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Abstract: Over a third of adults go online to diagnose their 
health condition. Direct-to-consumer (DTC), interactive, 
diagnostic apps with information personalization capa-
bilities beyond those of static search engines are rapidly 
proliferating. While these apps promise faster, more con-
venient and more accurate information to improve diag-
nosis, little is known about the state of the evidence on 
their performance or the methods used to evaluate them. 
We conducted a scoping review of the peer-reviewed and 
gray literature for the period January 1, 2014–June 30, 2017. 
We found that the largest category of evaluations involved 
symptom checkers that applied algorithms to user-
answered questions, followed by sensor-driven apps that 
applied algorithms to smartphone photos, with a handful 
of evaluations examining crowdsourcing. The most com-
mon clinical areas evaluated were dermatology and gen-
eral diagnostic and triage advice for a range of conditions. 
Evaluations were highly variable in methodology and con-
clusions, with about half describing app characteristics 
and half examining actual performance. Apps were found 
to vary widely in functionality, accuracy, safety and effec-
tiveness, although the usefulness of this evidence was 
limited by a frequent failure to provide results by named 
individual app. Overall, the current evidence base on DTC, 
interactive diagnostic apps is sparse in scope, uneven in 

the information provided and inconclusive with respect to 
safety and effectiveness, with no studies of clinical risks 
and benefits involving real-world consumer use. Given 
that DTC diagnostic apps are rapidly evolving, rigorous 
and standardized evaluations are essential to inform 
decisions by clinicians, patients, policymakers and other 
stakeholders.

Keywords: consumerism; crowdsourcing; diagnostic 
error; digital health; evidence-based medicine; health 
apps; health information technology; mHealth; patient 
engagement.

Introduction
The 2015  National Academy of Medicine (NAM) report 
Improving Diagnosis in Health Care concluded that most 
people will experience at least one diagnostic error in their 
lifetime [1]. The report, noting that over a third of adults 
go online to diagnose a health condition [2], urged profes-
sionals to direct patients to reliable online resources. How 
to determine the reliability of online resources, however, 
remains an unresolved question.

Currently available online resources have graduated 
beyond keyword searches on Google. Increasingly, they 
include sophisticated direct-to-consumer (DTC) diagnos-
tic tools that use algorithms, sensors and “crowdsourc-
ing” [3] to create Web 2.0 personalization and interactivity 
[4] for functions ranging from triage and differential diag-
nosis of common ailments to detecting skin changes sug-
gestive of cancer.

With over a quarter million health apps available in 
major app stores [5], popular DTC diagnostic apps have 
been downloaded from tens of thousands to tens of mil-
lions of times [6]. Possible benefits include faster, more 
convenient and more targeted information to improve 
diagnosis [7] and reduction of unneeded visits and tests, 
but there is also the potential for unintended outcomes [8] 
such as inappropriate treatment and diagnostic error. The 
Food and Drug Administration (FDA) has long exempted 
“low risk” apps from its approval process [9], and the 
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current FDA commissioner has said that apps helping con-
sumers self-diagnose are an innovation that regulations 
should not impede [10]. Nonetheless, there are as yet no 
accepted vetting processes enabling clinicians or patients 
to distinguish between reliable apps and “digital snake 
oil” [11]. Diagnostic apps specifically have received scant 
attention in comparison to health management ones, even 
in overviews of the field [12, 13].

We conducted a scoping review to characterize the 
current state of evidence on how interactive, DTC diag-
nostic apps available to consumers perform and what 
methods are used to evaluate them.

Methods
Funding for our work was provided by the Gordon and 
Betty Moore Foundation; however, the foundation had no 
role in study design; collection, analysis and interpreta-
tion of data; or approval of final publication. Our scoping 
review used Arksey and O’Malley’s five-stage methodo-
logical framework [14] summarized in Table 1.

Formulating research questions

An initial search in PubMed, Google Scholar, and the lay 
literature through General Reference Center Gold revealed 
a highly heterogeneous literature in which information 
of interest was often subsumed in broader examinations 
of diagnostic and/or health management apps. That 
search generated four research questions: what clinical 
conditions do these apps address? What functionality is 
involved in producing a tentative diagnosis? What meth-
odologies are evaluators using to assess these apps? And 
what are the results of app evaluations, including evi-
dence on risks and benefits? Our findings were intended 
to help guide medical practice, consumer choice and 
health policy by identifying the strengths and weaknesses 
of the evidence in the current literature and by highlight-
ing evidence gaps.

