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Abstract

Objectives: Electronic alert systems to identify potential
sepsis in children presenting to the emergency department
(ED) often either alert too frequently or fail to detect earlier
stages of decompensation where timely treatment might
prevent serious outcomes.
Methods: We created a predictive tool that continuously
monitors our hospital’s electronic health record during ED
visits. The tool incorporates new standards for normal/
abnormal vital signs based on data from ∼1.2 million chil-
dren at 169 hospitals. Eighty-two gold standard (GS) sepsis
cases arising within 48 h were identified through retro-
spective chart review of cases sampled from 35,586 ED visits
during 2012 and 2014–2015. An additional 1,027 cases with
high severity of illness (SOI) based on 3 M’s All Patient
Refined – Diagnosis-Related Groups (APR-DRG) were iden-
tified from these and 26,026 additional visits during 2017.An
iterative process assigned weights to main factors and in-
teractions significantly associated with GS cases, creating
an overall “score” that maximized the sensitivity for GS
cases and positive predictive value for high SOI outcomes.
Results: Tool implementation began August 2017; subse-
quent improvements resulted in 77% sensitivity for iden-
tifying GS sepsis within 48 h, 22.5% positive predictive
value for major/extreme SOI outcomes, and 2% overall
firing rate of ED patients. The incidence of high-severity
outcomes increased rapidly with tool score. Admitted alert

positive patients were hospitalized nearly twice as long as
alert negative patients.
Conclusions: Our ED-based electronic tool combines high
sensitivity in predicting GS sepsis, high predictive value for
physiologic decompensation, and a low firing rate. The tool
can help optimize critical treatments for these high-risk
children.
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Introduction

Disseminated infections in children, including sepsis,
may lead to organ dysfunction, decompensation, and
death [1]. Unfortunately, recognizing children at risk for
deterioration may be difficult at emergency department
(ED) presentation. Delayed recognition is associated with
more severe outcomes, including permanent disability
and death [2–5]. A number of alert tools utilize the elec-
tronic health record (EHR) to aid in identifying severe
sepsis or septic shock at a child’s initial ED presentation
[6–9]. These electronic alerts often incorporate vital
sign thresholds that are not evidence-based, leading to
low specificity and positive predictive value [10, 11].
Furthermore, some alerts use indicators that tend to occur
later during the illness, such as hypotension, altered
mental status, need for supplemental oxygen, and lactic
acidosis. Given their typical occurrence later in the pro-
gression towards physiologic decompensation, these in-
dicators may be less useful for inclusion in an ED-based
early recognition alert tool [12].

Our objective was to evaluate the performance of our
empirically developed ED-based EHR tool to predict
infection-related decompensation in children within 48 h
of initial presentation. The tool was developed using two
target standards: (1) sepsis cases having organ dysfunc-
tion that developed within 48 h of ED arrival; and (2) early
sepsis cases (defined as disseminated infection with
systemic inflammatory response syndrome [SIRS]) that
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developed within 24 h of ED arrival and resulted in
“major” or “extreme” severity of illness (SOI, a diagnosis-
based index of maximum physiologic decompensation
during the hospital stay) as assigned by the 3M™ Cor-
poration’s All Patient Refined – Diagnosis-Related
Groups (APR-DRG®, v32) [13] algorithm.

Materials and methods

Selection of metrics for the electronic assessment tool

Development of the Children at High Risk Alert Tool (CAHR-AT)
began in 2013 at the Children’s Hospital of The King’s Daughters
(CHKD), a 206-bed freestanding children’s hospital in Norfolk, VA

with ∼50,000 ED visits per year. This project was approved by the
Institutional Review Board at Eastern Virginia Medical School under
a waiver of informed consent as a review of existing medical records
conducted as a quality improvement initiative.

The tool builds on our earlier hospital-wide pediatric severe
sepsis screening tool described elsewhere [12]. Input data for the
CAHR-AT is the hospital’s Cerner Millennium™ EHR, which in-
cludes historical information documented during previous health
system visits and real-time data obtained from triage and
throughout the ED stay. As referenced in Table 1, elements selected
for analysis of their association with infection-related decompen-
sation occurring within 48 h of a patient’s ED arrival were based on
their availability in our Cerner ED triage system, their known as-
sociation with sepsis or use in other sepsis alert systems [12, 14, 15],
or for hypothesis testing of the shock index and diastolic shock
index based on their potential association with shock detection
[16, 17].

