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Abstract: The NASEM report suggested that health infor-
mation technology could reduce diagnostic error if carefully
implemented. Computer-based diagnostic decision support
systems have a long history, but to date have not had major
impact on clinical practice. Current research suggests that
Al-enabled decision support systems, properly integrated
into clinical workflows, will have a growing role in reducing
diagnostic error. The history, current landscape and antici-
pated future of Al in diagnosis are discussed in this paper.
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Introduction

The NASEM Report recognized that health IT could improve
diagnosis and reduce diagnostic errors by enabling easy and
timely access to information, facilitating communication
among providers and between providers and patients and
supporting clinical reasoning. Looking at the state of health
IT at the time of the report, they noted that it more often
hindered than helped. They recommended that health IT
vendors work with the Office of the National Coordinator for
Health IT and users to see that systems use good user
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interface, integrate with clinical workflow, offer clinical
decision support and facilitate timely information flow.

Where do we stand 10 years later? Has health IT lived up
to its promise?

The history of artificial intelligence
in diagnosis

Despite the perception that the use of artificial intelligence
(AD) in medicine began with the release of ChatGPT in
November 2022, neither Al nor its application to medical
diagnosis are new. Ledley and Lusted laid the foundation
for computer-assisted diagnosis in their seminal 1959 paper
that attempted to develop a mathematical model of how
to best diagnose patients from their findings and were
among the first to suggest the use of Bayes’ theorem in this
endeavor [1].

What is new is the enormous power of today’s com-
puters. IBM’s first commercial computer, the 701, introduced
in 1952, used vacuum tubes and could perform 16,000 oper-
ations per second. Hewlett Packard’s FRONTIER supercom-
puter can perform 1.1 quintillion (that is 1.1 billion X 1 billion)
operations per second. It is this power that makes current
neural networks and generative Al possible.

Medical Al-enabled diagnostic decision support
commonly takes one of three forms. The first diagnostic
decision support systems (DDSSs) developed were “expert
mimics,” rule-based systems that tried to emulate the per-
formance of skilled practitioners. This form of AI has the
advantage of being transparent and easily explained but the
disadvantage of needing to anticipate all possible situations.

Machine learning (ML) is the subset of artificial intelli-
gence which uses algorithms that learn from data to make
predictions.

A neural network (NN) is a type of ML that uses inter-
connected nodes in a layered structure that mimics the way
brain neurons are connected. Neural networks are ideal for
pattern recognition tasks on large samples of data, and have
been widely used to examine images, such as skin lesions or
retinal photographs.
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Large language models (LLMs), also referred to as
generative Al such as ChatGPT from OpenAl and Gemini
from Google have come to dominate discussion about most
medical applications. This form of ML is trained on vast
amounts of textual data and can extract meaning from text
and understand the relationships between words and
phrases in human language.

“Expert mimic” DDSSs initially focused on limited do-
mains, where essentially all possible relevant history, phys-
ical exam, laboratory and imaging findings were known, and
the set of possible diagnoses was limited. Thyroid disease was
a common target and multiple systems out-performed non-
expert clinicians [2]. In 1972, De Dombal developed a DDSS
focused on abdominal pain and reported that the system out-
performed the most senior member of the clinical team to see
the patient with an overall accuracy of 91.8 % compared to the
clinicians’ 79.6 % [3].

The narrow focus of these early efforts limited their
value but paved the way for more general-purpose decision
support.

Iliad, developed at the University of Utah, covered 650
diseases in 10 subspecialties of internal medicine in the mid-
1980s [4]. It used values to represent the frequency of find-
ings in patients with and without each disease and how
prevalent each disease was in the community to produce a
rank-ordered list of diseases. It was widely accepted in its
own institution as a teaching tool but had little impact on
practicing clinicians [5].

