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Abstract

Background: Diagnostic scope is the range of diagnoses
found in a clinical setting. Although the diagnostic scope is
an essential feature of training and evaluating artificial
intelligence (AI) systems to promote diagnostic excellence,
its impact on AI systems and the diagnostic process remains
under-explored.
Content: We define the concept of diagnostic scope, discuss
its nuanced role in building safe and effective AI-based
diagnostic decision support systems, review current chal-
lenges to measurement and use, and highlight knowledge
gaps for future research.
Summary: The diagnostic scope parallels the differential
diagnosis although the latter is at the level of an encounter
and the former is at the level of a clinical setting. Therefore,
diagnostic scope will vary by local characteristics including
geography, population, and resources. The true, observed,
and considered scope in each setting may also diverge, both
posing challenges for clinicians, patients, and AI developers,
while also highlighting opportunities to improve safety.
Further work is needed to systematically define and mea-
sure diagnostic scope in terms that are accurate, equitable,
and meaningful at the bedside. AI tools tailored to a partic-
ular setting, such as a primary care clinic or intensive care

unit, will each require specifying and measuring the
appropriate diagnostic scope.
Outlook: AI tools will promote diagnostic excellence if they
are aligned with patient and clinician needs and trained on
an accurately measured diagnostic scope. A careful under-
standing and rigorous evaluation of the diagnostic scope in
each clinical setting will promote optimal care through
human-AI collaborations in the diagnostic process.

Keywords: diagnostic scope; artificial intelligence; human-
AI collaboration; diagnostic reasoning

Introduction

When a patient presents with an uncertain constellation of
signs and symptoms, a thoughtful clinician considers a broad
range of potential etiologies in the differential diagnosis. To
achieve an accurate and timely explanation for the under-
lying problem, the cause of these symptoms is hopefully
contained within that list. Appropriately, most efforts to
promote diagnostic excellence have focused on the diag-
nostic reasoning process at the level of a single clinical
encounter. By contrast, the diagnostic scope is the aggrega-
tion of diagnoses over all encounters at the level of a
geographic region, practice setting, or clinical specialty.
However, relatively less attention has been paid to this
critical feature of the diagnostic process. Additionally, no
universally agreed-upon definition of diagnostic scope
exists. Yet, the importance of diagnostic scope is actively
growing as the potential for artificial intelligence (AI) and
machine learning (ML) tools are being used in diagnostic
clinical decision support systems (CDSSs). The diagnostic
scope informs the development and training of diagnostic
AI/ML CDSSs and therefore must be accurately specified in
order for those systems to be useful in their desired context.

The importance of diagnostic scope for AI/ML CDSS
development arises because of how such systems are trained.
Predictive CDSSs typically require humans to specify the
outcomes for which the computational models will learn
patterns in the training data. For example, a data scientist
building an AI/ML diagnostic CDSS for an infectious disease

*Corresponding author: Gary E. Weissman, Palliative and Advanced
Illness Research (PAIR) Center, University of Pennsylvania Perelman School
of Medicine, Philadelphia, PA, USA; Pulmonary, Allergy, and Critical Care
Division, Department of Medicine, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA, USA; Division of Informatics,
Department of Biostatistics, Epidemiology & Informatics, University of
Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; and
Leonard Davis Institute of Health Economics, University of Pennsylvania,
Philadelphia, PA, USA, E-mail: gary.weissman@pennmedicine.upenn.edu
Laura Zwaan, Institute of Medical Education Research, Erasmus Medical
Center, Rotterdam, The Netherlands. https://orcid.org/0000-0003-3940-
1699
Sigall K. Bell, Department of Medicine, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, USA

Diagnosis 2025; 12(2): 189–196

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/dx-2024-0151
mailto:gary.weissman@pennmedicine.upenn.edu
https://orcid.org/0000-0003-3940-1699
https://orcid.org/0000-0003-3940-1699


clinic would have to know ahead of time every diagnosis that
might be encountered in a given practice setting. But char-
acterizing this broad range of potential diagnoses is not
straightforward. Humans, let alone computers, have yet to
devise a system of diagnostic categories that are both readily
analyzable in large clinical datasets and alsouseful for clinical
decision making at the bedside. Thus, optimal human-AI
collaboration for diagnostic excellence will require devel-
oping a shared language to describe the diagnostic scope.
Patients, too, have a critical role to play in defining the diag-
nostic scope and setting priorities for its development.