Table : Data elements collected from the electronic health record and tested for association with gold standard cases of infection-related
decompensation.

Abnormal heart rate (HR): >th percentile [] (age-specific values shown in Table ) or <th percentile [] (neonates and infants only)
Elevated respiratory rate (RR): >th percentile [] (age-specific values shown in Table )
Abnormal temperature (TMP): <. °C or >. °C [] (with correction if axillary)
Hypotension: Systolic blood pressure (SBP) <th percentile [] (age-specific)
Elevated shock index (SI, defined as HR ÷ SBP): >th percentile (age-specific values shown in Table )
Elevated diastolic shock index (defined as HR ÷ Diastolic blood pressure): >th percentile (age-specific)
Low peripheral blood oxygen saturation (SpO): ≤% [], determined by pulse oximetry
Abnormal white blood count (WBC) [] within past  h (age-specific)
Emergency severity index [] (ESI, an acuity assessment assigned to all ED patients during initial triage)=“”
Neonate (age≤ days)
Skin description contains “Mottled,” “Cyanotic,” or “Diaphoretic” from triage assessment
Breathing description contains “Labored” or “Grunting” from triage assessment
Level of consciousness (LOC) not “Alert” by AVPU scale, from triage assessment
Prolonged capillary refill time: “– s” or “> s” from triage assessment
Pulse strength “weak” from triage assessment
Hypoxia, from chief complaint or recent coded diagnosis
Acute organ system dysfunction (cardiac, CNS, hepatic, renal, or respiratory), from chief complaint or recent coded diagnosis
Infection (known, suspected, or at increased risk), based on following list of individual metrics:
– Triage chief complaint of abscess, appendicitis, cellulitis, encephalitis, hepatitis, “infection” (excluding upper respiratory), meningitis,

pneumonia, surgical site inflammation, or urinary tract infection (UTI or pyelonephritis)

– Presence of catheters: central venous line, implant, port, or shunt for dialysis

– History of short gut or necrotizing enterocolitis (NEC)

– Recent coded diagnosis of acute (within 7 days) or chronic (within 30 days) infection of specific types having a known association with
sepsis [12]

– Recent (within past 48 h) preliminary or final positive result (excluding contaminants) for blood, CSF, urine, or sterile cavity culture
(bacterial or fungal) or viral panel; or positive urinalysis result for bacterial infection

Immunocompromise (known, suspected, or at increased risk), based on the list of individual metrics below:

– History, previous diagnosis, or chief complaint of cancer, cerebral palsy, Crohn’s disease, Cushing’s disease, cystic fibrosis, Down’s
syndrome, immunodeficiency,mitochondrial disease, nephrotic syndrome, neutropenia, organ transplant, rheumatoid arthritis, sickle cell
disease, splenectomy, or ulcerative colitis

– Current use of corticosteroid or post-transplant medications
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Identification of “gold standard” cases

“Gold standard” (GS) sepsis cases were identified using retrospective
chart reviews of possible sepsis cases presenting to CHKD’s ED during
one of two time periods: November–December 2012 and August 2014–
January 2015. Possible sepsis cases were independently identified
without using the CAHR-AT to avoid an “incorporation bias” that
might falsely raise the tool’s apparent sensitivity and specificity [18].

Reviewed cases consisted of admitted ED patients meeting at least
one of the following criteria: (1) discharge diagnosis of sepsis, severe
sepsis, or septic shock;disseminatedbacterial, fungal, or viral infection;
or a local infection having the potential of progression to sepsis, with
specific ICD-9 diagnosis codes as detailed elsewhere [12]; or, (2) a pos-
itive culture from blood or fluid from a sterile cavity (e.g., peritoneal or
cerebrospinal fluid (CSF)); or (3) a case meeting the definition of sepsis,
severe sepsis, or septic shockby either the criteria ofGoldstein et al. [14],
or requiring coded ICD diagnoses of infection and organ dysfunction as
used by Angus et al. [19] or Balamuth et al. [20, 21]. These criteria
identified 109 and 807 cases from the two periods, respectively, repre-
senting 2.6% of ED patients during those periods.

