the so-called ex post power of statistical
tests of significance for regression coefficients. There
appears no generally accepted method for calculating
ex post power, and Brown, Lambert, and Wojan (BLW)
provided a bootstrapping method that can be applied
after the parameter of interest is estimated. They recom-
mend researchers to use this procedure to investigate
whether a statistically insignificant finding is likely to
be due to a low power property of the significance test.
This study makes two main contributions. First, it veri-
fies whether the data and code that BLW provided are
reliable to reproduce their results. Second, it constructs
Monte Carlo experiments to assess the performance of
BLW’s method. The results indicate that their method
produces ex post power estimates that are relatively
close to the true power values. Mean power estimates
are generally unbiased, and 95% of the estimates lie
within +/− 5% points of the true power. In conclusion,
my replication provides further evidence of the relia-
bility of BLW’s method.

Keywords: ex post power, statistical insignificance, Monte
Carlo experiments, bootstrapping, replication
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1 Introduction

This study replicates the report by Brown, Lambert, and
Wojan (2019), henceforth BLW. I choose to replicate BLW
because they propose a method for calculating ex post
power, also referred to as post hoc power, or retrospective
power. As the name suggests, ex post power is calculated
after empirical analyses are completed. Reliable esti-
mates of ex post power are a potentially valuable addition
to the applied econometrician’s toolkit. They can help the
researcher determine whether a statistically insignificant
estimate is due to a negligible effect size or insufficient
power. They can also be useful for interpreting statisti-
cally significant estimates. Significant estimates in the
presence of low power can raise a red flag alerting the
researcher to the possibility of Type M error¹ (Gelman &
Carlin, 2014). Up to now there has been no generally
accepted method for calculating ex post power. The pur-
pose of this replication is to assess the reproducibility
and reliability of BLW’s method.

A commonly usedmethod, often referred to as “observed
power,” uses both the estimated effect size and its associated
standard error to calculate power. However, this approach is
now widely recognized as flawed (Hoenig & Heisey, 2001;
Yuan & Maxwell, 2005). Other methods have been used, but
they have shortcomings. Skiba and Tobacman (2019) cal-
culate “ex post” power, but they use the same methods
employed for ex ante power analyses, which are based on
selected summary statistics and predetermined distribu-
tional assumptions. Ioannidis et al. (2017) calculated ex
post power, but their method is designed to work with
meta-analysis and cannot be applied to single studies.
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In this space, BLW propose two simulation methods that
can be applied to a single dataset: (i) a bootstrap resam-
pling procedure, and (ii) a Bayesian approach that posits a
prior distribution for the distribution of effect sizes. My
replication focuses on the first of these two methods.

BLW propose their procedure in the context of inter-
preting the results from a published, economic impact
study of the Conservation Reserve Program (CRP; Sul-
livan et al., 2004). That analysis found that the CRP
had a statistically insignificant impact on employment
growth. BLW’s motivation was to investigate if the statis-
tical insignificance was due to insufficient power. Accord-
ingly, they applied their procedure to the underlying data
and concluded that the study was “sufficiently powered”
(i.e., statistical power equal to 80%, Ioannnidis et al.,
2017) for effect sizes of policy interest. In other words,
the authors of the original study interpreted their insig-
nificant results as being unable to address the issue of
employment losses, BLW found that the study was suffi-
ciently powered to detect employment losses of a magni-
tude that would cause the CRP to fail a benefit-cost analysis.
This allowed them to re-interpret the original findings as
supporting the CRP. Given the potential benefit of being
able to produce reliable estimates of ex post power, and
the fact that BLW was published in one of the top five
journals in agricultural economics leading to significant
attention (Bellamare, 2021), its reliability has to be carefully
examined. This study pursues such a rule of reliability
check through a replication and Monte Carlos experiments.

My replication proceeds as follows. Section 2 (i) provides
the theoretical context for BLW’s bootstrapping method, (ii)
describes BLW’s bootstrap resampling method, and (iii)
briefly summarizes the study to which BLW applied their
method. Section 3 reports my reproduction of BLW’s ana-
lysis. Section 4 presents a variant of BLW’s bootstrapping
method based on residual resampling and explains why it
might be expected to be superior. Section 5 describes the
Monte Carlo experiments I designed to assess the perfor-
mance of the two methods and reports the results. Section 6
concludes the study.

