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Abstract

Background: Diagnostic test accuracy (DTA) systematic 
reviews (SRs) characterize a test’s potential for diagnostic 
quality and safety. However, interpreting DTA measures in 
the context of SRs is challenging. Further, some evidence 
grading methods (e.g. Centers for Disease Control and Pre-
vention, Division of Laboratory Systems Laboratory Medicine 
Best Practices method) require determination of qualitative 
effect size ratings as a contributor to practice recommenda-
tions. This paper describes a recently developed effect size 
rating approach for assessing a DTA evidence base.
Methods: A likelihood ratio scatter matrix will plot posi-
tive and negative likelihood ratio pairings for DTA studies. 
Pairings are graphed as single point estimates with con-
fidence intervals, positioned in one of four quadrants 
derived from established thresholds for test clinical 
validity. These quadrants support defensible judgments 
on “substantial”, “moderate”, or “minimal” effect size 
ratings for each plotted study. The approach is flexible in 
relation to a priori determinations of the relative clinical 
importance of false positive and false negative test results.
Results and conclusions: This qualitative effect size rating 
approach was operationalized in a recent SR that assessed 
effectiveness of test practices for the diagnosis of Clostrid-
ium difficile. Relevance of this approach to other methods of 
grading evidence, and efforts to measure diagnostic quality 
and safety are described. Limitations of the approach arise 

from understanding that a diagnostic test is not an isolated 
element in the diagnostic process, but provides information 
in clinical context towards diagnostic quality and safety.

Keywords: clinical utility; clinical validity; diagnostic 
accuracy; diagnostic quality; laboratory diagnosis; labo-
ratory medicine; likelihood ratio; systematic review.

Introduction

Background

Clinical laboratory testing generates information to benefit 
patient management decisions in support of health, while 
inaccurate or inappropriate testing may contribute to 
patient harm [1–3]. Moreover, measures of diagnostic test 
accuracy (DTA) provide insight into a test’s (or test combi-
nation’s) ability to contribute to quality and safety within 
diagnostic pathways by estimating a test’s clinical validity 
[4]. Based on rates of true positives (TP), false positives (FP), 
true negatives (TN), and false negatives (FNs), these meas-
ures can inform the appropriate role of a test in a diagnostic 
pathway, and can assist in interpretation of test results for 
individual patients as generally depicted in Figure 1 [6–9].

Measures of DTA can be determined through diag-
nostic cross-sectional studies and diagnostic case-control 
studies which assess performance of one or more index 
tests in relation to a gold standard or reference method 
test [10–13]. Through these study designs, rates of TP, FP, 
TN and FN are derived for assembly into various summary 
measures as illustrated in Figure 2 [14].

DTA systematic reviews (SRs) are a method for devel-
oping recommendations on the use of a test or a combi
nation of tests [15–17]. In DTA SRs, studies are synthesized 
to obtain pooled, and potentially more reliable, DTA 
measures. Further, DTA SRs may help investigators deter-
mine how DTA may vary by populations, settings/clinical 
contexts, or positivity thresholds [15, 16, 18, 19]. However, 
such findings are not the only arbiter of decisions on test 
implementation and interpretation in support of diagnos-
tic quality and safety [20–22]. For example, a DTA evidence 
base, of itself, cannot directly indicate downstream conse-
quences without additional linkage to separate bodies of 
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evidence (e.g. on treatment efficacy for the target condi-
tion), or through logical inference [23]. Adding to the inter-
pretative challenges, published DTA SRs often provide a 
scattershot of DTA measures, without guidance on which 
are more informative for those making test implementa-
tion decisions [24–26]. This situation is especially prob-
lematic when one considers, as noted by Schiff 2012, it is 
possible “the average clinician could care less about…a 
new study to increase their positive predictive value” [27]. 
While more patient-centered research strategies have been 
described through controlled trials assessing outcomes 
of test-and-treat interventions, and through hierarchical 

assessments of test efficacy, such studies are less often 
found in the available evidence base [10, 28–32].