INTERNIST-1 was developed at the University of
Pittsburgh beginning in 1972. Like Iliad, the system
used the frequency with which a finding occurred in a
disease and added an “evoking strength” indicating how
strongly the presence of a finding suggested a disease [6, 7].
INTERNIST-1 and its successor, Quick Medical Reference
(QMR) had some success outside the developers’ institu-
tion. QMR was commercially distributed by First Databank
between about 1989 and the early 2000s, when support and
sales ceased.

Work on DXplain began at the Massachusetts General
Hospital in the mid-1980s [8]. It used a similar paradigm as
INTERNIST-1. An added function gave higher weight to less
specific findings when findings from different organ systems
co-existed. The system also guided the user by suggesting
clinical or laboratory findings that would support or rule out
leading diseases. The system has grown steadily and now
contains descriptions of 2,690 diseases and 6,175 findings.
Distributed on a subscription basis to medical schools, hospi-
tals and group practices, DXplain has been shown to improve
the diagnostic accuracy of medical residents [9] and to shorten
the length of stay of patients admitted to hospital with complex
conditions [10]. In early 2025, it out-performed leading large
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language models in diagnosing previously unpublished chal-
lenging clinical cases [11].

Work on Isabel began in 1999, focusing on pediatric
diseases. Adult diseases were added in 2006. In addition to its
own database of diseases and common presentations, Isabel
performs a word search of medical texts to find good
matches of findings entered and diseases. The user can copy
a clinical scenario and paste it into Isabel, thus speeding data
entry. It has been found to include the correct diagnosis
somewhere on its list in over 90 % of test cases, and most
closely mirrors modern LLMs [12, 13].

While rule-based systems can improve diagnostic ac-
curacy, a factor limiting the impact of DDSSs on patient
outcomes has been the need for clinicians to recognize they
need help and seek consultation. Today’s busy clinical
environment emphasizes rapid patient turnover, and any
tool that requires additional time from physicians faces a
major hurdle. Added to that is the known over-confidence of
most physicians, meaning they rarely see the need for
diagnostic decision help, and it is not surprising that despite
decades of development, no DDSS has yet demonstrated a
major impact on reducing diagnostic error.

Current use of artificial intelligence
for diagnosis - machine learning,
neural networks, and large
language models

Following the 1980s, interest in AI waned, resulting in
decreased funding and limited growth in the field of diag-
nostic AL The field was reinvigorated during the early 2000s
with progress in ML. These advances led hospitals across the
US to adopt ML models integrated into electronic health
records (EHR). However, this adoption was not without
controversy. For instance, the Epic sepsis model (ESM), was
widely adopted by US hospitals, but several studies showed
that the ESM performed significantly worse than reported
[14, 15]. This raised important questions about the risks of
inaccurate predictions (e.g., missed opportunities, clinician
alert fatigue) and the need for local and national Al gover-
nance structures and more robust training methods.

Deep learning (DL), a subdomain of ML that includes
two or more hidden processing layers within multilayered
neural networks, ushered in a new paradigm of Al capable of
learning patterns in very large data sets containing diverse
data types. DL models have proven to be particularly useful
for advanced image recognition and performing various
natural language tasks. An early example of success was the
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development of a DL model that detected diabetic retinop-
athy in retinal images with groundbreaking accuracy [16].
Additionally, DL models have shown the ability to mine
clinical notes and other EHR data to accurately detect early
heart failure [17]. IDx-DR, a DL model designed to diagnose
diabetic retinopathy, became the first US Food and Drug
Administration (FDA) approved autonomous Al system [18].

While DL models offered improved accuracy, their
increasing complexity made it impossible to understand how
a model arrived at its output in some cases (i.e., the AI “black
box”). DL models may identify features in datasets associated
with a diagnosis that either can’t be identified by humans or
that were not known to be associated with a diagnosis. Thus,
explainability and transparency are ongoing concerns related
to using Al for diagnostic purposes.