2 Theoretical Context and
Description of BLW’s Method

2.1 Using Monte Carlo Simulation Methods
to Calculate Statistical Power

The use of Monte Carlo simulation methods for calculating
statistical power is not new. Programs to implement Monte

Carlo simulation methods for power analysis can be found
in many statistical software packages such as SAS and
Stata (StataCorp, 2021, Wicklin, 2013). Bootstrapping is a
computer-based technique similar to Monte Carlo simula-
tion except that it draws repeated samples from the sample
itself, as opposed to sampling from a population (Chong &
Choo, 2011; Efron & Tibshirani, 1994). Bootstrapping to cal-
culate the statistical power is relatively recent (Kleinman &
Huang, 2017). As far as I am aware, BLW is the first study
to apply bootstrapping procedures directly to a completed
empirical analysis – as opposed to baseline or pilot data –
to estimate power.

2.2 BLW’s Method

LetY be an outcome variable,T a treatment variable, and
C a column vector of k control variables. Let the asso-
ciated data generating process for Y be given by

+= + + = …β CY β β T ε i N′ , 1, 2, ,C ii T i i0 (1)

where εi is an independently and identically distributed
error term that is independent of regression variables. A
researcher estimates the treatment effect by regressing Y on
T controlling for C and obtains estimates β̂ = ( )β , β β′ˆ ˆ , ˆ

0 T C
,.

The associated residuals are defined by = −e Y Ŷi i i, where Ŷi
is the predicted value of Y conditional on Ti and Ci. εi is
independently and identically distributed error term that is
independent of regression variables.

Define Xi = ( )C′ ′T1, , ii and let Beta be the treatment
effect size for which the researcher wants to calculate
power of a significance test to examine the hypothesis
of βT = 0. BLW’s method samples the ( )× +N k 3 matrix
( )Xe with replacement. Let individual, resampled values
of X and e be denoted by *Xj and *ej , where j = 1,2,…N*.
Note that N* need not be the same as N.

BLW then created simulated Y* values such that Yj* =
* *

+ *X β eˆj
′

j , where ( )*
=β β′ ′βˆ ˆ , Beta, Ĉ0 . They then regressed

*Y on *X . This produced an estimate for βT and they noted
whether it is statistically significant. This process is repeated
999 times. Ex post power is calculated as the percent of times
that the Monte Carlo estimates of βT are statistically signifi-
cant. BLW applied their method to an economic impact study
of the Conservation Reserve Program reported by Sullivan
et al. (2004).

2.3 The Study by Sullivan et al. (2004)

Sullivan et al. (2004) used a quasi-experimental, matched
pair protocol to estimate the effect of the Conservation

2  Jiarui (Alex) Tian



Reserve Program on county-level, employment growth data
in the US. High-CRP counties werematchedwith similar low-
CRP counties. High-CRP (low-CRP) countieswere those coun-
ties that, on average, enrolled a higher (lower) percentage of
their eligible land in CRP than other types of farms.

Sullivan et al. (2004) reported estimated treatment
effects for several models, but complete results were
only reported for the long-run local employment growth
model. The estimated treatment effect for this model was
statistically insignificant. As a result, Sullivan et al. (2004)
were unable to reach a conclusion whether the CRP had an
adverse impact on the employment growth.

BLW applied their method to Sullivan et al’s. (2004)
data. They calculated ex post power for the following effect
sizes: Beta = (−0.027, −0.015, −0.010, −0.005, and −0.001),
where negative values indicated adverse employment
effects. Because their method is not restricted by the actual
sample size (i.e., N* need not equal N), they not only cal-
culated the power calculations for the original sample size
of 190 observations but also for sample sizes of 100, 150,
200, 250, and 350 observations. This generated a total of 30
experiments, one for each combination of effect size Beta =
(−0.027, −0.015, −0.010, −0.005, and −0.001), and sample
size N = (100, 150, 190, 200, 250, 350).

3 Reproduction

My first contribution is to reproduce BLW’s results. Table 1
reports three sets of results. The first set of results (column
3/“BLW”) is taken directly from Table 4 in BLW. It copies
the ex post power results that BLW report in their paper.
The second set of results (column 4/“Reproduction-R”) are
the results that I produced when I used the data and code
that BLW provided in their paper. The “R” indicates that
their code was written in R.

