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Abstract

Background: Diagnostic test accuracy (DTA) systematic
reviews (SRs) characterize a test’s potential for diagnostic
quality and safety. However, interpreting DTA measures in
the context of SRs is challenging. Further, some evidence
grading methods (e.g. Centers for Disease Control and Pre-
vention, Division of Laboratory Systems Laboratory Medicine
Best Practices method) require determination of qualitative
effect size ratings as a contributor to practice recommenda-
tions. This paper describes a recently developed effect size
rating approach for assessing a DTA evidence base.

Methods: A likelihood ratio scatter matrix will plot posi-
tive and negative likelihood ratio pairings for DTA studies.
Pairings are graphed as single point estimates with con-
fidence intervals, positioned in one of four quadrants
derived from established thresholds for test clinical
validity. These quadrants support defensible judgments
on “substantial”, “moderate”, or “minimal” effect size
ratings for each plotted study. The approach is flexible in
relation to a priori determinations of the relative clinical
importance of false positive and false negative test results.
Results and conclusions: This qualitative effect size rating
approach was operationalized in a recent SR that assessed
effectiveness of test practices for the diagnosis of Clostrid-
ium difficile. Relevance of this approach to other methods of
grading evidence, and efforts to measure diagnostic quality
and safety are described. Limitations of the approach arise

*Corresponding author: ). Scott Parrott, PhD, Department of
Interdisciplinary Studies, Rutgers University, School of Health
Professions, Newark, NJ, USA; and Department of Epidemiology,
School of Public Health, Rutgers University, Piscataway, NJ, USA,
E-mail: parrotja@shp.rutgers.edu

Matthew L. Rubinstein: Department of Clinical Laboratory and
Medical Imaging Sciences, Rutgers University, School of Health
Professions, Newark, NJ, USA; and Department of Interdisciplinary
Studies, Rutgers University, School of Health Professions, Newark,
NJ, USA

Colleen S. Kraft: Department of Pathology and Laboratory Medicine,
Emory University, Atlanta, GA, USA; and Department of Medicine,
Division of Infectious Diseases, Emory University, Atlanta, GA, USA

from understanding that a diagnostic test is not an isolated
element in the diagnostic process, but provides information
in clinical context towards diagnostic quality and safety.
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Introduction

Background

Clinical laboratory testing generates information to benefit
patient management decisions in support of health, while
inaccurate or inappropriate testing may contribute to
patient harm [1-3]. Moreover, measures of diagnostic test
accuracy (DTA) provide insight into a test’s (or test combi-
nation’s) ability to contribute to quality and safety within
diagnostic pathways by estimating a test’s clinical validity
[4]. Based on rates of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FNs), these meas-
ures can inform the appropriate role of a test in a diagnostic
pathway, and can assist in interpretation of test results for
individual patients as generally depicted in Figure 1 [6-9].

Measures of DTA can be determined through diag-
nostic cross-sectional studies and diagnostic case-control
studies which assess performance of one or more index
tests in relation to a gold standard or reference method
test [10-13]. Through these study designs, rates of TP, FP,
TN and FN are derived for assembly into various summary
measures as illustrated in Figure 2 [14].

DTA systematic reviews (SRs) are a method for devel-
oping recommendations on the use of a test or a combi-
nation of tests [15-17]. In DTA SRs, studies are synthesized
to obtain pooled, and potentially more reliable, DTA
measures. Further, DTA SRs may help investigators deter-
mine how DTA may vary by populations, settings/clinical
contexts, or positivity thresholds [15, 16, 18, 19]. However,
such findings are not the only arbiter of decisions on test
implementation and interpretation in support of diagnos-
tic quality and safety [20-22]. For example, a DTA evidence
base, of itself, cannot directly indicate downstream conse-
quences without additional linkage to separate bodies of
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Figure 1: Uses of DTA measures in the total testing process.

For definitions and characteristics of the total testing process in general, refer to Plebani [5].