Accurate assessments of diagnostic scope will foster
efforts to enhance patient safety, optimize staffingmodels and
clinic organization, educate clinicians indiagnostic reasoning,
and improve the diagnostic process for patients and clini-
cians. In this Viewpoint, we review the current literature on
diagnostic scope, propose a standardized definition, consider
nuances in its measurement, and highlight critical challenges
and areas for further research to realize the potential of
AI/ML CDSSs to promote diagnostic excellence.

Defining diagnostic scope

We propose that the true diagnostic scope should be defined
as a theoretical construct that includes all possible diagnoses
in a given setting (Figure 1). The considered scopes reflect
those diagnoses that clinicians and patients entertain during
the diagnostic journey. And the observed scope reflects those
diagnoses, correct or not, that are documented as present.
Each of these scopes may overlap with and diverge from
each other. For example, there may be a gap between the
considered and observed scopes if some diagnoses are
frequently included in the differential diagnosis or tested for
but not actually made. Conversely, there may be some
diagnoses that are not considered, but should have been, and
are therefore still present in a population but not observed.
This latter category includes over 10,000 rare diseases, or
“zebras” that are frequently missed during the diagnostic
process [1, 2]. Rare conditions such as inherited metabolic
disorders or certain neoplasms constitute an important
element of the true scope that may not be considered by
clinicians. These diagnoses reflect false negative diagnostic
errors. Each distinct and overlapping area of clinician-
considered, patient-considered, observed, and true diag-
nostic scope offers unique opportunities to improve patient
safety and the diagnostic process (Figure 1).

Similarly, there is a distinction between the range of
diagnoses that are possible and those that are likely.
Therefore, a useful AI/ML CDSS will not only account for the
range of diagnoses, but also the probability of each one.

Thus, an accurate weighting of the true scope will support
the diagnostic process because not every diagnosis in the
true scope is equally likely to present during any individual
encounter. However, this probability distribution will also
likely vary by the practice setting due to heterogeneity in
geographic or population-based disease prevalence.

The diagnostic scope has been described to varying
extents in previous studies. Prior work has quantified
geographic and specialty-specific variation in the content
and breadth of documented diagnoses but has not accounted
for weighting of the diagnostic scope by disease prevalence
[3–7]. Nor have any previous studies distinguished between
true, considered, and observed scopes. In a distinct but
related sense of the term, the diagnostic scope has also
referred to the range of conditions that a particular test
might identify [8, 9]. In this sense, each AI/ML diagnostic
CDSS system might analogously have its own diagnostic
scope, aligned or not, with the true scope of the clinical
setting in which it is used.

Dependence on local factors

The diagnostic scope in any given setting is dependent on
local features of the population, including the age distribu-
tion, socioeconomic factors, environmental exposures, and
endemicity of diseases. For example, one study of Medicare
claims identified strong similarities between diagnostic
scopes in rural and urban practices but also found large
differences between specialty-specific settings, such as
between obstetrician-gynecology and general surgery prac-
tices [4].

Access to care and referral patterns related to local
healthcare infrastructure may also shape the observed
diagnostic scope since clinicians may not identify conditions
in patientswho donot present to care. This presents a critical
risk of systemic bias in data. Similarly, clinicians may
disproportionately encounter early, presenting symptoms of
a disease process in one setting (or among a particular
population that is more likely to seek early care) that only
later manifest fully with a diagnosis made in a different
setting. This information gap is well known for clinicians
who often lack diagnostic feedback about their decisions [10]
and poses a related threat to accurately measuring the
diagnostic scope. Moreover, the availability of resources to
detect diseasesmay also contribute to the extent towhich the
considered and observed scopes diverge.

For example, lack of access to molecular testing is a key
driver of the “diagnostic gap” in identifying tuberculosis [11].

Local differences also underscore the need for AI/ML
systems that are trained and validated with data relevant to
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the populations for which they will be used. For example,
while gallstones and alcohol use are the most common
causes of pancreatitis worldwide, parasitic infection has
been identified as the etiology in nearly a quarter of cases in
some parts of the world with ascaris endemicity [12], and
should therefore be considered in a useful diagnostic CDS

in these settings. However, it likely falls outside the consid-
ered scope inmost parts of the US andmay be absent entirely
from the observed scope, and thus also from the training
data used for a US-based AI/ML CDSS. Even if the scope is
perfectly defined in a given setting, and an AI/ML CDSS is
trainedwith accurate, relevant data to predict that scope, the

True Scope Clinician-considered Scope

Patient-considered Scope Observed Scope

All aspects of the scope overlap at the common,
obvious, and frequently made diagnoses.