Ten reviewers (four physicians, five nurses, and one pharmacist)
were trained on the criteria to define sepsis; each received a patient
summary comprising ∼50 parameters extracted from the EHR,
including maximum and minimum vital sign values, laboratory re-
sults, medications, and coded diagnoses. Reviewers were asked to
review any other components of the patient’s EHR to arrive at a
diagnosis of “sepsis” (verified or suspected disseminated infection,
accompanied by SIRS), “severe sepsis” (sepsis with organ dysfunc-
tion), or “patient not septic.” Reviewers were instructed to use age-
specific vital sign ranges (as determined by our previous work [12, 22])
and currently unpublished age-specific ranges for shock index, shown
in Table 2, to identify SIRS thresholds. Unlike age-specific vital sign
thresholds from the International Pediatric Sepsis Consensus (IPSC)
conference [14], which were not evidence-based, our vital sign
thresholdswere derived fromamulti-centered database of∼1.2million
ED visits [22]. Reviewers were asked to weigh trends in metrics more
heavily than isolated values, to consider alternative explanations for
abnormal clinical parameters, and to consider sepsis in culture-
negative cases.

GS cases were defined as: (1) sepsis with organ dysfunction
(“severe sepsis” as defined above) that developed within 48 h of ED
arrival; this time period was chosen based on its use to distinguish
between community-acquired vs. hospital-acquired infection [23]; or
(2) children meeting SIRS criteria while in the ED, as redefined from
our earlier work (Table 3) [12], who developed sepsis (without organ
dysfunction) within 24 h of ED arrival and who had “major” or
“extreme” SOI using the APR-DRG v32 criteria.

In an initial assessment of inter-rater reliability, 22 cases (2.8%
of the total) were reviewed jointly by all reviewers and showed a
somewhat higher (Conger’s Kappa=0.62) agreement among raters
for “severe sepsis” cases than for “sepsis” cases (Conger’s
Kappa=0.55) [24]. Thus, all sepsis cases were confirmed by an in-
dependent chart re-review by one of three experienced physician
reviewers, and the initial low degree of inter-rater agreement for
identifying sepsis as corroborated elsewhere [25, 26] prompted our
use of the APR-DRG SOI criteria as an independent indicator of
physiologic decompensation [13].

Table : CAHR-AT age-specific vital sign thresholdsa.

Age
category

HR lower
limit (LL)b of
normal []

HR upper
limit (UL)c of
normal []

RR UL
[]

SI UL (SI =
HR ÷ SBP)

< mo
(neonate)

   ≥.

 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < mo    ≥.
 to < yrs    ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
 to < yrs N/A   ≥.
≥ yrs N/A   ≥.

aHR, heart rate; RR, respiratory rate; SI, shock index; SBP,
systolic blood pressure. Lower and upper limit thresholds
represent the th and th percentiles, respectively, among ED
patients for each age range. bAbnormally low HR’s are ignored for
patients receiving clonidine or beta blockers recorded as recent
meds or on Medication List. cAbnormally high HR’s are ignored for
patients receiving asthma meds such as albuterol or stimulant
meds such as Ritalin™ recorded as recent meds or on Medication
List.
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The final GS selection comprised 74 cases identified during the
2012 and 2014–2015 periods, representing 0.21% of 35,586 ED patient
arrivals. Eight additional GS cases (representing more recent instances
with extreme SOI outcomes, including deaths, that might have been
prevented by earlier recognition of sepsis) were added to “train” the
alert tool as described below; however, these additional cases were not
included in calculations of the tool’s performance for the study group.

Selecting metrics associated with infection-related
decompensation

From the metrics in Table 1, those with a sufficient association (p≤0.2)
with GS cases by univariate analyses were included in a stepwise
multiple logistic regression modeling process to identify those factors
having a significant independent association (p<0.05)with these cases
while adjusting for the effects of each other factor in the model. For
this analysis, each factor was assigned a binary score of either “0” or
“1” (“1” indicating an “abnormal” value as defined in Table 1). Addi-
tionally, our model considered the added effects of all possible two-
factor interactions (e.g., “abnormal temperature among neonates,”
“low oxygen saturation combined with suspicion of infection,” etc.)

Assigning weights to the selected metrics

For each individual factor and two-factor interactions showing a sig-
nificant independent association with the GS cases, a weighting factor
was assigned reflecting the factor’s relative importance. This process
was conducted empirically by first arbitrarily assigning each factor a
weight (e.g., from “0” to “3”) and defining tool “firing” to be any
combined score greater than or equal to a certain cut-off (e.g., ≥5), then
running an iterative program to test all possible combinations of four
weights (“0”, “1”, “2”, or “3”) on all selected factors for the patients in
the study sample. Testing all possible combinations of four weights
was carried out separately for weight ranges “0” to “3” and “1” to “4”,
and for CAHR-AT firing cut-offs from “3” to “7”. An exception to this
method of assigning and testing possible weights was made for sig-
nificant two-factor interactions that had a negative association with
the GS cases (i.e., “abnormal” values for both factors were associated
with a reduced likelihood of infection-related decompensation after