DTA measure categories The measures

Their significance

Diagnostic sensitivity
Diagnostic specificity
Clinical efficiency
Area under curve

Error-based measures

How well the test is able to
classify patients truly with
disease, or without disease

Positive predictive value
Negative predictive value
Positive likelihood ratio
Negative likelihood ratio

Information-based
measures

How well the tests assists in
the interpretation of single
test results

Association-based

Diagnostic odds ratio
measures - 9 S
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The strength of the
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Figure 2: Measures of DTA and their significance.
Figure adapted from Bossuyt 2008 [14].

evidence (e.g. on treatment efficacy for the target condi-
tion), or through logical inference [23]. Adding to the inter-
pretative challenges, published DTA SRs often provide a
scattershot of DTA measures, without guidance on which
are more informative for those making test implementa-
tion decisions [24-26]. This situation is especially prob-
lematic when one considers, as noted by Schiff 2012, it is
possible “the average clinician could care less about...a
new study to increase their positive predictive value” [27].
While more patient-centered research strategies have been
described through controlled trials assessing outcomes
of test-and-treat interventions, and through hierarchical

assessments of test efficacy, such studies are less often
found in the available evidence base [10, 28-32].

Some of these limitations of DTA SRs may partially
relate to infrequent use of an analytic framework, which
provides scope and context for DTA measures, and is a
recommended standard for SRs in general [33, 34]. Inter-
pretive challenges may also arise when primary DTA
studies are poorly reported or demonstrate risk of bias.
Reporting standards for DTA studies are found in the
Standards for Reporting of Diagnostic Accuracy, and risk
of bias is identifiable through the Quality Assessment of
Diagnostic Accuracy Studies risk of bias tool [35-38].
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In addition to these challenges, some SR methods
[e.g. the Centers for Disease Control and Prevention,
Division of Laboratory Systems (CDC DLS) Labora-
tory Medicine Best Practices (LMBP) method] require
determination of qualitative effect size ratings (e.g. “sub-
stantial”, “moderate”, “minimal”) as a partial determi-
nant of the strength of body-of-evidence [33]. Table 1
details the CDC DLS LMBP method’s criteria for rating
the strength of a body-of-evidence, in general taking
into account the number of studies (within an interven-
tion group) with particular effect size ratings and study
quality ratings.

Objective

To address these DTA SR challenges, a clinically meaning-
ful approach was needed in order to derive a single quali-
tative effect size rating for each DTA study and for a body
of evidence as a whole. This paper describes the approach
developed, which is based on:

— Location of a diagnostic accuracy study within a four-
quadrant likelihood ratio scatter matrix and

Rubinstein et al.: LR effect rating = 207

Table 1: CDC DLS LMBP criteria for determining strength of body-of-
evidence ratings.

Strength of # of studies Effect size Quality
evidence rating rating rating
High >3 Substantial Good
Moderate 2 Substantial Good
or>3 Moderate Good
Suggestive 1 Substantial Good
or2 Moderate Good
or=>3 Moderate Fair
Insufficient Too few Minimal Fair

Adapted from: Christenson et al. [33].

— Matrix quadrant demarcation derived from estab-
lished likelihood ratio thresholds signifying high
clinical validity.

Materials and methods

Likelihood ratios are depicted in Table 2, and multiple resources
are available to further aid in understanding and interpretation
[13, 17, 39-45]. In general, clinical interpretation of likelihood ratios

Table 2: Positive and negative likelihood ratio definitions and interpretations.?