Diagnoses considered by the patient that are not
actually present but can still cause worry should be
discussed during the diagnostic process to provide
reassurance and education.

Diagnoses considered by the patient that are
actually in the global scope but not considered by
the clinician reflect opportunities to learn from
patients and fill diagnostic blind spots.

Diagnoses that are present in a population but
are neither considered nor observed may occur
during the emergence of new diseases.

Diagnoses that are present and widely
considered but not observed may reflect
resource limitations or systematic errors in
the diagnostic process.

Diagnoses that are not present but
considered and erroneously
observed by clinicians reflect false
positive errors and may benefit from
improved clinician education efforts.

Diagnoses that are eventually observed
but not considered, at least initially, reflect
diagnostic delays and may occur with rare
diseases that are frequently overlooked at
the initial presentation. Clinical decision
support systems show promise to shrink
this diagnostic gap.

Diagnoses that are observed and
documented but not in the true scope
reflect systematic, false positive
diagnostic errors.

Figure 1: The true diagnostic scope includes the full range of diagnoses present in a particular clinical setting. Patients and clinicians in a clinical setting
each may consider a distinct range of diagnoses. The observed diagnostic scope reflects all documented diagnoses, right or wrong, in a specific setting.
Each aspect of the diagnostic scope both overlaps and diverges from the others. Importantly, the Figure is not drawn to any particular scale.
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performance of themodel will depend onwhere andwhen it
is used. Thus, the diagnostic scope should be assessed for
external validity or spectrum bias, analogous concept from
the literature on predictive modeling and diagnostic testing,
in which a tool’s accuracy may change in a population
different from the one used for its development [13, 14].
Finally, only prospective evaluations of clinical effectiveness
[15] will reliably estimate the accuracy of an AI/ML model’s
scope in a given context. By contrast, in silico evaluations, or
those that only measure a model’s predictive performance
against outcomes in a retrospectively collected dataset [16],
are insufficient to identify an AI/ML model trained on a mis-
specified diagnostic scope.

Clinician-AI diagnostic reasoning

Clinicians often rely on a range of heuristics in decision
making when faced with uncertainty [17, 18] and AI/ML
CDSSs show promise to support such decisions. However,
there is a circular relationship between the clinicians’ work
of observing and documenting diagnosis and the training
data that AI/ML models will use to provide decision support
back to clinicians, potentially amplifying systemic bias
and inaccurate diagnoses. Clinicians may miss important
diagnoses if they are not frequently observed [19], leading
AI/ML CDSSs to do the same.

Conversely, false positive diagnoses may occur if some
diseases are considered in scope due to saliency or avail-
ability bias but infrequently observed. Again, AI/ML CDSSs
will learn to make the same diagnostic errors. This risk may
be further exacerbated by clinicians who insufficiently
review the basis for recommendations from an AI/ML CDSS
and follow them anyway. This phenomenon, known as
“automation bias” is a key safety threat when using AI/ML
CDSSs [20, 21].

Diagnostic AI/ML CDSSs, if trained on an accurately
weighted diagnostic scope, are especially promising adjuncts
to human clinicians during the diagnostic reasoning process.
For example, a binary assessment of in/out of scope along
with a quantitative assessments of a disease’s prevalencemay
guide decisionmaking. This information could help to reduce
cognitive errors due to thebase rate fallacy (the tendency for a
clinician to ignore the known prevalence of a disease in a
population when estimating the probability of that disease in
a patient) [22]. A nuanced framing of diagnostic scope and the
interactions between types of scope (Figure 1) may prove
useful in medical education to facilitate diagnostic reasoning
and history elicitation. AsAI/ML technologies are increasingly
evaluated for their diagnostic capabilities and integrated

into the clinical curriculum [23–25], the next generation of
clinicians will require a sophisticated understanding of these
concepts and the risk of circular relationships to maximize
human-AI cooperation andaccuracy in the diagnostic process.