adjusting for their individual effects). In these cases, the interaction
elements were assigned possible weights of either “0”, “−1”, or “−2”.
Theweights ultimately chosen for the CAHR-ATwere selected from the
combination(s) that resulted in the optimal receiver operating char-
acteristics (ROC). As an early screening tool, our selection process
prioritized maximizing sensitivity; secondary priorities were to mini-
mize overall firing rate and maximize positive predictive value (PPV)
for a final outcome of high SOI (“major” or “extreme”) assigned by the
APR-DRG grouper. An additional criterion for our selection of an
optimal weight configuration was the consistency of performance
between the two patient sample periods (2012 vs. 2014–2015) that
comprised our study population.

Improvement process

The initial EHR tool versionwas implemented in August 2017. Changes
to the tool configuration and component weights were subsequently
made based on analysis of cases from the second calibration time
period (2014–2015) plus newly identified GS cases. Subsequent tool
modifications incorporated the two-factor interactions and a series of
incremental changes based on project and end-user feedback.

Validation and testing

To test CAHR-AT performance between the 2012 and 2014–2015 GS
periods, we performed a split-sample validation of each implemented
configuration by comparing tool performance between the two pe-
riods. The ROC curves were compared using the area under the curve
(AUC) summary metric; an unpaired t-test [27] was used to test the
difference in AUC for the two time periods.

Following CAHR-AT implementation, periodic tool performance
evaluations included ROC metrics (sensitivity, specificity, and PPV in
relation to the GS cases), firing rate, and characterizations of firings by
the patients’ SOI outcome. To include more recent cases for tool per-
formance testing, we analyzed an additional retrospective patient
sample consisting of all children (totaling 26,026) presenting to the
CHKD ED from January through June 2017, just preceding the imple-
mentation date. This sample contributed cases to evaluate the tool’s
firing rate and PPV for high SOI outcomes.

Results

Characteristics of “gold standard” cases and
tool creation

Characteristics of the ED patient population and the 82
children with GS sepsis used during the two study time
periods are shown in Table 4. Notably, although 10%of all
ED arrivals were assigned a discharge primary service line
of “Infectious Disease” (ID) by the APR-DRG® V32 grouper,
just 0.2% of arrivals were identified by chart review as GS
sepsis or severe sepsis cases. This is consistent with a
report from another pediatric ED that 0.3% of patients
were treated for severe sepsis within 24 h of arrival [6]. A

Table : SIRS criteria: original IPSCa and revised versions used to
identify gold standard sepsis cases.

Systemic inflammatory response syndrome (SIRS) components from
IPSCa

– Group 1: Age-dependent abnormal heart rate (HR) or respiratory
rate (RR)

– Group 2: Abnormal temperature or age-dependent white blood
count (WBC) or percent neutrophil banding

IPSCa Criteria for SIRS: Requires a minimum of two abnormal mea-
sures, at least one of which must be in Group  above

Revised Criteria for SIRS []: Requires a minimum of two abnormal
measures, one of whichmust be in Group  and the othermust be in
Group  above

aInternational Pediatric Sepsis Conference [].
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smaller percentage (0.1%) of our ED arrivals were final
diagnosis coded as septicemia, sepsis, severe sepsis, or
septic shock, which is consistent with reports that coding
routinely under-identifies septic children by clinical criteria
[28, 29]. Of our GS cases, only ∼31% were assigned “ID” as
their primary service line, indicating that this service line
grouper is not a useful identifier of infection-related cases.
Overall, 1.2% of all ED arrivals and 10.6% of those subse-
quently hospitalized were classified as high SOI cases.

Characteristics of and improvements to the
CAHR-AT algorithm

The evolution of the CAHR-AT algorithm is summarized
in Table 5. The original August 2017 algorithm was
configured to identify GS cases among the November–
December 2012 ED cohort. Incremental improvements,
combined with a second calibration period (August
2014–January 2015), led to a new CAHR-AT algorithm
(December 2018). Further incremental improvements,
most importantly adding two-factor interactions to the
elements considered for algorithm inclusion, led to the
latest version implemented in October 2019. Each imple-
mented CAHR-AT algorithm followed the same method-
ology of selecting and optimizing components through
the combined use of statistical analysis and an iterative

weighting process, with one exception: the factor in Ta-
ble 5 (“recent [past 48 h] positive blood, CSF, or urine
culture result [Cul]”) was included because of its clinical
association with sepsis despite a frequency too low to
establish a statistical association; this factor was arbi-
trarily assigned a weight of “2.”