Identification of relevant studies

With a medical librarian (LZ), we conducted a structured 
search of PubMed and Google Scholar for the period 
January 1, 2014–June 30, 2017, focusing on apps sug-
gesting an initial diagnosis and marketed DTC without 

FDA approval. The timeframe was chosen in an attempt 
to minimize the inclusion of possibly technologically 
irrelevant evaluations of older apps. A lack of common 
keywords and inconsistent indexing made a structured 
and reproducible PubMed search difficult, leading to an 
iterative search process. Moreover, as no existing U.S. 
National Library of Medicine MeSH terms were closely 
related to our topic, we used broader, related terms such 
as “smartphone” and “diagnostic self-evaluation”. In 
addition, we manually reviewed selected bibliographies, 
even if slightly outside the time frame. We also searched 
the lay literature through General Reference Center Gold 
and by looking more broadly at trade and general-inter-
est publications, websites and reports from organizations 
active in this field [15]. We also interviewed physicians, 
researchers, digital health entrepreneurs and a venture 
capitalist.

Study selection

We included original research, descriptive studies and 
literature reviews related to diagnostic software appli-
cations consumers might commonly use, whether web-
based or apps developed for a specific platform (e.g. 
iPhone) [16]. We excluded apps subject to FDA approval, 
those in a research phase, those using physical tests (e.g. 
Bluetooth-connected pregnancy tests) and static content 
(e.g. keyword searches).

Two authors (MLM and JLB) assessed full-text articles 
for relevance, given that an abstract might not accurately 
reflect whether an evaluation of a particular diagnostic 
app was performed. When there was a question about 
article inclusion, it was discussed with a third author (HS).

Data charting

Two authors (MLM and JLB) reviewed articles and organ-
ized information pertaining to type of digital platform(s), 
study design, app attributes, outcomes investigated and 
major findings [17].

Data summarization

Data was summarized according to app functional-
ity; diseases evaluated; evaluation methodologies 
(including  selection criteria, descriptions of app attrib-
utes and testing of diagnostic functionality); and study 
results.



Millenson et al.: Beyond Dr. Google      97

Results

Overview of selected studies

We identified 30 peer-reviewed articles and research 
letters (Tables  2 and 3) and six non-peer reviewed arti-
cles [47–52] meeting our definition. Although we focused 
on diagnostic apps, these were often described within 
broader studies evaluating medical apps.

Conditions evaluated

The greatest number of articles (10) focused on dermatol-
ogy-related diagnostic apps, primarily conditions associ-
ated with malignancy [20, 25, 28, 34, 36, 39–41, 45, 46]. Next 
were eight articles on apps providing diagnostic and triage 
advice for a broad range of conditions [6, 19, 22, 24, 26, 27, 
43, 44]. Other diagnostic areas included infectious disease 
[one article on acute infectious conditions; one article 
on sexually transmitted infections (STIs) [23, 38]; mental 

Table 1: Steps involved in scoping review.

1.1 Formulated direct-to-consumer (DTC) diagnostic app-related research questions
– Diagnoses/diseases evaluated?
– App features and technologies evaluated?
– Methodologies used in evaluations?
– Evidence about app performance, risks and benefits?

1.2 Identification of relevant studies
Defined studies of 
interest

  – �English-language
– �Studies examining interactive apps suggesting provisional/initial diagnosis
– �Studies examining apps not subject to FDA approval

Initiated structured and 
iterative search

  – �Structured search terms, free text, and keywords
– �PubMed, Google Scholar, and General Reference Center databases from January 1, 2014 through June 30, 2017
– �Iterative search with specific MeSH terms (e.g. mobile applications) and broader, related terms (e.g. 