Some of these limitations of DTA SRs may partially 
relate to infrequent use of an analytic framework, which 
provides scope and context for DTA measures, and is a 
recommended standard for SRs in general [33, 34]. Inter-
pretive challenges may also arise when primary DTA 
studies are poorly reported or demonstrate risk of bias. 
Reporting standards for DTA studies are found in the 
Standards for Reporting of Diagnostic Accuracy, and risk 
of bias is identifiable through the Quality Assessment of 
Diagnostic Accuracy Studies risk of bias tool [35–38].
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Figure 2: Measures of DTA and their significance.
Figure adapted from Bossuyt 2008 [14].
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Figure 1: Uses of DTA measures in the total testing process.
For definitions and characteristics of the total testing process in general, refer to Plebani [5].
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In addition to these challenges, some SR methods 
[e.g. the Centers for Disease Control and Prevention, 
Division of Laboratory Systems (CDC DLS) Labora-
tory Medicine Best Practices (LMBP) method] require 
determination of qualitative effect size ratings (e.g. “sub-
stantial”, “moderate”, “minimal”) as a partial determi-
nant of the strength of body-of-evidence [33]. Table 1 
details the CDC DLS LMBP method’s criteria for rating 
the strength of a body-of-evidence, in general taking 
into account the number of studies (within an interven-
tion group) with particular effect size ratings and study 
quality ratings.

Objective

To address these DTA SR challenges, a clinically meaning-
ful approach was needed in order to derive a single quali-
tative effect size rating for each DTA study and for a body 
of evidence as a whole. This paper describes the approach 
developed, which is based on:

–– Location of a diagnostic accuracy study within a four-
quadrant likelihood ratio scatter matrix and

–– Matrix quadrant demarcation derived from estab-
lished likelihood ratio thresholds signifying high 
clinical validity.

Materials and methods
Likelihood ratios are depicted in Table 2, and multiple resources 
are available to further aid in understanding and interpretation 
[13, 17, 39–45]. In general, clinical interpretation of likelihood ratios 

Table 1: CDC DLS LMBP criteria for determining strength of body-of-
evidence ratings.

Strength of 
evidence rating

  # of studies   Effect size 
rating

  Quality 
rating

High   ≥3   Substantial  Good
Moderate   2   Substantial  Good

  or ≥3   Moderate   Good
Suggestive   1   Substantial  Good

  or 2   Moderate   Good
  or ≥3   Moderate   Fair

Insufficient   Too few   Minimal   Fair

Adapted from: Christenson et al. [33].

Table 2: Positive and negative likelihood ratio definitions and interpretations.a

Positive likelihood ratio   Negative likelihood ratio

What it is: the probability of an individual with target condition 
(e.g. disease, gene, infectious organism) having a positive test 
result relative to the probability of an individual without the target 
condition having a positive test result. Higher values are better 
(with low values there is increased risk of FPs)
How it’s calculated: +LR = sensitivity/(1–specificity)
Intuitive example: if the test has a +LR = 15, then a person who 
has the condition is 15 times more likely to have a positive result 
than a person without the condition

  What it is: the probability of an individual with target condition 
(e.g. disease, gene, infectious organism) having a negative test 
result relative to the probability of an individual without the target 
condition having a negative test result. Lower values are better 
(with high values there is increased risk of FNs)
How it’s calculated: −LR = (1–sensitivity)/specificity
Intuitive example: if the test has a −LR = 0.05, then the person 
who has the condition is 20 times (1/0.05) less likely to have a 
negative result than a person without the condition

Interpretation when test result is positive   Interpretation when test result is negative

>10   High likelihood target 
condition is present when 
test is positive

  ≤0.1   High likelihood target 
condition is absent when test 
is negative

>5–10   Moderate likelihood target 
condition is present when 
test is positive

  >0.1–0.2   Moderate likelihood target 
condition is absent when test 
is negative

>2–5   Low likelihood target 
condition is present when 
test is positive

  >0.2–0.5   Low likelihood target 
condition is absent when test 
is negative

≤2   Test not likely to identify 
patients having target 
condition when test is 
positive

  >0.5   Test not likely to identify 
patient not having target 
condition when test is 
negative

aInterpretation cutoffs adapted from Jaeschke et al. [39] in order to convey mutually exclusive categories. Limitations of cutoffs are 
discussed in the Methods section.
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includes use of probability thresholds, Fagan’s nomogram, and 
Bayesian reasoning.