Performance characteristics and overall CAHR-AT
tool improvement over its three iterations are shown in
Table 6: sensitivity increased from 70.3 to 77.0%, speci-
ficity from 87.8 to 98.1%, PPV for GS cases (PPV-GS) from
6.3 to 7.7%, PPV for high SOI cases (PPV-SOI) increased
from 19.4 to 22.5%, and firing rate decreased from 2.4 to
2.0% of ED visits. Sensitivity and specificity refer specif-
ically to the identification of GS sepsis or severe sepsis
cases from the two calibration periods. The initial
(August 2017) tool configuration showed higher apparent
sensitivity, specificity, and PPV-GS, as determined from
information derived only from the 2012 period; however,
the addition of cases from the 2014–2015 period was
instrumental in deriving improved versions of the algo-
rithm. Values for alert firing rate and the predictive value
for physiologic decompensation, as measured by
PPV-SOI, were improved by combining cases from the
January–June 2017 patient sample with the original
cohort periods (yielding a total sample size of 61,612), as
these latter two metrics are not dependent on the iden-
tification of GS cases by chart review.

Table : Characteristics of the study cohorts (n=,).

Time period of ED arrival Nov –Dec  Aug –Jan  Overall

Characteristics mean (SD) or % (n)
Age category . years (.) . years (.) . years (.)
Neonate (– weeks) .% () .% () .% ()
Infant (> weeks to < years) .% (,) .% (,) .% (,)
Toddler and preschool ( to < years) .% (,) .% (,) .% (,)
School age child ( to < years) .% (,) .% (,) .% (,)
Adolescent and young adult (≥ years) .% () .% (,) .% (,)
Total % of overall (n) .% (,) .% (,) % (,)

Hospitalized as inpatient or observation .% () .% (,) .% (,)
Length of stay if hospitalized . days (.) . days (.) . days (.)
Infectious disease (ID) primary service linea

.% () .% (,) .% (,)
Sepsis-related final diagnosisb

.% () .% () .% ()
Gold standard (GS) casesc of severe sepsis or of early sepsis

with high-severity outcomes
.% () .% () .% ()d

“ID” primary service linea as % of GS cases identified above .% () .% () .% ()
High SOI outcomese (all arrivals) .% () .% () .% ()
High SOI outcomese (if hospitalized) .% () .% () .% ()
Deaths (all causes, admitted or ED-only) % () .% () .% ()

aAssigned following discharge based on APR-DRG v classification. bAny coded discharge diagnosis of septicemia, sepsis, severe sepsis, or
septic shock. cIdentified by chart review process. dIncludes  GS cases identified from / through / added to help calibrate tool.
eSeverity of illness (SOI) “major” or “extreme” based on APR-DRG v classification.
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Table 7 shows a more detailed characterization of
patients in the 2012, 2014–2015, and 2017 periods identi-
fied as CAHR-AT+ using the most recent (October 2019)
tool configuration. While 24.3% of these CAHR-AT+ pa-
tients were assigned an Emergency Severity Index (ESI)
[30] level of “1” (i.e., recognized as high acuity cases at
triage), more (33.4%) were assigned relatively low acuity

levels (ESI 3–5) suggesting that the potential for decom-
pensation may have been unrecognized. Of admitted
patients, alert positive children were hospitalized nearly
twice as long as alert negative children (mean LOS 5.2 vs.
2.8 days, p<0.001), which is consistent with the tool’s
ability to predict more severe outcomes as measured by
the APR-DRG/SOI index.

Table : Reassessments/reconfigurations of the CAHR-ATa.

August  (original alert tool) from , ED visits

– Configuration (component weights)b: TMP (+1), HR (+1), RR (+1), SI (+2), ESI (+3), Neo (+3), SpO2 (+1), Inf (+1), Imm (+2), WBC (+1), Cul (+2);
Fires for scores ≥5

– Used 28 “gold standard” cases from a single time interval (11/2012–12/2012) for tool calibration.

– Includes 41 age categories and 95th percentile cut-offs for defining abnormal values for HR, RR, and SI.