“smartphone” and “diagnostic self-evaluation”)
– �Manual bibliography search of selected articles, even if slightly outside time frame
– �Iterative Google keyword and bibliography-driven search of gray literature, including health care, informatics 

and general interest publications and websites
– �Interviews with physicians, entrepreneurs, and others

1.3 Study selection
Inclusion and exclusion 
criteria applied

  – �Included original research, research letters, descriptive studies and literature reviews
– �“App” defined as interactive software, whether on web browser or mobile device, designed to perform a 

specific function directly for the user
– �“Direct-to-consumer” defined as marketed directly to individuals and not meant to primarily facilitate 

conversation with a clinician
– �“Diagnostic” defined as providing an initial or provisional diagnosis and not mainly providing additional 

information after initial diagnosis by a physician
– �“Interactive” defined as excluding physical tests, such as Bluetooth-connected pregnancy tests, and static 

content, such as search engine keyword searches
– �Abstracts and/or full text reviewed by two authors (MLM and JLB) to determine if criteria met

1.4 Charting the data
Charting akin to narrative 
review, with general and 
specific information

  – �Selected articles reviewed by two investigators (MLM and JLB) as to study design, app characteristics, 
functional outcomes investigated, and other major findings

– �Reviewer analysis and notes recorded in a spreadsheet to facilitate final summarization using SPIDER 
format: Sample (clinical category and type of apps); Phenomena of Interest (attributes studied); Design; 
Evaluation (findings and discussion); and Research typea

1.5 Summarizing and reporting results
Summarization with 
descriptive narrative 
aligned with primary 
research questions

  Findings organized according to
– �Disease area
– �Technological functionality of apps
– �Methodology of evaluation
– �Results

aRef. [17].
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health issues (one article on depression) [32]; neurology 
(one article on Alzheimer’s disease) [30]; general oncology 
(two) [18, 21]; orthopedics (one on knee pain [33], one on 
hand surgery) [37]; eye and vision issues (one) [31]; otolar-
yngology (one general) [35]; rheumatology (one on inflam-
matory arthritis) [42]; and urology (one general) [29].

App functionality

The evaluations covered three broad functional catego-
ries of apps, with some articles including apps falling into 
more than one category. The largest category (20) involved 
medical symptom checkers that apply algorithms to user-
answered questions to generate probable diagnoses and/
or triage advice. The second most-common category (12) 
included apps that applied image processing technology 
and algorithms to smartphone photos. Articles we found 
were exclusively focused on conditions of the skin and 
eyes. Finally, five articles involved crowdsourcing using 
an online, distributed problem-solving model. (A promi-
nent app in this category, CrowdMed, applies an algorithm 
to diagnostic suggestions submitted online by clinical and 
non-clinical “medical detectives” and then provides a 
second opinion.)

Evaluation methodologies

Most studies evaluated multiple apps. However, some 
focused on a specific app due to app developer funding 
[24], app prominence (e.g. WebMD’s symptom checker) 
or a desire to show the need for greater regulation [36]. 
Selection criteria for which apps were included in evalua-
tions appeared somewhat arbitrary. Some studies simply 
described the presence or absence of particular attributes, 
such as whether there was a disclosed privacy policy. App 
cost was not consistently addressed, nor did researchers 
consistently note that “free” apps may sell user data.

Assessment methodologies ranged from a structured 
rating grid completed by two expert panels to “think-
aloud” feedback from consumers during use. User char-
acteristics that were examined included age, gender, 
education, income, years of home ownership, health lit-
eracy, and computer literacy. As noted in Table 3, some 
studies engaged multiple experts to review app content 
and features, while others assessed performance directly 
by comparing an app’s suggested diagnosis to a reference 
diagnosis from a clinician or other source, such as struc-
tured clinical vignettes. Although these apps are classified 
as low-risk devices by the FDA, it is important to note that 

we found no studies of accuracy or clinical risks and ben-
efits based upon real-world use by consumers.

Quantitative studies of these apps’ accuracy most 
often expressed their results in terms of percentage of 
true positives (or percent of responses correctly assigned 
to a specific category), sensitivity, and/or specificity for 
app-generated diagnoses when compared to diagnoses 
from a clinician or other reference source. Less commonly 
reported quantitative measures included positive predic-
tive value, negative predictive value, and nonparametric 
statistics (e.g. kappa, chi-square, odds ratio) (Table 3).