Figure 3 further characterizes likelihood ratios by illustrating 
their relationship to other DTA measures, and their relationship to 
ruling-in or ruling-out a target condition.

Use of likelihood ratios to determine effect size rating

The American Society for Microbiology (ASM) recently completed a 
SR using the CDC DLS’s LMBP method to derive practice recommen-
dations for Clostridium difficile testing practices (pending publication 
at this time). The evidence base for this SR consisted of DTA studies, 
and the SR was conducted in collaboration with the CDC DLS.

DTA studies present analysis challenges not encountered 
when assessing other types of evidence such as randomized con-
trolled trials and before-and-after studies [15], and the CDC DLS 
LMBP SR method was not developed to optimally address some 
of these challenges. An important challenge is interpretation of 
the tradeoff between diagnostic sensitivity and specificity, par-
ticularly in the context of the LMBP method of evidence grad-
ing. Given that DTA studies report two related effects (diagnostic 
sensitivity and specificity), the review team determined that an 
approach was needed to capture (1) the trade-off between these 
two measures of effect, and (2) the clinical importance of this 
tradeoff. Lastly, an approach for deriving a single qualitative 
effect size rating from these measures was needed, expressible as 
“substantial”, “moderate”, or “minimal” (see Table 1 evidence rat-
ing criteria) [13].

Approach step 1: The solution (developed by authors MLR and JSP) 
was based on two diagnostic accuracy effect measures: the positive 
likelihood ratio (+LR) and the negative likelihood ratio (−LR). Fur-
ther, the solution adopts cutoff points described in the literature as 
providing strong evidence of a test’s ability to rule-in or rule-out a 

disease [8, 17, 39, 44, 46–49], and extends them into the following 
+LR and –LR effect pairings:

–– “Substantial” effect rating, if: +LR > 10 and –LR < 0.1
–– “Moderate” effect rating, if: +LR > 10 and –LR > 0.1 or +LR < 10 

and –LR < 0.1
–– “Minimal” effect rating, if: +LR < 10 and –LR > 0.1

It is necessary to express some caveats for these likelihood ratio cut-
offs. First, these cutoffs, and the post-test probabilities of disease 
derived by using them, are not of themselves diagnostic. Accurate 
diagnosis depends on integration of information arising from diag-
nostic processes, including history, physical findings, and results 
of other testing, and it depends on multi-professional efforts to 
overcome diagnosis “pitfalls and challenges” [27, 50–52]. Second, 
there is an arbitrary nature to setting cutoffs/thresholds in support 
of qualitative effect size judgments. Cutoffs in support of effect size 
interpretation, therefore, are not ironclad rules of thumb – effect size 
interpretation should occur in context of the practical, clinical impor-
tance for whatever is being researched [53–56]. Further, while these 
cutoffs provide strong evidence of a test’s ability to rule-in (+LR > 10) 
or rule-out (–LR < 0.1) a target condition, in practice this ability is 
dependent on a patient’s pre-test probability of disease in order for a 
“large and…conclusive [change] from pretest to posttest probability” 
to be observed, as is readily demonstrated by Fagan’s nomogram [17, 
39, 48]. Finally, as mentioned previously, DTA values (including likeli-
hood ratios) are not a fixed attribute of a test, but may vary according 
to population, setting/clinical context, or positivity threshold.

Nevertheless, the approach is rooted in established cutoffs repre-
senting thresholds for “high” clinical validity in service of (1) straight-
forward, binary handling of data, and (2) meaningful handling of  
FP/FN tradeoffs often observed in DTA measures. Given broad accept-
ance in the literature of these likelihood cutoffs for “high” test infor-
mation value, a defensible approach was established to meet a specific 
challenge: derive qualitative effect size measures for a DTA evidence 
base in a way that is amenable to the CDC DLS LMBP SR method of 
evidence rating. In general, approaches for simplifying information 
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Figure 3: General depiction of DTA measure ability to rule-in or rule-out.
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when making judgments has demonstrated advantages, including 
accuracy, transparency and accessibility, when the approach is rule-
based and framed to a specific context [57]. In sum, this approach 
allowed for meaningful derivation of effect size ratings for each DTA 
study, using a DTA measure that is multi-use in nature (application to 
“test performance, clinical utility, and decision making”), and which 
may overcome interpretability shortcomings associated with other 
DTA measures [58–60]. Finally, effect ratings derived from +LR/−LR  
pairings advances the notion that “test results can be valuable both 
when positive and negative” [61] by preserving the discrimination 
potential of FPs and FNs.