Positive likelihood ratio

Negative likelihood ratio

What it is: the probability of an individual with target condition
(e.g. disease, gene, infectious organism) having a positive test
result relative to the probability of an individual without the target
condition having a positive test result. Higher values are better
(with low values there is increased risk of FPs)

How it’s calculated: +LR = sensitivity/(1-specificity)

Intuitive example: if the test has a +LR=15, then a person who
has the condition is 15 times more likely to have a positive result
than a person without the condition

Interpretation when test result is positive

What it is: the probability of an individual with target condition
(e.g. disease, gene, infectious organism) having a negative test
result relative to the probability of an individual without the target
condition having a negative test result. Lower values are better
(with high values there is increased risk of FNs)

How it’s calculated: —~LR =(1-sensitivity)/specificity

Intuitive example: if the test has a -LR=0.05, then the person
who has the condition is 20 times (1/0.05) less likely to have a
negative result than a person without the condition

Interpretation when test result is negative

>10 High likelihood target

condition is present when

test is positive

Moderate likelihood target

condition is present when

testis positive

Low likelihood target

condition is present when

test is positive

<2 Test not likely to identify
patients having target
condition when test is
positive

>5-10

>2-5

<0.1 High likelihood target
condition is absent when test
is negative

Moderate likelihood target
condition is absent when test
is negative

Low likelihood target
condition is absent when test
is negative

Test not likely to identify
patient not having target
condition when test is
negative

>0.1-0.2

>0.2-0.5

>0.5

3Interpretation cutoffs adapted from Jaeschke et al. [39] in order to convey mutually exclusive categories. Limitations of cutoffs are

discussed in the Methods section.
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Figure 3: General depiction of DTA measure ability to rule-in or rule-out.

includes use of probability thresholds, Fagan’s nomogram, and
Bayesian reasoning.

Figure 3 further characterizes likelihood ratios by illustrating
their relationship to other DTA measures, and their relationship to
ruling-in or ruling-out a target condition.

Use of likelihood ratios to determine effect size rating

The American Society for Microbiology (ASM) recently completed a
SR using the CDC DLS’s LMBP method to derive practice recommen-
dations for Clostridium difficile testing practices (pending publication
at this time). The evidence base for this SR consisted of DTA studies,
and the SR was conducted in collaboration with the CDC DLS.

DTA studies present analysis challenges not encountered
when assessing other types of evidence such as randomized con-
trolled trials and before-and-after studies [15], and the CDC DLS
LMBP SR method was not developed to optimally address some
of these challenges. An important challenge is interpretation of
the tradeoff between diagnostic sensitivity and specificity, par-
ticularly in the context of the LMBP method of evidence grad-
ing. Given that DTA studies report two related effects (diagnostic
sensitivity and specificity), the review team determined that an
approach was needed to capture (1) the trade-off between these
two measures of effect, and (2) the clinical importance of this
tradeoff. Lastly, an approach for deriving a single qualitative
effect size rating from these measures was needed, expressible as
“substantial”, “moderate”, or “minimal” (see Table 1 evidence rat-
ing criteria) [13].

Approach step 1: The solution (developed by authors MLR and JSP)
was based on two diagnostic accuracy effect measures: the positive
likelihood ratio (+LR) and the negative likelihood ratio (-LR). Fur-
ther, the solution adopts cutoff points described in the literature as
providing strong evidence of a test’s ability to rule-in or rule-out a

disease [8, 17, 39, 44, 46-49], and extends them into the following

+LR and -LR effect pairings:

—  “Substantial” effect rating, if: +LR>10 and -LR < 0.1

- “Moderate” effect rating, if: +LR>10 and -LR>0.1 or +LR< 10
and -LR<0.1

- “Minimal” effect rating, if: +LR <10 and -LR > 0.1

It is necessary to express some caveats for these likelihood ratio cut-
offs. First, these cutoffs, and the post-test probabilities of disease
derived by using them, are not of themselves diagnostic. Accurate
diagnosis depends on integration of information arising from diag-
nostic processes, including history, physical findings, and results
of other testing, and it depends on multi-professional efforts to
overcome diagnosis “pitfalls and challenges” [27, 50-52]. Second,
there is an arbitrary nature to setting cutoffs/thresholds in support
of qualitative effect size judgments. Cutoffs in support of effect size
interpretation, therefore, are not ironclad rules of thumb - effect size
interpretation should occur in context of the practical, clinical impor-
tance for whatever is being researched [53-56]. Further, while these
cutoffs provide strong evidence of a test’s ability to rule-in (+LR >10)
or rule-out (-LR<0.1) a target condition, in practice this ability is
dependent on a patient’s pre-test probability of disease in order for a
“large and...conclusive [change] from pretest to posttest probability”
to be observed, as is readily demonstrated by Fagan’s nomogram [17,
39, 48]. Finally, as mentioned previously, DTA values (including likeli-
hood ratios) are not a fixed attribute of a test, but may vary according
to population, setting/clinical context, or positivity threshold.
Nevertheless, the approach is rooted in established cutoffs repre-
senting thresholds for “high” clinical validity in service of (1) straight-
forward, binary handling of data, and (2) meaningful handling of
FP/FN tradeoffs often observed in DTA measures. Given broad accept-
ance in the literature of these likelihood cutoffs for “high” test infor-
mation value, a defensible approach was established to meet a specific
challenge: derive qualitative effect size measures for a DTA evidence
base in a way that is amenable to the CDC DLS LMBP SR method of
evidence rating. In general, approaches for simplifying information
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when making judgments has demonstrated advantages, including
accuracy, transparency and accessibility, when the approach is rule-
based and framed to a specific context [57]. In sum, this approach
allowed for meaningful derivation of effect size ratings for each DTA
study, using a DTA measure that is multi-use in nature (application to
“test performance, clinical utility, and decision making”), and which
may overcome interpretability shortcomings associated with other
DTA measures [58-60]. Finally, effect ratings derived from +LR/-LR
pairings advances the notion that “test results can be valuable both
when positive and negative” [61] by preserving the discrimination
potential of FPs and FNs.

A last note, while the mathematical ratio of +LR to —LR is com-
monly referred to as the diagnostic odds ratio (DOR), basing effect
ratings on the DOR was determined by the review team to be an
unacceptable approach. For example, values for DOR are repetitive
across various pairings of +LR to -LR, as illustrated in Deeks 2001
[16], obscuring FP and FN tradeoffs, and further challenging defensi-
ble effect rating judgments. For example, a DOR of 500 could indicate
either a “substantial” or “moderate” effect if linked to this approach.
It is for this reason that pairings of +LR to —LR are assessed, rather
than their mathematical ratio expressed as DOR.

Approach step 2: The second step in deriving a single qualitative
effect size rating for each study was integrating these cutoffs into a
four-quadrant likelihood ratio scatterplot of +LR and —-LR pairings,
as is further described in the next section.

Generalized approaches for determining effect size
ratings

Before applying this approach, a review team in collaboration with

an expert panel should identify the relative clinical importance of

FPs and TPs, contextualizing the test to the relevant population and

clinical setting [24, 25, 48].

The general approach of Figure 4 may be taken when the
expert panel determines the clinical importance of FPs and FNs is
approximately equal, or that the test (in its intended role) should
have the ability to both accurately rule-in and rule-out a target con-
dition. From this perspective, use of point estimates [vs. use of con-
fidence interval (CI) limits] is illustrated when judging effect size
rating. However, this approach is flexible if a review team deter-
mines it is more appropriate to upgrade or downgrade an effect
size rating based on whether the CI for a point estimate overlaps
quadrants. For example, the effect size rating could be based on
the lower end of a CI if a review team determines that aspect of an
estimate is more important to communicate through effect ratings.

While the approach in Figure 4 is based on an assumption of
equal weight for the clinical importance of FPs and FNs, an expert
panel may determine the clinical importance of one outweighs the
other. There may be scenarios, then, where what might be consid-
ered a “Moderate” effect could either be upgraded to “Substantial” or
downgraded to “Minimal.”

For example:

—  When the effects of the disease are serious, but the disease is
treatable and the treatment does not cause patient harms or
incur high costs. In this scenario a paired effect in the upper
right quadrant of Figure 4 might be considered “Substantial”
rather than “Moderate”.