Evaluation results

Potential privacy and security problems were highlighted 
by several studies; e.g. symptom checkers for STIs were 
rated as “poor to very poor” on informed consent, disclo-
sure of privacy and confidentiality policies and possible 
conflicts of interest [23]. A similar conclusion was reached 
in a study of apps for detecting Alzheimer’s disease [30].

Meanwhile, the cost of apps was difficult to ascer-
tain. In the most comprehensive information we found, 
symptom checkers for both professionals and patients 
were said to range in price from “under $1 to $80 or 
more”  [6]. In a study of dermatological diagnostic and 
management apps, app prices were given as ranging from 
99 cents to $139.99 [20]. In neither study were prices for 
DTC diagnostic apps broken down separately. Only one of 
the three studies of the CrowdMed app mentioned its sig-
nificant cost; i.e. users must offer a minimum $200 reward 
to the “crowd” of “medical detectives”.

Actual diagnostic performance varied widely. A study 
of 23 general symptom checkers by Semigran et al. found 
an 80% rate of appropriate triage advice in emergent 
cases, but just 33% for appropriate self-care suggestions. 
Still, researchers judged these interactive apps prefer-
able to a static Google search [43]. In a non-peer reviewed 
“contest”, the Babylon Check symptom checker, which 
was not included in the Semigran study, was pitted against 
a junior doctor and experienced nurse using a standard-
ized case and compared favorably [47]. A separate, non 
peer-reviewed article by the app’s sponsor concluded that 
Babylon Check produced accurate triage advice in 88.2% 
of cases (based on pre-determined case vignettes), vs. 
75.5% for doctors and 73.5% for nurses [50]. However, we 
also found articles calling into question some of the find-
ings and asking for an independent evaluation and addi-
tional evidence for its accuracy [53].

Peer-reviewed results of general symptom checkers 
for particular diseases, rather than for general medical 
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and triage advice, showed few favorable results. In one 
study, the diagnosis suggested by a symptom checker 
matched a final diagnosis related to hand surgery 
just 33% of the time [37], while in another, a symptom 
checker provided “frequently inaccurate” advice related 
to inflammatory joint disease [42]. Specialty symptom 
checkers – like the general ones, based on answers 
to user questions – also fared poorly. An app for knee 
pain diagnoses had an accuracy rate of 58% [33]. Apps 
to screen for Alzheimer’s disease were all rated “poor to 
very poor”, and the authors noted that one tested app 
even concluded the user had the condition no matter 
what data were entered [30].

However, when specialty symptom checkers used 
data directly entered from sensors, they sometimes 
showed more promise, albeit with significant variability 
in the findings. For example, while one study warned of 
substantial potential for patient harm from a dermatology 
app’s misleading results [36], another study of that same 
app using a different methodology 2 years later found an 
accuracy rate of 81% in detecting melanoma, a sensitivity 
of 73% and a specificity of 39.3% [39]. Meanwhile, vision 
diagnostic apps using sensors and directly targeting con-
sumers received cautiously positive assessments in two 
non peer-reviewed articles [48, 51].

No studies examined actual patient outcomes. The 
closest approximation came in two studies of CrowdMed. 
In one study, patients said the app provided helpful guid-
ance [27], while in another, users had fewer provider visits 
and lower utilization [24]. The patient’s ultimate correct 
diagnosis was however, never confirmed. There were 
evaluations of consumer characteristics related to perfor-
mance with varying results. Luger et al. found that indi-
viduals who diagnosed their symptoms more accurately 
using a symptom checker were slightly younger [38] while 
Powley et al. concluded that neither age nor gender had a 
significant impact on usability [42]. Hageman et al. identi-
fied more familiarity with the Internet as contributing to 
“optimal use and interpretation” [37].

Some study designs raised questions of evaluator 
bias against the interactive apps. Among the criticisms 
were whether a particular evaluation overweighed rela-
tively rare diagnoses [54] or failed to compare app use for 
triage to a realistic consumer alternative, such as a tel-
ephone triage line [49]. Our scoping review raised similar 
concerns; e.g. studies in which an orthopedist assessed 
whether a symptom checker could “guess” the correct 
diagnosis [37], a dermatologist setting out to show the 
need for greater regulation [36] and an otolaryngologist 
comparing a symptom checker’s diagnostic accuracy 
to his own [35]. This potential bias could be due to the 

tendency to judge algorithms differently than fellow 
humans [55].