The final set of results (column 5/“Reproduction-
Stata”) are the results that I produced when I rewrote their
procedure using Stata code. The Center for Open Science
(COS) calls this “Author Data Reproduction (ADR).” This
type of reproduction uses the original data but re-esti-
mates the models using new analytic code generated by
the replicator. It was one of the types of reproductions
used in COS’s massive SCORE project (Center for Open
Science, 2022). It is also a component of good replication
practices recommended by the International Initiative for
Impact Evaluation (3ie) as part of their Replication Pro-
gram (International Initiative for Impact Evaluation, 2022).

As noted above, BLW conducted statistical power
calculations for 30 pairs of effect and sample size values:

Beta = (−0.027, −0.015, −0.010, −0.005, and −0.001) and
N = (100, 150, 190, 200, 250, and 350). −0.027, which is the
maximum loss in employment growth that BLW deter-
mined, would be acceptable in a benefit-cost analysis of
the CRP. They included N = 190 as this was the size of
Sullivan et al’s. (2004) original study. Accordingly, I have

Table 1: Replication of BLW’s ex post power results

Beta [1] N [2] BLW
[3](%)

Reproduction-R
[4](%)

Reproduction-
Stata [5](%)

−0.027 100 99 99 99
−0.027 150 100 100 100
−0.027 190 100 100 100
−0.027 200 100 100 100
−0.027 250 100 100 100
−0.027 300 100 100 100
−0.027 350 100 100 100
−0.015 100 84 84 85
−0.015 150 96 96 96
−0.015 190 99 99 99
−0.015 200 99 99 99
−0.015 250 100 100 100
−0.015 300 100 100 100
−0.015 350 100 100 100
−0.010 100 59 59 59
−0.010 150 79 79 79
−0.010 190 88 88 88
−0.010 200 90 90 89
−0.010 250 96 96 95
−0.010 300 98 98 98
−0.010 350 99 99 99
−0.005 100 24 24 23
−0.005 150 33 33 33
−0.005 190 42 42 42
−0.005 200 43 43 42
−0.005 250 51 51 53
−0.005 300 60 60 60
−0.005 350 67 67 67
−0.001 100 6 6 6
−0.001 150 6 6 6
−0.001 190 6 6 7
−0.001 200 6 6 6
−0.001 250 7 7 7
−0.001 300 7 7 7
−0.001 350 7 8 8

NOTE: The values in the table report the ex post statistical power
associated with the effect size given in column 1. Column 2 reports
the size of the individual datasets used in the Monte Carlo simula-
tions. Bold values indicate that the sample size is the same as the
original dataset. Note that the BLW’s bootstrapping procedure
allows the simulated datasets to be smaller/larger than the ori-
ginal. Column 3 copies the values for ex post statistical power
reported in BLW (Table 4). Column 4 reports the values I produced
when I used BLW’s data and code, originally written in R. Column 5
reports the values I obtained when I rewrote their procedure using
Stata code.
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highlighted in bold these experiments in the table. But they
also include other sample sizes to better understand the role
of sample size on power in this setting. Likewise, they con-
sidered effect sizes smaller than −0.027 to observe how well
the sample design detects smaller negative employment
effects of the CRP.

As expected, ex post power is greatest for the larger
(in absolute value) effect sizes and larger sample sizes.
For an effect size of −0.027 and a sample size of 190, BLW
calculated that the Sullivan et al. (2004) study had sta-
tistical power approximately equal to 100%. In other
words, if the job loss associated with the CRP was large
enough to reject the CRP on benefit-cost grounds, there is
virtually a 100% likelihood that the study of Sullivan
et al. (2004) would have produced a statistically signifi-
cant estimate of this effect. The fact that they did not
obtain a statistically significant estimate leads BLW to
conclude that the job loss was smaller than this.

Columns 4 and 5 of Table 1 report my efforts to repro-
duce BLW’s results, first using their R code and then
rewriting their program in Stata. Using their R code, I
was able to exactly reproduce their results. Using my
Stata version of their program, I reproduced their results
with onlyminiscule differences. For example, when the effect
size was −0.015 and the sample size was 100, BLW reported
an ex post power value of 84%, but my Stata replication
produced a power value of 85%. I attribute these differences
to rounding and the fact that the random number generators
underlying the simulations use different seeds.

In conclusion, using BLW’s data and code, I obtained
results that are identical, or approximately identical, to the
results published in their paper. The same holds when I
rewrite their program and use STATA rather than R.