Rubinstein et al.: LR effect rating =—— 209

Assumption: test provisioned to either
confirm/rule-in or screen/rule-out a target condition

Test good for ruling-in or
ruling-out quadrant

Test good for ruling-in, but
not ruling-out quadrant

Effect size rating for
studies whose +LR/~-LR
pairings are in this
quadrant = “substantial”

"

\
+LR/-LR pairing for an
individual study

Effect size rating for
studies whose +LR/~-LR
pairings are in this
quadrant = “moderate”

+LR

10

Effect size rating for
studies whose +LR/-LR
pairings are in this
quadrant = “moderate”

Effect size rating for
studies whose +LR/~-LR
pairings are in this
quadrant = “minimal”

Test good for ruling-out,
but not ruling-in, quadrant

Test not good for ruling-in
or ruling-out quadrant

0.1 -LR

Figure 4: First generalized four-quadrant likelihood ratio scatter
matrix.

- Scenarios involving “don’t miss” medical conditions (e.g. vas-
cular events, infections, and cancer) or “undesirable diagnostic
events” [62, 63].

Readers may also refer to Hsu et al. 2011 for additional scenarios
weighing benefits of correct classification (i.e. TPs and TNs) against
the harms of incorrect classifications (i.e. FPs and FNs) as may
further inform tailored use of these likelihood scatter matrices [24].
Lastly, readers may also consider the literature on “misdiagnosis”
(i.e. wrong diagnosis), “missed diagnosis”, or “delayed diagnosis”
[64—67].
Therefore, as an alternative to the approach illustrated in
Figure 4, one of the following perspectives may be emphasized:
- Rule-in a target condition (or when the clinical importance of FP
results outweighs that of FN results) or
- Rule-out a target condition (or when the clinical importance of
FN results outweighs that of FP results).

Figure 5 depicts this alternative perspective when using the +LR/-LR
scatter matrix to derive effect size ratings. In this case, the figure also
depicts how interpretation of effect size may be affected by whether a
point’s CIs cross quadrants, with “moderate” effects occurring when
the CI crosses the horizontal line (left-hand Figure) or the vertical line
(right-hand Figure).

Results

Likelihood ratio scatter matrix in the
ASM-CDC DLS SR

There are two considerations when rating effect sizes for
DTA statistics: (1) identifying an overall index of sample
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| s T Y
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Effect size rating for studies | -R/-LR pairing for
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10 whose +LR/-LR pairings cross

these quadrants = “moderate”

Effect size rating for studies whose +LR/-LR
pairings cross these quadrants = “minimal”

Test good for ruling-out,
but not ruling-in, quadrant

Test not good for ruling-in
or ruling-out quadrant

screen for/rule out target condition

Test good for ruling-in or
ruling-out quadrant

Test good for ruling-in, but
not ruling-out, quadrant

+LR/-LR pairing for
an individual study

Effect size Effect size
rating for rating for
+LR studies Effect size rating studies
whose for studies whose whose
+LR/-LR pairings
10 +LR/-LR and Cls cross +LR/-LR 1
pairings cross these quadrants = pairings cross
these “moderate” these
quadrants = quadrants =
“substantial” “minimal’

Test good for ruling-out,
but not ruling-in, quadrant

Test not good for ruling-in
or ruling-out quadrant

0.1 -LR

0.1 -LR

Figure 5: Second generalized four-quadrant likelihood ratio scatter matrix.

size as relates to the tradeoff between sensitivity and
specificity; and (2) weighing their relative clinical impor-
tance. To create an overall index of effect, the likelihood
ratio scatter matrix was created using the midas command
in Stata 15 (Stata Corp., College Station, TX, USA). These
scatterplot matrices can be created in any standard sta-
tistical package, though the midas procedure in Stata pro-
vides the benefit of computing these via a subroutine of
the more general diagnostic meta-analysis procedure.