A last note, while the mathematical ratio of +LR to −LR is com-
monly referred to as the diagnostic odds ratio (DOR), basing effect 
ratings on the DOR was determined by the review team to be an 
unacceptable approach. For example, values for DOR are repetitive 
across various pairings of +LR to −LR, as illustrated in Deeks 2001 
[16], obscuring FP and FN tradeoffs, and further challenging defensi-
ble effect rating judgments. For example, a DOR of 500 could indicate 
either a “substantial” or “moderate” effect if linked to this approach. 
It is for this reason that pairings of +LR to −LR are assessed, rather 
than their mathematical ratio expressed as DOR.

Approach step 2: The second step in deriving a single qualitative 
effect size rating for each study was integrating these cutoffs into a 
four-quadrant likelihood ratio scatterplot of +LR and –LR pairings, 
as is further described in the next section.

Generalized approaches for determining effect size 
ratings

Before applying this approach, a review team in collaboration with 
an expert panel should identify the relative clinical importance of 
FPs and TPs, contextualizing the test to the relevant population and 
clinical setting [24, 25, 48].

The general approach of Figure 4 may be taken when the 
expert panel determines the clinical importance of FPs and FNs is 
approximately equal, or that the test (in its intended role) should 
have the ability to both accurately rule-in and rule-out a target con-
dition. From this perspective, use of point estimates [vs. use of con-
fidence interval (CI) limits] is illustrated when judging effect size 
rating. However, this approach is flexible if a review team deter-
mines it is more appropriate to upgrade or downgrade an effect 
size rating based on whether the CI for a point estimate overlaps 
quadrants. For example, the effect size rating could be based on 
the lower end of a CI if a review team determines that aspect of an 
estimate is more important to communicate through effect ratings.

While the approach in Figure 4 is based on an assumption of 
equal weight for the clinical importance of FPs and FNs, an expert 
panel may determine the clinical importance of one outweighs the 
other. There may be scenarios, then, where what might be consid-
ered a “Moderate” effect could either be upgraded to “Substantial” or 
downgraded to “Minimal.”

For example:
–– When the effects of the disease are serious, but the disease is 

treatable and the treatment does not cause patient harms or 
incur high costs. In this scenario a paired effect in the upper 
right quadrant of Figure 4 might be considered “Substantial” 
rather than “Moderate”.

–– Scenarios involving “don’t miss” medical conditions (e.g. vas-
cular events, infections, and cancer) or “undesirable diagnostic 
events” [62, 63].

Readers may also refer to Hsu et  al. 2011 for additional scenarios 
weighing benefits of correct classification (i.e. TPs and TNs) against 
the harms of incorrect classifications (i.e. FPs and FNs) as may 
further inform tailored use of these likelihood scatter matrices [24]. 
Lastly, readers may also consider the literature on “misdiagnosis” 
(i.e. wrong diagnosis), “missed diagnosis”, or “delayed diagnosis” 
[64–67].

Therefore, as an alternative to the approach illustrated in 
Figure 4, one of the following perspectives may be emphasized:

–– Rule-in a target condition (or when the clinical importance of FP 
results outweighs that of FN results) or

–– Rule-out a target condition (or when the clinical importance of 
FN results outweighs that of FP results).

Figure 5 depicts this alternative perspective when using the +LR/−LR 
scatter matrix to derive effect size ratings. In this case, the figure also 
depicts how interpretation of effect size may be affected by whether a 
point’s CIs cross quadrants, with “moderate” effects occurring when 
the CI crosses the horizontal line (left-hand Figure) or the vertical line 
(right-hand Figure).