4 Extension

There is more than one approach to bootstrapping (Brown
et al., 2019; Efron, 1982; Kleinman & Huang, 2017). In fact,
there are at least two potential problems with BLW’s
approach. First, when restricting oneself to the same size
as the original sample, resampling with replacement throws
away information. When observations are sampled more
than once, other observations are left out of the reconsti-
tuted dataset. This represents a loss of information.

Second, changing the dataset changes the power of
the sample design. For example, consider a binary treat-
ment variable and suppose half of the original dataset
received treatment and half did not. Now consider an
extreme case where resampling resulted in a reconstituted

dataset where only one-fourth of the original dataset
received treatment. The sample design of the reconstituted
dataset would have lower power than that of the original
sample. In fact, every reconstituted sample where the per-
cent of treated observations was other than 50% would
have lower power. Thus, by changing the nature of the
dataset, BLW’s method can introduce bias in estimates
of ex post power.

An alternative procedure that leaves the original
dataset unchanged is residual resampling (Wicklin, 2018).
Residual resampling works the same way as BLW’s method,
except it only resamples the residuals with replacement. It
then pairs the resampled residuals with the original observa-
tions. This addresses the two shortcomings of BLW’smethod,
though it should be noted that it can only generate datasets
with the same number of observations as the original. Unlike
BLW’s method, it cannot generate datasets with more or less
observations than the original. However, this is not so much
a disadvantage when the researcher’s aim is to determine the
power of a given estimate in a specific regression. I call this
alternative bootstrapping procedure BLWa.

Column 4 of Table 2 reports the results of applying
the BLWamethod to the data in BLW. Column 3 copies the
Stata results from Table 1 to facilitate comparison. Using
the alternative BLWa method does make a small differ-
ence. For example, when = −Beta 0.01 and sample size =
190, BLW’s method produces an ex post power estimate
of 89% (see “Reproduction” column). BLWa produces an
ex post power estimate of 94%. Similar differences are
observed for = −Beta 0.005and = −Beta 0.001. This raises
the question, which estimate is correct?

Without some ground truth to compare to, one cannot
say which method is “better.” While a full performance
assessment lies beyond the scope of this replication, I per-
formed a limited performance analysis that stays within
the research design of BLW. Specifically, I constructed a
series of Monte Carlo experiments where the data and spe-
cification are the same as those used by BLW. I set the
model parameters such that I know the true power of the
ordinary least squares (OLS) estimates of the treatment
effect. I then compared BLW and BLWa on the basis of
bias, sample range, and mean squared error (MSE).

5 Assessing the Performance of
BLW and BLWa

I conducted Monte Carlo experiments where I created a
data generating process with known power to see how
well the two methods are able to estimate it. My
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experiments are tailored to the BLW/Sullivan et al. (2004)
dataset. Their data consist of 190 observations. The depen-
dent variable, Yi, is a measure of county-level employment
growth; and the treatment variable,Ti, is “CRP payments to
income ratio.” There are a total of 30 control variables.

The OLS regression equation for which BLW calcu-
lated ex post power for the estimated treatment effect is
reported in Table 3 of their paper. While the estimated
variance of the error term is not reported in the table, I
was able to exactly reproduce their results and determine

that =σ̂ 0ε
2 .022870. It follows from this that ( )βvar ˆ

T can
be identified by the corresponding term along the main

diagonal of ( ) ( )=

−X′Xσ̂ 0.000011256ε
2 1 .

5.1 Step One: Calculating an Effect Size for
Every Power Value

In order to simulate data for the Monte Carlo experi-
ments, I first determined the effect size that corresponds
to a given power value from the equation below:

( )
( )

= + ×
−

t t βBeta var ˆ ,υ α υ TPower Power, 1 2 , (2)

where t υPower, and
−

t υ1 ,α
2

are the respective t values from the
cumulative t distribution with υ degrees of freedom such that

( )= <t tPower Prob υPower, and
( ) ( )

− = <
−

t t1 Probα
υ2 1 ,α

2
.

For example, if =Power 0.50,
( )

− =1 0.975α
2 , and

=υ 159, then =t 0υPower, and =
−

t 1.975υ1 ,α
2

. In this case,

= × =Beta 1.975 0. 003355 0.00662610.50 . If =Power 0.10
and

( )
− =1 0.975α

2 , then = −t 1.2869υPower, and =
−

t υ1 ,α
2

1.975. In this case, = × =Beta 0.6881 0. 0033550.10
0.0023086. In this way, Beta values can be calculated
for Power = (0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70,
0.80, and 0.90).