Despite these concerns, nearly 1,000 Al-enabled medical
devices have been approved by the FDA, and many of these
models play a role in the diagnostic process. FDA approvals
are largely based on studies of model development and
validation that report performance metrics, with limited
relevance to real-world clinical practice, and studies that
compare a model’s performance of a diagnostic task to cli-
nicians’ performance of the same task (e.g., diagnosing
breast cancer on mammogram images) [19]. However, it has
become clear that a model’s safety and effectiveness should
not be determined by FDA approval alone. As an example,
MelaFind, a model approved by both the FDA and the Eu-
ropean Union to identify lesions suspicious for melanoma,
was discontinued because of unnecessary biopsies, difficulty
integrating the technology into dermatologists’ workflows,
and challenges with insurance coverage [20]. Furthermore,
there are few randomized controlled trials (RCT) of Al-based
interventions demonstrating efficacy in real-world clinical
settings [21]. Despite the dearth of RCT-level evidence, Al
continues to be deployed in clinical settings, often with
limited impact on diagnostic safety.

Each medical specialty has been at least narrowly
impacted by task-specific DL models (e.g., identifying skin
cancer on smartphone images). While task-specific DL
models offer increased flexibility and accuracy relative
to their rules-based predecessors, they are still in a nascent
phase. For example, a 2023 study using CPT codes from
insurance claims data to quantify the adoption and usage
of Al-based medical devices showed limited overall use
in health care [22]. This study showed that clinicians billed
most frequently for models designed to assist with the
diagnosis of coronary artery disease, diabetic retinopathy,
and liver conditions. Additionally, use of these tools
was concentrated in specific geographic regions in the
US, which highlights issues around availability and
accessibility.
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Foundation models such as OpenAI’s GPT series have led
to unprecedented optimism about the potential for diag-
nostic Al. Foundation models are based on deep neural
networks that are trained on an extremely large corpus of
data (e.g., the Internet, books) [22] and then adapted (or
fine-tuned) for a broad range of downstream tasks These
general-purpose models can generate new content based on
their training data, hence the term generative Al (GenAl),
and are far more flexible than task-specific DL models.
GenAl, particularly large language models (LLM), are
transforming every industry in society, including health
care. OpenAl made headlines by gaining 1 million users in
the first 5 days and 100 million users in the first two months
of ChatGPT’s launch. Other big tech companies, including
Google, Apple, and Amazon have invested billions in GenAl,
including health care-related GenAl Additionally, startup
companies like Open Evidence have developed LLMs
designed to answer clinical questions at the point of care.

LLMs can interpret structured data in the EHR (such as
vital signs and laboratory tests) as well as unstructured, text-
based data to provide the necessary real-world context to
arrive at a more accurate clinical diagnosis.

To understand the important of context, consider the
“broken leg problem,” first described by Meehl and col-
leagues in 1954 [23]. Consider a highly accurate AI model
designed to predict attendance at a weekly movie, and a
devoted attendee who attends weekly. One day, this indi-
vidual suffers a fractured femur. While a human would
immediately recognize that this would lead to her absence, a
model not trained to evaluate for broken limbs would fail to
adjust its prediction. Many critics cite “broken leg” events as
a reason why even highly accurate automated diagnostic
models underperform in real-world clinical settings. Since
the range of such possible events is limitless, encoding every
possibility into a structured algorithm is infeasible.

Unlike previous diagnostic systems, LLMs can handle
such events by integrating unstructured language-based
data from medical and clinical vignettes to inform the
automated diagnostic process. LLMs have been shown to
understand a wide array of human concepts and are much
better suited to navigate these events and their impact on
clinical diagnosis and prediction [24].