Results

Likelihood ratio scatter matrix in the 
ASM-CDC DLS SR

There are two considerations when rating effect sizes for 
DTA statistics: (1) identifying an overall index of sample 
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Figure 4: First generalized four-quadrant likelihood ratio scatter 
matrix.
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size as relates to the tradeoff between sensitivity and 
specificity; and (2) weighing their relative clinical impor-
tance. To create an overall index of effect, the likelihood 
ratio scatter matrix was created using the midas command 
in Stata 15 (Stata Corp., College Station, TX, USA). These 
scatterplot matrices can be created in any standard sta-
tistical package, though the midas procedure in Stata pro-
vides the benefit of computing these via a subroutine of 
the more general diagnostic meta-analysis procedure.

Figure 6 illustrates the likelihood ratio scatter matrix 
used as a practical tool to rate effect sizes for the SR on 
C. difficile testing approaches. When paired likelihood 
ratios were within areas indicating high clinical validity 
(+LR > 10 and –LR < 0.1), the review team in collaboration 
with the project’s expert panel described this as a “Sub-
stantial” effect, especially if the CIs of the estimate (as 
represented by the crosshairs on the summary diamond) 
did not cross into other quadrants. When only one of the 
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Quadrants of
“moderate” effect

Quadrant of
“substantial” effect

LUQ: Exclusion and Confirmation
LRP > 10, LRN < 0.1
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LLQ: Exclusion only
LRP < 10, LRN < 0.1
RLQ: No exclusion or Confirmation
LRP < 10, LRN > 0.1
Summary LRP and LRN for index test
with 95% confidence intervals

Figure 6: Example of a likelihood ratio scatter matrix to inform effect size ratings in the ASM-CDC DLS SR.
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Figure 5: Second generalized four-quadrant likelihood ratio scatter matrix.
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likelihood ratios was within the areas used to indicate 
high clinical validity, it was considered a “Moderate” 
effect.

Table 3 illustrates how qualitative effect size ratings 
subsequently informed the final level of qualitative syn-
thesis in the ASM-CDC DLS SR: rating of overall strength of 
body-of-evidence using CDC DLS LMBP criteria (Table 1). 
Strength of body-of-evidence ratings were then used to 
inform practice recommendations, with three C. difficile 
test practices achieving a “recommended” categorization 
as shown in Table 3. This table provides counts for only 
the highest rated pairings of quality-to-effect for each 
test practice category. A list of quality ratings and effect 
size ratings for all studies in the SR is available from the 
authors upon request, as are details on specific testing 
practices assessed.

Discussion

Additional implication of this effect rating 
approach

Additional methods of grading evidence

Other methods for grading the strength of evidence, such 
the Grading of Recommendations Assessment, Develop-
ment and Evaluation (GRADE) [68], may benefit from this 
effect size rating approach. As when applying the CDC 
DLS LMBP method to a DTA evidence base, challenges in 
applying GRADE have been described [24, 25, 69]. Some of 
these challenges in GRADE have been (in part) addressed 
by considering DTA a surrogate (intermediate) patient 
outcome, to the extent that rates of TP, FP, TN, and FN 
can be inferably linked to patient management or patient 
health consequences [23, 25, 69, 70]. However, express-
ing “magnitude of effect” – one of the GRADE criteria for 
assessing the strength of evidence – for a DTA evidence 
base appears to remain a challenge.

In GRADE, “magnitude of effect” is a criterion that can 
upgrade the strength of evidence. While Gopalakrishna 
et  al. 2014 described important challenges in applying 
three of the GRADE strength of evidence criteria (inconsist-
ency, imprecision, and publication bias), there is no clear 
solution provided for assessing “magnitude of effect” for 
DTA. Yet, several GRADE papers, including Gopalakrishna 
et al. 2014, recommend that (1) the differential patient con-
sequences of TPs, FP, TNs, and FNs be considered when 
making recommendations from a DTA evidence base, and 
that (2) these differential consequences should inform 
emphasis of particular DTA measures [24, 25, 69]. On this 
last point, however, little detailed guidance is provided.