5.2 Step Two: Simulating a Dataset

I began by setting =Power 0.10. Having estimated σ̂ε
2 and

calculated Beta0.10, I then simulated an artificial dataset
modelled after BLW/Sullivan et al. (2004):

*
+* = * = …X βY ε i′ ˆ , 1, 2, 190,ii i (3)

where Xi is the data from BLW; *β̂ ( )=
′ β ′ ′β̂ , Beta , Ĉ0 0.10 , β̂0,

and β̂C are the estimates from Table 3 in BLW, and
Beta0.10 comes from STEP ONE; and *εi is a draw from a
normal distribution with mean value 0 and variance σ̂ε

2.

5.3 Step Three: Estimating a Regression

Once I have simulated an artificial dataset consisting of
190 observations of *Yi and X ,i I estimated an OLS regres-
sion and collected the estimates β̂ and residuals e.

Table 2: Extension: BLWa

Beta [1] N [2] Reproduction-
Stata [3](%)

BLWa [4](%)

−0.027 100 99 —
−0.027 150 100 —
−0.027 190 100 100
−0.027 200 100 —
−0.027 250 100 —
−0.027 300 100 —
−0.027 350 100 —
−0.015 100 85 —
−0.015 150 96 —
−0.015 190 99 100
−0.015 200 99 —
−0.015 250 100 —
−0.015 300 100 —
−0.015 350 100 —
−0.010 100 59 —
−0.010 150 79 —
−0.010 190 88 94
−0.010 200 89 —
−0.010 250 95 —
−0.010 300 98 —
−0.010 350 99 —
−0.005 100 23 —
−0.005 150 33 —
−0.005 190 42 49
−0.005 200 42 —
−0.005 250 53 —
−0.005 300 60 —
−0.005 350 67 —
−0.001 100 6 —
−0.001 150 6 —
−0.001 190 7 9
−0.001 200 6 —
−0.001 250 7 —
−0.001 300 7 —
−0.001 350 8 —

NOTE: The values in the table report the ex post statistical power
associated with the effect size given in column 1. Column 2 reports
the size of the individual datasets used in the Monte Carlo simula-
tions. Bold values indicate that the sample size is the same as the
original dataset. While BLW’s bootstrapping procedure allows the
simulated datasets to be smaller/larger than the original, the alter-
native bootstrapping method, BLWa, restricts the simulated data-
sets to have the same number of observations as the original.
Column 4 reports ex post power estimates for the BLWa bootstrap-
ping procedure, which is coded in Stata. Column 3 reproduces the
Stata-coded BLW estimates of power from Table 1 (cf. column 5) to
facilitate a comparison of the two procedures.
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5.4 Step Four: Use the BLW and BLWa

Methods to Estimate Power

I constructed the matrix ( )Xe and used the BLW and
BLWa methods as described above to generate a Power

estimate for the estimated treatment effect, β̂T , in STEP
THREE.

5.5 Step Five: Repeat Step Four to Obtain
999 More Power Estimates for the Case
when True Power = 0.10

Having generated one Power estimate each using BLW
and BLWa, I then repeated Step Four 999 more times until
I had generated a total of 1,000 Power estimates for the
case when true Power = 0.10. Note that a million regres-
sions are estimated to obtain 1,000 Power estimates for a
single true Power value.

5.6 Step Six: Repeat Steps Two through Five
for Power Values 0.20, 0.30,…,0.90

Having obtained a sample of Power estimates for true
Power = 0.10, I then repeated the whole process to get
samples of estimates for true Power values = 0.20 through
0.90. With each sample of 1,000 estimates, I calculated
the mean estimated Power value, the 90% sample interval
which ranges from the 5th to the 95th percentile values,
and the MSE of the estimates. This allowed me to both
determine the absolute and relative performance of the
two ex post estimators of Power, BLW and BLWa.

Table 3 reports the results. The top panel reports the
experimental results using BLW’s method, and the bottom
panel does the same for the alternative, BLWa method. For
BLW’s method, when true power is 10%, we calculate

=Beta 0. 002370.10 . Following Steps Two through Five
produces 1,000 estimates of ex post power. The mean of
those estimates is 10.1%, with a 95% sample interval ran-
ging between 8.8 and 11.3%. The associated MSE is 0.006.
When I used the BLWamethod, I again obtained amean ex
post power estimate of 10.1%. However, the 95% sample
interval is wider, ranging from 7.5 to 12.8%, with an MSE
of 0.012.