This clinical contextualization is not limited to rare
events. Clinicians understand that structured EHR data (e.g.,
vital signs and laboratory results) should not be analyzed in
a vacuum; instead, these findings are interpreted within a
broader clinical context that includes the patient’s tempo of
disease progression, accompanying symptoms, baseline risk,
and socioeconomic background. LLMs computationally
integrate this same information from the patient’s history to
help guide clinical diagnosis.
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Finally, LLMs can quickly integrate large quantities
of text-based data from clinical notes and outside hospital
records, a task that physicians often struggle with due
to time constraints [25]. LLMs have demonstrated effec-
tiveness at data processing tasks critical to clinical
diagnosis, including electronic health record summari-
zation, medical database search, and large-scale data
analysis [26, 27]. They have also shown excellent perfor-
mance with administrative tasks such as generating
responses to patient portal messages [28] and clinical
documentation [29].

Studies have shown that LLMs are as good or better than
clinicians when generating an accurate differential diag-
nosis or identifying the correct diagnosis in simulated
complex clinical cases [30-32]. Another study showed that
GPT-4 alone performed better on diagnostic tasks compared
to physicians using GPT-4 or traditional point-of-care re-
sources (e.g., UpToDate or Google) [32]. However, LLMs have
not performed as well on pediatric diagnostic challenges. A
recent study showed that GPT-4 had an error rate of 83 % on
New England Journal of Medicine and Journal of the Amer-
ican Medical Association Pediatrics case challenges [33].
While the discrepancy between GPT-4’s diagnostic accuracy
on adult vs. pediatric cases may be due to factors such as
representativeness of pediatric data in training datasets, this
shows the potential performance limitations of these models
in specific populations.

A common critique of LLMs is that they were origi-
nally developed to be next-word predictors, or chatbots
whose primary purpose is to identify the next word in a
conversation. While this is true for traditional LLMs (e.g.
OpenAI’s GPT, Anthropic’s Claude, Meta’s Llama), a branch
of LLMs known as reasoning models (e.g. OpenAI’s 01/03-
mini, Deepseek’s R1) are specifically trained to handle
complex reasoning tasks through reinforcement learning.
Unlike traditional LLMs which are designed to quickly
interpret and generate human language akin to “system 1”
thinking in humans, reasoning models are designed to
perform logical, stepwise thinking to solve reasoning
tasks, more like “system 2” thinking. These models have far
outperformed previous LLMs in multiple benchmarks for
logical deduction, multi-step reasoning, and pattern
recognition [34, 35]. Current reasoning models have pri-
marily been trained to excel in math and computer science
problems, but the development of reasoning models spe-
cific to clinical diagnosis are already underway and may
prove to be the final push that enables Al to surpass
humans in diagnostic ability.

Hoffer et al.: Al and diagnosis —— 567

Future directions for clinical
diagnosis in the era of Al

Al is already being widely implemented in clinical care,
particularly in fields such as radiology and pathology. A
recent survey reporting that about 65 % of physicians have
used GenAl for clinical purposes [36]. Depending upon the
diagnostic task, future clinicians will likely interact with Al
across a continuum of diagnostic capacities. At one end of the
spectrum Al may play an assistive role, and at the other end
Al may act as a “copilot,” generating a differential diagnosis
for complex clinical cases, or identifying and classifying
abnormalities on pathology slides. Though real-world data is
still lacking, recent technological advancements have
addressed many of the diagnostic performance deficiencies
of earlier models.

Despite these improvements, we have yet to capitalize
on the potential benefits of diagnostic AL Few studies have
shown that Al-based clinical decision support systems
improve clinician diagnostic performance [37]. While it is
unlikely that Al models will achieve diagnostic superiority to
human experts in their next iteration, successive improve-
ments may achieve this goal over the next several years.
Barriers to the widespread adoption of Al in clinical medi-
cine will probably not be purely technical given the rapidity
with which LLMs have already improved. Instead, factors
that have affected the uptake of earlier iterations of diag-
nostic decision support systems may also limit more wide-
spread use of AL To reach their potential, Al applications will
need to support the patient’s and clinician’s journey through
the diagnostic process. This will involve addressing several
key questions relating to how Al is implemented, evaluated,
and optimized in real-world clinical practice.