– Evaluates recent diagnostic history; patient’s “problems” list; and the reason for visit, chief complaint description, medical history,
medical devices, and recent medications sections of the Cerner electronic ED triage form for determining the “infection” and “immuno-
compromise” alert components.

– Suppresses alert firing on patients with suspected asthma or bronchiolitis who were afebrile, based on asthma history and asthma
medications ordered during the current ED visit.

December  from , ED visits

– Configurationb: TMP (+2), HR (+1), RR (+1), SI (+1), ESI (+3), Neo (+3), SpO2 (+1), Inf (+2), Imm (+1), WBC (+1), Cul (+2); Fires for scores ≥5
– Adds a second set of 46 “gold standard” cases (08/2014–01/2015)+ eight additional “gold standard” cases from01/2017 through06/2017

for tool calibration.

– Also adds an additional patient sample of 26,026 children (01/2017–06/2017) and a total of 1,027 high SOI outcomes (442 from the 2012
and 2014–2015 cohorts and 585 from the 2017 cohort) for use in optimizing the alert firing rate and PPV for high SOI outcomes.

– Suppresses firing for elevated HR for 3 h following the administration of β-adrenergic agonists known to elevate heart rate.

– Adds detection of likely urinary tract infections from urinalysis results of nitrite, leukocyte esterase, and white blood count.

– Suppresses firing for trauma cases based on patient registration information.

– Reassigns positive urine culture and urinalysis results to the “infection” alert component and restricts “positive culture” component to
blood and CSF results only.

– Removed suppression of alert firing for afebrile asthma and bronchiolitis patients, resulting in increased alert sensitivity with only a small
loss in positive predictive value.

October 

– Configurationb: TMP (+2), HR (+1), SI (+1), ESI (+3), Neo (+1), SpO2 (+2), Inf (+2), Imm (+2),WBC (+1), TMP+Neo (+2), TMP+ ESI (−1), SpO2+Inf
(−1); Fires for scores ≥5

– Removes RR as an alert component.

– Reassigns ALL positive culture results including blood and CSF to the “infection” alert component and adds additional positive culture
results for ascites, joint, pericardial, peritoneal, pleural, and synovial fluids as “infection” component triggers. The separate “positive
cultures” component is eliminated.

– Adds two factor interactions to the CAHR-AT model. Previous versions considered only main effects.

aThe listed changes do not include: minor changes; error corrections; run-time or ease of use improvements; procedures for correcting clinician
data entry errors; improvements in evaluating free-text fields; additions of new ICD- diagnosis codes or “problem” list and chief complaint
variants that trigger the “infection” and “immunocompromise” components of the alert. bAbnormal values for temperature (TMP), heart rate
(HR), respiratory rate (RR), or white blood count (WBC); elevated shock index (SI); Emergency Severity Index assigned a value of “” (ESI);
neonate, age ≤ days (Neo); low oxygen saturation (SpO); known, suspected, or at increased risk for infection (Inf) or immunocompromise
(Imm); recent (past h) positive blood, CSF, or urine culture result (Cul); simultaneous occurrence (interaction) of two listed factors (TMP+Neo,
TMP + ESI, SpO + Inf).
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Validation

The split-sample validation analysis tested the null hy-
pothesis of no difference in AUC between the 2012 and
2014–2015 calibration cohorts. For the latest (October 2019)
CAHR-AT configuration, the ROC outcomes were: 2012 time
period n=8,934, sensitivity=85.7%, specificity=98.0%,
AUC=0.918, standard error (SE)=0.034; 2014–2015 time
period n=26,652, sensitivity=71.7%, specificity=98.1%,
AUC=0.849, and SE=0.034. The resultant AUC difference
(0.069) is not statistically significant (p=0.15). The corre-
sponding analyses for the August 2017 and December 2018
configurations similarly showed no significant difference
in AUC between the two periods (p=0.21 and p=0.12,
respectively).

Prediction of physiologic decompensation

For the latest (October 2019) tool configuration, the positive
and negative predictive values for CAHR-AT firing
(maximum score ≥5) for high SOI outcomes were 22.5 and
98.7%, respectively. This contrasts with the low prevalence
(1.3%) of high SOI outcomes among our ED arrivals, illus-
trating the CAHR-AT’s usefulness in predicting these high
SOI cases. Among 60,355 patient encounters with SOI data
available in the three time period cohorts, patients having
maximum CAHR-AT scores below the firing threshold of
“5” had a low probability of a high SOI outcome (Figure 1).
The probability of a high SOI outcome increased rapidly for
scores ≥5, reaching 100% for the few patients scoring “11”
or above. Given the SOI metric’s design as an indicator of
the ‘‘extent of physiologic decompensation or organ sys-
tem loss of function’’ [13] reached during the hospital
encounter, this finding illustrates the face validity of the

Table : CAHR-AT characteristics and improvementsa.