The results are similar when true power = 20%.
BLW’s method produces a mean ex post power estimate
of 20.2%, with a 95% sample interval of (18.2, 22.1%).
While BLWa has a smaller sample bias with a mean power
estimate of 20.1%, it has a wider 95% sample interval of
(16.8, 23.5%). This results in BLW having a lower MSE
(0.010 vs 0.017). In fact, BLW has a narrower 95% sample
interval and a smaller MSE for every true power value.
Thus, for at least the set of Monte Carlo experiments in
the table, the BLWmethod outperforms the BLWa method.

6 Conclusion

Replication plays, or should play, a fundamental role in
any empirical science. To be able to independently con-
firm previously published results is critical for estab-
lishing a solid foundation for future research to build
on. In this replication, I investigated BLW’s procedure
for calculating ex post power. While ex ante power cal-
culations are commonly done in many fields, there is no
generally accepted method for calculating ex post power.
Into this space, BLW proposed a novel bootstrapping
method. As an illustration, they applied their method to
a study that produced a statistically insignificant esti-
mate and showed how ex post power analysis can be

Table 3: Performance assessment of BLW and BLWa

Power
[1](%)

BetaPower [2] Mean
value
[3](%)

Lower
bound
[4](%)

Upper
bound
[5](%)

MSE [6]

Panel A: BLW
10 0.00237 10.1 8.8 11.3 0.006
20 0.00389 20.2 18.2 22.1 0.010
30 0.00499 30.1 27.8 32.3 0.012
40 0.00592 40.1 37.9 42.2 0.010
50 0.00679 50.3 47.6 52.6 0.012
60 0.00767 60.0 57.8 62.4 0.012
70 0.00860 69.9 67.6 72.2 0.012
80 0.00970 80.1 78.7 82.5 0.012
90 0.01122 89.9 88.5 91.6 0.008
Panel B: BLWa

10 0.00237 10.1 7.5 12.8 0.012
20 0.00389 20.1 16.8 23.5 0.017
30 0.00499 29.4 24.4 34.4 0.020
40 0.00592 40.4 36.2 45.0 0.022
50 0.00679 50.8 46.1 55.4 0.022
60 0.00767 59.9 55.9 63.6 0.021
70 0.00860 70.4 66.2 74.6 0.019
80 0.00970 79.9 76.5 88.5 0.016
90 0.01122 90.4 88.1 93.2 0.012

NOTE: Column 1 reports the true power. Column 2 reports the effect
size that corresponds to that power (cf. equation (2)). Column 3
reports the mean estimated power over the 1,000 Monte Carlo
experiments. Columns 4 and 5 report the 2.5 and 97.5% quantile
values of the 1,000 estimates of power. Column 6 reports the MSE,
defined as the average squared difference between the estimated
power and the true power.
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used to ascertain whether the insignificance was due to a
negligible effect size or insufficient power. BLW’s method
provides a potentially very valuable tool for researchers.

I made three contributions with this replication. First,
I verified that the data and code that BLW provided in their
paper are reliable to reproduce their results. Second, I
identified two shortcomings in their method that could
impact the performance of their method. As a result, I pro-
posed an alternative bootstrapping procedure (BLWa). My
third contribution used Monte Carlo experiments to assess
the performance of BLW’s original method and compare it to
BLWa. Despite its shortcomings, BLW outperformed BLWa.

In terms of absolute performance, BLW performed
well. For true power values ranging from 10 to 90%,
BLW’s method produced mean ex post power estimates
that were very close to the true values. Further, the esti-
mated power values were relatively closely clustered
around their true values. For example, the 95% sample
intervals always lay within 5% points of the true power
values on either side. So, for example, when true power
was 50%, 95% of the estimated ex post power values lay
between 47.6 and 52.6%.

In conclusion, my replication provides further evi-
dence of the reliability of BLW’s method. A limitation of
my replication is that it stayed closely within the confines
of BLW’s empirical application; specifically, it assumed a
data generating process characterized by a linear speci-
fication with independently and homoscedastically dis-
tributed error terms. Future research should investigate
whether these initial results extend to more complicated
and realistic data environments.
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