Figure 6 illustrates the likelihood ratio scatter matrix
used as a practical tool to rate effect sizes for the SR on
C. difficile testing approaches. When paired likelihood
ratios were within areas indicating high clinical validity
(+LR>10 and —-LR < 0.1), the review team in collaboration
with the project’s expert panel described this as a “Sub-
stantial” effect, especially if the CIs of the estimate (as
represented by the crosshairs on the summary diamond)
did not cross into other quadrants. When only one of the

LUQ: Exclusion and Confirmation
LRP>10, LRN <0.1

RUQ: Confirmation only

LRP>10, LRN > 0.1

LLQ: Exclusion only

LRP <10, LRN < 0.1

RLQ: No exclusion or Confirmation
LRP <10, LRN>0.1

Summary LRP and LRN for index test
with 95% confidence intervals

\ Quadrant of

“minimal” effect

(ORN©] .
O
@ !
© 06
Quadrant of ® ® ® ®
“substantial” effect
-2 100
o
=
0
<]
£
o
=
)
=
3 104
o
Quadrants of
“moderate” effect
1 al

0.1
Negative likelihood ratio

Figure 6: Example of a likelihood ratio scatter matrix to inform effect size ratings in the ASM-CDC DLS SR.
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Table 3: Strength of body of evidence ratings for the ASM-CDC DLS SR based on a DTA evidence base.

Practice # studies Effect size rating Quality rating® Overall strength of body-of-evidence rating
Clostridium difficile testing practice 1 60  Substantial Good High

Clostridium difficile testing practice 2 9  Substantial Good High

Clostridium difficile testing practice 3 7 Moderate Good Moderate

2Quality ratings were established through the QUADAS-2 risk of bias tool tailored to support the qualitative synthesis approach of the CDC

DLS LMBP SR method.

likelihood ratios was within the areas used to indicate
high clinical validity, it was considered a “Moderate”
effect.

Table 3 illustrates how qualitative effect size ratings
subsequently informed the final level of qualitative syn-
thesis in the ASM-CDC DLS SR: rating of overall strength of
body-of-evidence using CDC DLS LMBP criteria (Table 1).
Strength of body-of-evidence ratings were then used to
inform practice recommendations, with three C. difficile
test practices achieving a “recommended” categorization
as shown in Table 3. This table provides counts for only
the highest rated pairings of quality-to-effect for each
test practice category. A list of quality ratings and effect
size ratings for all studies in the SR is available from the
authors upon request, as are details on specific testing
practices assessed.

Discussion

Additional implication of this effect rating
approach

Additional methods of grading evidence

Other methods for grading the strength of evidence, such
the Grading of Recommendations Assessment, Develop-
ment and Evaluation (GRADE) [68], may benefit from this
effect size rating approach. As when applying the CDC
DLS LMBP method to a DTA evidence base, challenges in
applying GRADE have been described [24, 25, 69]. Some of
these challenges in GRADE have been (in part) addressed
by considering DTA a surrogate (intermediate) patient
outcome, to the extent that rates of TP, FP, TN, and FN
can be inferably linked to patient management or patient
health consequences [23, 25, 69, 70]. However, express-
ing “magnitude of effect” — one of the GRADE criteria for
assessing the strength of evidence — for a DTA evidence
base appears to remain a challenge.

In GRADE, “magnitude of effect” is a criterion that can
upgrade the strength of evidence. While Gopalakrishna
et al. 2014 described important challenges in applying
three of the GRADE strength of evidence criteria (inconsist-
ency, imprecision, and publication bias), there is no clear
solution provided for assessing “magnitude of effect” for
DTA. Yet, several GRADE papers, including Gopalakrishna
etal. 2014, recommend that (1) the differential patient con-
sequences of TPs, FP, TNs, and FNs be considered when
making recommendations from a DTA evidence base, and
that (2) these differential consequences should inform
emphasis of particular DTA measures [24, 25, 69]. On this
last point, however, little detailed guidance is provided.