First, is Al decision support or a decision maker? Diag-
nostic Al applications are generally configured as decision
support systems, offering a “virtual second opinion” or
additional guidance after a clinician has determined the
initial working diagnosis. When the AI application should
prompt the clinician to consider other diagnoses remains
unknown. Relying on clinicians to “opt in” to using Al deci-
sion support may result in underutilization, as clinicians
would need to recognize when they have a diagnostic chal-
lenge and be willing to take additional steps to generate and
integrate Al recommendations. However, an Al that pushes
diagnostic prompts to clinicians risks contributing to alert
fatigue or creating unnecessary interruptions — both of
which are known patient safety risks [38, 39].
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Current diagnostic Al applications should not be used to
generate stand-alone diagnoses that lead directly to treat-
ment plans. That said, Al is now being used to assist in
diagnosis of time-sensitive, highly morhid conditions such as
acute ischemic stroke [40]. In these situations, emerging
evidence suggests that clinicians may treat the AI output as
an initial working diagnosis — placing the AI closer to the
center of the diagnostic process. This represents an inver-
sion of the usual diagnostic workflow, where the clinician
would gather data and formulate an initial hypothesis
before seeking additional information through testing and
decision support. Further research is required to determine
which settings are best suited for Al to achieve superior
diagnostic accuracy and to identify the potential patient
safety risks associated with such a profound change.

Second, how should AI applications be evaluated
before they are integrated into clinical practice? Studies
of AI using simulated cases demonstrate tremendous po-
tential, but it remains unclear whether Al systems alone
will ever truly outperform Al-augmented humans in real-
world clinical diagnosis, or when this may occur. Evalua-
tion of Al tools must focus on clinical outcomes, rather than
simply measuring diagnostic reasoning or diagnostic
accuracy [41, 42]. Though it has been reported that LLMs
can outperform clinicians at diagnosis, the example of
computer chess engines may provide an informative
analogy for how Al in clinical practice will evolve. When
the supercomputer Deep Blue defeated the world chess
champion Garry Kasparov in 1997, many in the chess
community declared the death of the game. For the next
15 years, however, the field was dominated by computer-
assisted human players rather than computers alone.
Human experts continued to discover flaws in computer-
based play and develop novel ways to use chess engines to
push the boundaries of old and new strategies. The same
will likely apply to clinical diagnosis in actual practice,
even after Al surpasses the threshold of human-level
performance in simulated scenarios.

Finally, what are the risks of Al-based diagnostic ap-
plications? Regardless of the overall diagnostic perfor-
mance of Al algorithms, these systems will inevitably have
weaknesses requiring human oversight and intervention.
This is particularly true for rare diseases with few verified
cases that can be used to train AI models and for diseases
that have abnormal geographic or demographic distribu-
tions. Recent research also indicates that LLMs have similar
biases in their clinical reasoning as human diagnosticians.
A crucial question for more advanced reasoning models
will be whether they can be trained to mitigate these biases.
As Al is increasingly integrated into clinical practice, Al
developers and health care systems will need to monitor
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the performance of these applications and assess for model
drift and deterioration in performance over time.

We can be sure that AI systems will continue to
improve, making it likely that human or system level fac-
tors will be the most significant barriers to realizing the
diagnostic potential of Al. To realize the full potential of
Al-based diagnostic technologies, human, system, and
technology level barriers to and facilitators of effective
human-AI teaming must be identified and addressed. Thus,
an essential next step will be implementation studies that
ensure that diagnostic Al is user-centered and compatible
with clinical workflows, and that health care providers and
patients are empowered to successfully leverage these
technologies to achieve diagnostic excellence. The true
value of diagnostic decision support help will only be
realized when such systems are embedded in the EHR and
work in the background, telling physicians when a serious
disease may have been overlooked.
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