For example, an AI/ML CDSS may not be useful during a
pandemic in which a new disease becomes common if the
CDSS was trained prior to the pandemic. In this case, the
disease may not even have been in the observed scope
reflected in the training data. Or it may have been in scope
but much less prevalent. In either case, following the sug-
gestions of this AI/ML CDSS during a pandemic would likely
lead to false negative errors, or missed diagnoses. Automa-
tion bias would exacerbate this pattern and lead to further
missed diagnoses. Even if the underlying AI/ML model were
updated to reflect pandemic conditions, it may still lead to
under-diagnosis by learning, and then recapitulating, the
patterns ofmissed diagnoses early in the pandemic. For such
AI/ML CDSSs to be effective at the bedside, they must reflect
not only geographic but also temporal changes in the diag-
nostic scope [26]. And clinicians must remain vigilant to
maintain their own independent cognition during the diag-
nostic process while simultaneously accounting for the
limitations of a particular AI/ML system.

Learning from patients

While generally considered the purview of clinicians,
development and assessment of diagnostic scope should
also incorporate the unique knowledge and experiences of
patients. Currently, a diagnostic error is defined as either
failing to identify the correct diagnosis in a timely fashion or
failing to communicate that diagnosis to a patient [27]. But
this definition hinges only on thefinal documented diagnosis
and does not account for any diagnoses thatwere considered
during the diagnostic process, on any contributions of
the patient to that process, or on patients’ knowledge of
inaccurate diagnoses that were subsequently corrected
at another healthcare center. Patients themselves may
contribute important experiences and insights during the
diagnostic journey that can inform not only clinician
learning, but also organizational culture and practices that
minimize communication breakdowns and promote patient-
and family-centered care [28].

The model of diagnosis as “wayfinding” incorporates
iterative information gathering, deliberation, and integra-
tion of insights from both patients and clinicians to even-
tually arrive at a correct diagnosis [29]. Listening closely to
patients and their stories [30] can help identify elements of
the true scope not otherwise captured in the clinician’s
considered scope. A distributed cognition model that

192 Weissman et al.: Diagnostic scope



accounts for regions of the patient-considered scope that are
outside of the clinician-considered scope can help to avoid
diagnostic blind spots [31] (Figure 1). Taking the next step to
proactively elicit, aggregate, and learn from patient experi-
ences of diagnostic breakdowns can also enrich clinicians’
considered or observed scope, with the potential to reduce
systemic bias and improve diagnostic accuracy and safety,
especially if feedback systems “close the loop” with clini-
cians involved earlier in the diagnostic process [32–35].

Symptom-focused internet searches are increasingly
common and lead patients to consider their own differential
diagnoses. In aggregate, and coupled with the patients’ own
lived experiences, these may inform the patient-considered
diagnostic scope (Figure 1). Patients are increasingly using AI
for self-diagnosis. If patient and clinician AI/ML tools are
trained on datawith differing diagnostic scope, the toolsmay
generate misalignments between patient and clinician
diagnostic considerations. While a patient may be more
likely to trust their clinician than an AI/ML CDSS, this pref-
erence may shift over time or with clinicians that patients
do not know well or do not trust, potentially undermining
the patient-clinician relationship [36]. Similar to the guid-
ance for clinicians to share trustworthy internet sites with
patients, organizations and clinicians may consider guiding
patients to context-specific AI/ML resources. Healthcare
organizations and individual clinicians will likely view the
transparent development and reporting of the diagnostic
scope of AI/ML CDSSs as assets in considering these
recommendations.

Patient preferences should also inform prioritization of
diagnostic scope research and quality improvement efforts.
For example, benign, self-limited rashes may have high
diagnostic uncertainty and yet may not be frequently rep-
resented in the observed scope because a true diagnosis is
not definitively made. But such diagnoses likely produce
little direct patient harm. By contrast, other diagnoses that
are frequently missed or delayed despite their representa-
tion in the diagnostic scope, such as heart failure, urinary
tract infections, and cancer, can result in significant harm
and should receive priority [37–40].

Measuring diagnostic scope

One reason that diagnostic scope may be understudied is
that it is challenging to measure. A lack of open-source and
clinically relevant ontologies has so far limited empiric
evaluation. For example, a large study of primary care
encounters across three countries used a proprietary map-
ping of diagnostic codes to clinically relevant clusters [5].
Such proprietary systems have limited reproducibility and

transparency which preclude their widespread evaluation
and validation in clinical practice. On the other hand, several
freely available diagnostic ontologies are widely studied and
easy to integrate into data analysis pipelines. These include
the 61,048Medical Subject Headings (MeSH) unique concepts
as of 2024 [41] and the 71,932 International Classification of
Diseases (ICD) - 10 codes [42]. However, such ontologies are
so broad and specific as to be clunky at the bedside for cli-
nicians and patients engaged in the diagnostic process. Thus,
for purposes of measuring diagnostic scope for building AI/
ML models, quality improvement efforts, or medical edu-
cation, the optimal level of granularity and which diagnostic
categories are most useful remain unknown. Finally, the
validity of any reported diagnostic scope in practice will
depend, to some extent, on both the methods and data
sources used to measure it.