Implementation
datea

Sensitivityb (% CI) Specificityb (% CI) Positive predictive
value (PPV-GS)b

(% CI)

Firing ratec

(% of ED
arrivals)d

Severity of illness
“major” or “extreme”
(PPV-SOI)d (% CI)

August  .%e (., .) .% (., .) .%e (., .) .% .% (., .)
December  .% (., .) .% (., .) .% (., .) .% .% (., .)
October  .% (., .) .% (., .) .% (., .) .% .% (., .)

aSee Table  for explanation of configuration, characteristics, and improvements associatedwith each date. bRefers to the identification of “gold
standard” cases of severe sepsis that developed within  h of arrival or in whom early sepsis developed within  h with a final SOI of “major”
or “extreme” during the two time periods: Nov –Dec  and Aug –Jan  (n=, encounters). cFrequency of a CAHR-AT
score ≥ (firing). dRefers to characteristics of the alert tool during the retrospective time periods Nov –Dec , Aug –Jan , and
Jan –Jun  (n=, encounters). eThe sensitivity and PPV for this configuration were originally reported as . and .%,
respectively, based on cases only from the Nov –Dec  time period.

Table : Characteristics of CAHR-AT + patients in the expanded
study groupa for latest (October ) tool configuration.

Characteristics Mean (SD)
or % (N)

Total firings % of all cases .% (,)
Age category
Neonate (– weeks) .% ()
Infant (> weeks to < years) .% ()
Toddler and preschool ( to < years) .% ()
School age child ( to < years) .% ()
Adolescent and young

adult (≥ years)
.% ()

Emergency severity index, ESIb (acuity)
Level  .% ()
Level  .% ()
Level  .% ()
Level  .% ()
Level  .% ()

Diagnostic group (APR-DRG® v)
Pneumonia, unspecified .% ()
Asthma .% ()
Upper respiratory tract infection .% ()
Fever .% ()
Bronchiolitis and RSV Pneumonia .% ()
Kidney and urinary tract infection .% ()
Major hematological/immunological

diagnosis
.% ()

Respiratory signs & symptoms, minor
diagnoses

.% ()

Sickle cell crisis .% ()
Seizure .% ()
All other ( diagnostic groups) .% ()

Hospitalized as inpatient or observation .% ()
Length of stay (LOS) if hospitalized . days (.)
Admitted to Intensive Care Unit (ICU) .% ()

aRepresents , CAHR-AT firings from a patient sample of ,
encounters during all three retrospective time period cohorts. bLevel 
is highest acuity, Level  is lowest.
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CAHR-AT score as a predictor of such physiologic or organ
system dysfunction.

Discussion

Our goal in developing the CAHR-AT tool was to facilitate
early recognition and treatment of infection-related cases
having the potential for physiologic decompensation,
preferably before such decompensation occurs. Improve-
ments in treatment compliance and timeliness since the
implementation of the CAHR-AT at our institution will be
the subject of a future report.

A systematic review of the diagnostic accuracy of adult
automated electronic sepsis alert systems noted that eval-
uating these tools is complicated by the lack of a GS sepsis
definition and the use of varying thresholds for SIRS
criteria. [31]. Similarly, current definitions of pediatric
sepsis are of limited value to bedside clinicians to identify
cases of sepsis [32], and many of these definitions have
poor predictive values and have not been validated, lead-
ing to discrepancies in the identification of cases [25]. Most
EHR tools to identify pediatric sepsis use vital sign
thresholds based on the IPSC criteria [14], which were not
evidence based. We observed that the 95th percentile for
heart rate and respiratory rate derived from over 1.2 million
pediatric ED visits [22] were higher than thresholds used in
the Pediatric Advanced Life Support course [33]. There are
similar discrepancies in heart rate and respiratory rate
thresholds, especially for certain age groups, observed
when using the IPSC thresholds, leading to a high rate of
SIRS identified in febrile children seen in the ED [10].

Despite variation in GS case definition in different studies,
the proportion of GS cases identified in our study (0.21% of
ED population) is similar to that observed in other trials
(0.2–0.45%) [6, 10, 34].