Discussion
Patient diagnosis is evolving “from art to digital data-
driven science”, both within and outside the exam room 
[56]. DTC diagnostic technology is rapidly evolving: the 
second half of 2017, for example, witnessed the wide-
spread online dissemination of a depression-assessment 
questionnaire [57], as well as with the debut of smart-
phone enhancements utilizing sensors and AI that target 
the same condition [58]. The pace of change should 
inspire urgency to improve the evidence base on app 
performance. However, most of the studies we identi-
fied simply described various apps’ attributes, a finding 
similar to the conclusions of a broad systematic review of 
mHealth apps [59].

Our findings demonstrate the need to accelerate 
investments into evaluation and research related to con-
sumer facing diagnostic apps. Conversely, there appears 
to be some progress in evaluating physician-facing diag-
nostic apps, such as determining accuracy of diagnos-
ing complex cases by the Isabel clinical decision support 
system [60] and determining test ordering and diagnostic 
accuracy of an app for testing and diagnosis for certain 
hematologic conditions [61]. A recent systematic review 
and meta-analysis concluded that differential diagno-
sis generators (often used as apps) “have the potential 
to improve diagnostic practice among clinicians” [62]. 
Nevertheless, the review found many studies with poor 
methodological quality, in addition to high between-study 
heterogeneity [62].

Based on our review, we make three key recommen-
dations to advance research, policy, and practice. First, 
researchers should consistently name all individual apps 
evaluated and provide all results by individual app. Apps 
are medical devices, and accurate and timely diagnosis 
is a significant public health issue. Given that some of 
these publicly available apps seemed to perform far better 
than others, identification is central to enabling the type 
of clinician-patient partnership recommended by NAM’s 
Improving Diagnosis report, as well as the accountabil-
ity that comes from policy oversight and replication of 
research findings. Since these products are aimed at 
consumers, price information should also routinely be 
included.

Second, evaluations of apps should explicitly 
address underlying technological and functional differ-
ences. These may or may not be tied to whether an app 
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is accessed via a web browser or is downloaded. Func-
tionally, for example, an app relying on algorithmic 
analysis of answers to questions, even if it is downloaded 
to a mobile device, is very different than algorithmic 
analysis of data from that device’s sensors. In turn, the 
technological basis of those algorithms – for example, 
the use of artificial intelligence (AI) – has substantial 
future implications. For example, current evidence sug-
gests that the sensor-based diagnoses of DTC dermatol-
ogy apps are approaching high reliability [40] and that 
general symptom checker accuracy might be significantly 
improved with AI [50]. These technological distinctions 
should be recognized by researchers and can inform evi-
dence-based discussions about the clinical and economic 
impact of consumer use of DTC diagnostic apps and the 
appropriate public policy response.

Third, researchers should validate and standardize 
evaluation methodologies. The Standards for Universal 
reporting of patient Decision Aid Evaluation (SUNDAE) 
checklist for decision aids studies may serve as one 
example [63]. In addition to ensuring that evaluations 
name individual apps and identify their functionality 
appropriately, a methodology should include agreed-upon 
sampling and selection criteria; characteristics related to 
usability and performance; and standards for assessing 
sensitivity, specificity, and other measures of app accu-
racy. These actions will help avoid bias while also ensur-
ing that the evidence base aligns with the varying needs of 
clinicians, patients, researchers, private-sector entrepre-
neurs, and policymakers.

Conclusions
Overall, the current evidence base on DTC, interactive 
diagnostic apps is sparse in scope, uneven in the informa-
tion provided, and inconclusive with respect to safety and 
effectiveness, with no studies of clinical risks and benefits 
involving real-world consumer use. Although some studies 
we examined rigorously determined the sensitivity and 
specificity of app-generated diagnoses, methodologies 
varied considerably. Given that DTC diagnostic apps are 
rapidly evolving, more frequent and rigorous evaluations 
are essential to inform decisions by clinicians, patients, 
policymakers, and other stakeholders.
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