We suggest these a priori considerations can be
expressed through an analytic framework for DTA SRs,
which should depict inferable (in the absence of direct
evidence) clinical outcome types. Clinical outcomes that
can be linked to laboratory testing have been described
in the literature [71-73]. Further, by appropriating the
effect rating approach described here, patient-important
consequences of TPs, FPs, TNs, and FNs can be preserved
through pairings of +LR/-LN in a way that (1) is readily
visualized for “magnitude of effect” assessment, and that
(2) promotes transparent, defensible, and reproducible
judgments on effect rating toward grading the strength
of a body of evidence. In this way DTA SR “judgments on
which would be the more critical accuracy measures to
focus” [69] could be addressed in a straightforward, intui-
tive way that is comparable across DTA SRs.

In sum, this +LR/-LR effect rating approach provides
a defensible means of deriving effect ratings, as can then
inform potential upgrading of strength of evidence when
using the GRADE method [74, 75].

For diagnostic quality and safety measures

Diagnostic error has been defined as the “failure to
(a) establish an accurate and timely explanation of the
patient’s health problem(s), or (b) communicate that
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explanation to the patient” [76]. Identifying meaningful
measures of diagnostic quality and safety, however, is a
noted challenge [50, 76-78]. While “diagnostic accuracy”
in this context signifies more than simply “DTA” (or test
clinical validity) [4, 50, 76], +LR/-LR pairings represent an
aspect of diagnostic information quality and can aid test
interpretation, although (of themselves) are not neces-
sarily a suitable direct measure of diagnostic quality and
safety.

In this way, +LR/-LR scatterplot matrix pairings may
inform the “Diagnostic Process” domain of quality and
safety measures described in the 2017 National Quality
Forum (NQF) report Improving Diagnostic Quality and
Safety. DTA can be equated with a component of diag-
nostic accuracy identified in the NQF report as “meas-
urement of initial diagnostic accuracy” or “accuracy of
initial diagnosis” [50]. In this context, +LR/-LR scatter-
plot matrix pairings signal a test’s (or a combination of
tests) ability to correctly or incorrectly classify patients in
relation to a diagnosis, in a way that is straightforward,
visual, and clinically meaningful. Further, +LR/-LR
pairings may provide an additional means to express
whether “diagnostic tests have adequate analytical and
clinical validity [as is] critical to preventing diagnostic
errors” [76].

Limitations

While benefiting transparent effect rating judgments, any
approach that simplifies findings risks information loss.
For example, this approach does not contain informa-
tion as to resource utilization (e.g. costs), patient prefer-
ences, or the indirectness of evidence to patient outcomes.
Readers are further cautioned that a diagnostic test is not
an isolated element of the patient diagnostic process;
however, a test provides information, the quality of which
can be assessed toward test utility and patient-related
outcomes. Additionally, the strength of this approach may
be diminished if DTA for an index test is established in
relation to an imperfect reference standard, although this
concern was not formally assessed [79, 80].

Finally, use of probabilistic tools (e.g. likelihood
ratios, Bayesian reasoning) and “statistical numeracy”
has been shown to challenge health care professionals
when interpreting diagnostic information [58, 60, 81-83].
Yet, this approach to interpreting DTA measures may be
relevant to interventions to improve clinical insights from
diagnostic reasoning [84], especially in cases where labo-
ratories implement recommendations to provide likeli-
hood ratios in results reporting [59].

DE GRUYTER

Conclusions

Findings of DTA SRs should be interpreted in relation to
intended clinical use in support of diagnostic quality and
safety. The approach described in this paper facilitates
meaningful interpretation of results, as well as determina-
tion of qualitative effect size ratings. In this way, +LR/-LR
scatterplot matrix pairings are answerable to the call to
“move beyond summary measures and ask how a new
diagnostic test reclassifies patients” [20] by facilitating
ratings of effect linked to clinical practice.
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