Aspects of the CAHR-AT development that represent
advancements in the early recognition of cases at risk for
physiologic decompensation include:

A clinician-based chart review process that was inde-
pendent of the empirically developed CAHR-AT algorithm
to identify GS cases of severe sepsis and cases of early
sepsis with high SOI. This resulted in an alert tool that is
predictive and that minimizes the introduction of an
‘‘incorporation bias,’’ as described earlier.

We chose a retrospective, rather than prospective, time
period for tool calibration to avoid the possibility that tool
results affected clinician decision making and treatment
that might alter patient outcomes and reduce the tool’s
apparent predictive value. Also, using a standard set of
patients to evaluate the tool’s performance eliminated the
additional variability introduced by a constantly changing
patient population represented in a prospective method of
evaluation.

Our use of an empirical methodology to identify met-
rics included in the final algorithm, our inclusion of
interactive effects between potential factors, and our iter-
ative method for selecting component weights optimized
the algorithm for identifying cases based on information
generally available in the EHR for patients arriving at our
hospital’s ED.

Using the APR-DRG/SOI index as a measure and pre-
dictor of eventual physiologic decompensation resulted in a
CAHR-AT scoring system that is quantitatively predictive of

Figure 1: Association of maximum ED
CAHR-AT Score with outcomes of ‘‘Major’’ or
‘‘Extreme’’ severity of Illness for latest
(October 2019) tool configuration.
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this outcome. This expands the utility of the CAHR-AT to-
wards identifying other infection-related cases likely to have
more severe outcomes rather than strictly identifying only
the rarer ED patients who present with or shortly develop
‘‘gold standard’’ sepsis or severe sepsis, the identification of
which is highly variable among clinicians [25, 26].

Future development

A logical extension of the CAHR-AT project is developing a
quantitative, predictive EHR-based alert tool for pediatric
inpatient units. Such an alert tool would utilize additional
inputs (e.g., laboratory results, treatment data [including
surgical and respiratory therapy inputs], etc.). As the spe-
cific criteria for predicting the likelihood of infection-related
decompensationmayvary for different service lines (such as
hematology/oncology), an ideal alert tool should use a
flexible algorithm adapted to these variations within the
patient population, including incorporating age-specific
definitions of normal and abnormal vital signs that are
appropriate for an inpatient, rather than an ED, population.
Finally, expanding the CAHR-AT methodology to inpatient
units could include criteria for organ dysfunction, which
would be consistentwith the recommendation to update the
definition for sepsis in children [32] to be consistent with the
Sepsis-3 criteria used in adult sepsis [35].

Limitations

The CAHR-AT algorithm was based only on metrics readily
available at the patients’ arrival or resulted during their ED
stay, which limits the predictive value of the tool. Only one
rarely available metric — a recent positive culture result —
was included in the implemented algorithms due to its
known clinical association with GS sepsis. While the inclu-
sion of other metrics, such as metabolic panel, lactate, or
procalcitonin results, may have resulted in a higher pre-
dictive value, we had noway to assess this as they are rarely
ordered in our ED. Similarly, certain indicators incorporated
into other sepsis or shock assessment protocols [6, 9, 32],
such as prolonged capillary refill time and diminished level
of consciousness, did not show a significant association
with our GS sepsis cases due to their low frequency of
occurrence or to their implementation in our EHR as cate-
gorical values that are not well suited for the CAHR-AT.

Although using a sample of over 35,000 patients to
identify GS sepsis and severe sepsis was ambitious due to its
reliance on manual chart review of possible cases, a larger
calibration time period with more GS cases would be

preferred. The addition of a second calibration period from
August 2014–January 2015was helpful in improving the tool
following its initial implementation. Ultimately, a study
population drawn frommultiple children’s hospitals should
further improve the generalizability of the CAHR-AT.

Conclusions

We created and implemented an ED pediatric assessment
tool that identifies and quantitatively predicts the occur-
rence of physiologic decompensation in cases of infection-
related illness. The tool was initially designed to identify GS
sepsis cases identified up to 48 h following ED arrival using
a novel, empirical iterative method of algorithm creation.
Subsequent tool refinement included identifying admitted
EDpatientswith highAPR-DRG® SOI to produce a toolwith a
favorable combination of high sensitivity in predicting GS
sepsis cases, highPPV for physiologic decompensation, and
low overall firing rate. Our results suggest that this tool can
playan important role in aprogramdesigned tooptimize the
delivery of critical treatments for children at risk for
decompensation associated with infection.
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