Promise and pitfalls of AI/ML tools

Once the relevant diagnostic scope is identified and
measured for a given clinical setting, an AI/ML CDSS can be
trained to identify patient factors that predict individual
diagnoses. While AI/ML CDSSs offer promise to improve the
diagnostic process through the ability to learn patterns in
massive datasets and generate personalized recommenda-
tions, there are several ways in which an AI/ML model
trained on an incorrectly specified diagnostic scope may
exacerbate existing health disparities. Because AI/ML sys-
tems are built for scalability, they risk amplifying the errors
in diagnostic reasoning discussed above. For example, acute
coronary syndromes are much more frequently mis-
diagnosed in women compared to men. If an erroneous in-
clusion or weighting of such diseases in the diagnostic scope
is used to train an AI/ML CDSS, that system will invariably
reinforce the same diagnostic errors in practice that led to
misdiagnosis in the first place [43, 44]. An AI/ML CDSS thus
create an opportunity for the errors made by clinicians
whose actions were captured in the training data to propa-
gate to new settings and encounters. AI/ML approaches
increase this risk, especially when the observed diagnostic
scope overlooks sickle cell disease [45], malaria [46], cystic
fibrosis [47], and other rare diseases [48].

At the same time, such systems also offer opportunities
to mitigate disparities and the potential harmful effects
of interpersonal bias, prejudice, or incomplete medical
knowledge. Because most diagnostic errors are due to
suboptimal history taking or physical examination [37], a
properly trained AI/ML system could help to facilitate the
diagnostic process and improve diagnostic accuracy by
filling cognitive gaps or mitigating biases. These systems
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may be further strengthened by focused research to identify
missed or delayed diagnoses in marginalized populations,
considering access to care and delayed presentations and
other intersectional factors such as English language profi-
ciency and socio-economicdisparities alongside clinicianbias.
In each of these cases, the diagnostic AI/ML system will only
be as good as the data on which it is trained, which in turn, is
created, curated, and chosen by humans, requiring principled
approaches and multidisciplinary oversight [49, 50].

Tensions, challenges, and
opportunities for diagnostic scope

The importance of diagnostic scope is increasingly recog-
nized, especially in the context of developing AI/ML CDSSs
to improve the diagnostic process. But several obstacles
must be overcome before it becomes directly useful to
researchers, clinicians, and patients. First, a pragmatic
application of the true scope, weighted by both prevalence
and clinical importance, must be identified for each setting.
While almost all diagnoses could be present in most clinical
contexts, those with infinitesimal prevalence are unlikely
to be useful in developing diagnostic AI/ML CDSSs
unless their clinical importance outweighs their rarity.
For example, Ebola virus disease has temporally sporadic
and geographically heterogeneous prevalence – even
approaching zero in some locations – but its early diagnosis
remains a key global health priority [51]. Further work is
needed to better characterize how the diagnostic scope is
sensitive to local factors and how it may vary in both con-
tent and breadth. Second, more work is needed to develop
clinically meaningful diagnostic ontologies that will be
useful at the bedside. A useful ontology will balance the
simultaneous needs for generalizability and specificity.
Third, improved measurement tools and data sharing pol-
icies will be needed to ensure accurate assessments of true,
considered, and observed scopes. Transparency, interop-
erability, and protection of patient privacy are all neces-
sary for successful measurement and analysis of diagnostic
scope. Fourth, evolving governance frameworks for AI/ML
CDSSs will need to ensure clinical effectiveness, safety, and
equity. Only in such a regulatory environment will the
benefits of future research efforts into diagnostic scope be
realized.

In summary, the diagnostic scope is a key feature of
the diagnostic process and will play an increasingly vital
role with rising uptake of AI/ML CDSSs in healthcare, but it
remains largely under-explored. More research is needed

to better refine and quantify its role in clinical, cognitive,
policy, and analytic contexts to improve patient care and
outcomes through diagnostic excellence. Just as “the eye
can’t see what the mind doesn’t know,” so too an AI/ML
model can’t predict what the humans don’t tell it.
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