We suggest these a priori considerations can be 
expressed through an analytic framework for DTA SRs, 
which should depict inferable (in the absence of direct 
evidence) clinical outcome types. Clinical outcomes that 
can be linked to laboratory testing have been described 
in the literature [71–73]. Further, by appropriating the 
effect rating approach described here, patient-important 
consequences of TPs, FPs, TNs, and FNs can be preserved 
through pairings of +LR/−LN in a way that (1) is readily 
visualized for “magnitude of effect” assessment, and that 
(2) promotes transparent, defensible, and reproducible 
judgments on effect rating toward grading the strength 
of a body of evidence. In this way DTA SR “judgments on 
which would be the more critical accuracy measures to 
focus” [69] could be addressed in a straightforward, intui-
tive way that is comparable across DTA SRs.

In sum, this +LR/−LR effect rating approach provides 
a defensible means of deriving effect ratings, as can then 
inform potential upgrading of strength of evidence when 
using the GRADE method [74, 75].

For diagnostic quality and safety measures

Diagnostic error has been defined as the “failure to 
(a)  establish an accurate and timely explanation of the 
patient’s health problem(s), or (b) communicate that 

Table 3: Strength of body of evidence ratings for the ASM-CDC DLS SR based on a DTA evidence base.

Practice # studies Effect size rating Quality ratinga Overall strength of body-of-evidence rating

Clostridium difficile testing practice 1 60 Substantial Good High
Clostridium difficile testing practice 2 9 Substantial Good High
Clostridium difficile testing practice 3 7 Moderate Good Moderate

aQuality ratings were established through the QUADAS-2 risk of bias tool tailored to support the qualitative synthesis approach of the CDC 
DLS LMBP SR method.
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explanation to the patient” [76]. Identifying meaningful 
measures of diagnostic quality and safety, however, is a 
noted challenge [50, 76–78]. While “diagnostic accuracy” 
in this context signifies more than simply “DTA” (or test 
clinical validity) [4, 50, 76], +LR/−LR pairings represent an 
aspect of diagnostic information quality and can aid test 
interpretation, although (of themselves) are not neces-
sarily a suitable direct measure of diagnostic quality and 
safety.

In this way, +LR/−LR scatterplot matrix pairings may 
inform the “Diagnostic Process” domain of quality and 
safety measures described in the 2017  National Quality 
Forum (NQF) report Improving Diagnostic Quality and 
Safety. DTA can be equated with a component of diag-
nostic accuracy identified in the NQF report as “meas-
urement of initial diagnostic accuracy” or “accuracy of 
initial diagnosis” [50]. In this context, +LR/−LR scatter-
plot matrix pairings signal a test’s (or a combination of 
tests) ability to correctly or incorrectly classify patients in 
relation to a diagnosis, in a way that is straightforward, 
visual, and clinically meaningful. Further, +LR/−LR 
pairings may provide an additional means to express 
whether “diagnostic tests have adequate analytical and 
clinical validity [as is] critical to preventing diagnostic 
errors” [76].

Limitations

While benefiting transparent effect rating judgments, any 
approach that simplifies findings risks information loss. 
For example, this approach does not contain informa-
tion as to resource utilization (e.g. costs), patient prefer-
ences, or the indirectness of evidence to patient outcomes. 
Readers are further cautioned that a diagnostic test is not 
an isolated element of the patient diagnostic process; 
however, a test provides information, the quality of which 
can be assessed toward test utility and patient-related 
outcomes. Additionally, the strength of this approach may 
be diminished if DTA for an index test is established in 
relation to an imperfect reference standard, although this 
concern was not formally assessed [79, 80].

Finally, use of probabilistic tools (e.g. likelihood 
ratios, Bayesian reasoning) and “statistical numeracy” 
has been shown to challenge health care professionals 
when interpreting diagnostic information [58, 60, 81–83]. 
Yet, this approach to interpreting DTA measures may be 
relevant to interventions to improve clinical insights from 
diagnostic reasoning [84], especially in cases where labo-
ratories implement recommendations to provide likeli-
hood ratios in results reporting [59].

Conclusions

Findings of DTA SRs should be interpreted in relation to 
intended clinical use in support of diagnostic quality and 
safety. The approach described in this paper facilitates 
meaningful interpretation of results, as well as determina-
tion of qualitative effect size ratings. In this way, +LR/−LR 
scatterplot matrix pairings are answerable to the call to 
“move beyond summary measures and ask how a new 
diagnostic test reclassifies patients” [20] by facilitating 
ratings of effect linked to clinical practice.
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