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Abstract: Over a third of adults go online to diagnose their
health condition. Direct-to-consumer (DTC), interactive,
diagnostic apps with information personalization capa-
bilities beyond those of static search engines are rapidly
proliferating. While these apps promise faster, more con-
venient and more accurate information to improve diag-
nosis, little is known about the state of the evidence on
their performance or the methods used to evaluate them.
We conducted a scoping review of the peer-reviewed and
gray literature for the period January 1, 2014-June 30, 2017.
We found that the largest category of evaluations involved
symptom checkers that applied algorithms to user-
answered questions, followed by sensor-driven apps that
applied algorithms to smartphone photos, with a handful
of evaluations examining crowdsourcing. The most com-
mon clinical areas evaluated were dermatology and gen-
eral diagnostic and triage advice for a range of conditions.
Evaluations were highly variable in methodology and con-
clusions, with about half describing app characteristics
and half examining actual performance. Apps were found
to vary widely in functionality, accuracy, safety and effec-
tiveness, although the usefulness of this evidence was
limited by a frequent failure to provide results by named
individual app. Overall, the current evidence base on DTC,
interactive diagnostic apps is sparse in scope, uneven in
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the information provided and inconclusive with respect to
safety and effectiveness, with no studies of clinical risks
and benefits involving real-world consumer use. Given
that DTC diagnostic apps are rapidly evolving, rigorous
and standardized evaluations are essential to inform
decisions by clinicians, patients, policymakers and other
stakeholders.
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apps; health information technology; mHealth; patient
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Introduction

The 2015 National Academy of Medicine (NAM) report
Improving Diagnosis in Health Care concluded that most
people will experience at least one diagnostic error in their
lifetime [1]. The report, noting that over a third of adults
go online to diagnose a health condition [2], urged profes-
sionals to direct patients to reliable online resources. How
to determine the reliability of online resources, however,
remains an unresolved question.

Currently available online resources have graduated
beyond keyword searches on Google. Increasingly, they
include sophisticated direct-to-consumer (DTC) diagnos-
tic tools that use algorithms, sensors and “crowdsourc-
ing” [3] to create Web 2.0 personalization and interactivity
[4] for functions ranging from triage and differential diag-
nosis of common ailments to detecting skin changes sug-
gestive of cancer.

With over a quarter million health apps available in
major app stores [5], popular DTC diagnostic apps have
been downloaded from tens of thousands to tens of mil-
lions of times [6]. Possible benefits include faster, more
convenient and more targeted information to improve
diagnosis [7] and reduction of unneeded visits and tests,
but there is also the potential for unintended outcomes [8]
such as inappropriate treatment and diagnostic error. The
Food and Drug Administration (FDA) has long exempted
“low risk” apps from its approval process [9], and the
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current FDA commissioner has said that apps helping con-
sumers self-diagnose are an innovation that regulations
should not impede [10]. Nonetheless, there are as yet no
accepted vetting processes enabling clinicians or patients
to distinguish between reliable apps and “digital snake
oil” [11]. Diagnostic apps specifically have received scant
attention in comparison to health management ones, even
in overviews of the field [12, 13].

We conducted a scoping review to characterize the
current state of evidence on how interactive, DTC diag-
nostic apps available to consumers perform and what
methods are used to evaluate them.

Methods

Funding for our work was provided by the Gordon and
Betty Moore Foundation; however, the foundation had no
role in study design; collection, analysis and interpreta-
tion of data; or approval of final publication. Our scoping
review used Arksey and O’Malley’s five-stage methodo-
logical framework [14] summarized in Table 1.

Formulating research questions

An initial search in PubMed, Google Scholar, and the lay
literature through General Reference Center Gold revealed
a highly heterogeneous literature in which information
of interest was often subsumed in broader examinations
of diagnostic and/or health management apps. That
search generated four research questions: what clinical
conditions do these apps address? What functionality is
involved in producing a tentative diagnosis? What meth-
odologies are evaluators using to assess these apps? And
what are the results of app evaluations, including evi-
dence on risks and benefits? Our findings were intended
to help guide medical practice, consumer choice and
health policy by identifying the strengths and weaknesses
of the evidence in the current literature and by highlight-
ing evidence gaps.

Identification of relevant studies

With a medical librarian (LZ), we conducted a structured
search of PubMed and Google Scholar for the period
January 1, 2014-June 30, 2017, focusing on apps sug-
gesting an initial diagnosis and marketed DTC without
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FDA approval. The timeframe was chosen in an attempt
to minimize the inclusion of possibly technologically
irrelevant evaluations of older apps. A lack of common
keywords and inconsistent indexing made a structured
and reproducible PubMed search difficult, leading to an
iterative search process. Moreover, as no existing U.S.
National Library of Medicine MeSH terms were closely
related to our topic, we used broader, related terms such
as “smartphone” and “diagnostic self-evaluation”. In
addition, we manually reviewed selected bibliographies,
even if slightly outside the time frame. We also searched
the lay literature through General Reference Center Gold
and by looking more broadly at trade and general-inter-
est publications, websites and reports from organizations
active in this field [15]. We also interviewed physicians,
researchers, digital health entrepreneurs and a venture
capitalist.

Study selection

We included original research, descriptive studies and
literature reviews related to diagnostic software appli-
cations consumers might commonly use, whether web-
based or apps developed for a specific platform (e.g.
iPhone) [16]. We excluded apps subject to FDA approval,
those in a research phase, those using physical tests (e.g.
Bluetooth-connected pregnancy tests) and static content
(e.g. keyword searches).

Two authors (MLM and JLB) assessed full-text articles
for relevance, given that an abstract might not accurately
reflect whether an evaluation of a particular diagnostic
app was performed. When there was a question about
article inclusion, it was discussed with a third author (HS).

Data charting

Two authors (MLM and JLB) reviewed articles and organ-
ized information pertaining to type of digital platform(s),
study design, app attributes, outcomes investigated and
major findings [17].

Data summarization

Data was summarized according to app functional-
ity; diseases evaluated; evaluation methodologies
(including selection criteria, descriptions of app attrib-
utes and testing of diagnostic functionality); and study
results.
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Table 1: Steps involved in scoping review.
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1.1 Formulated direct-to-consumer (DTC) diagnostic app-related research questions

- Diagnoses/diseases evaluated?

— App features and technologies evaluated?

— Methodologies used in evaluations?

— Evidence about app performance, risks and benefits?

1.2 Identification of relevant studies
Defined studies of - English-language
interest

- Studies examining interactive apps suggesting provisional/initial diagnosis

- Studies examining apps not subject to FDA approval

Initiated structured and
iterative search

— Structured search terms, free text, and keywords
— PubMed, Google Scholar, and General Reference Center databases from January 1, 2014 through June 30, 2017

— Iterative search with specific MeSH terms (e.g. mobile applications) and broader, related terms (e.g.
“smartphone” and “diagnostic self-evaluation”)

- Manual bibliography search of selected articles, even if slightly outside time frame

- Iterative Google keyword and bibliography-driven search of gray literature, including health care, informatics
and general interest publications and websites

- Interviews with physicians, entrepreneurs, and others

1.3 Study selection

Inclusion and exclusion

criteria applied
specific function directly for the user

- Included original research, research letters, descriptive studies and literature reviews
- “App” defined as interactive software, whether on web browser or mobile device, designed to perform a

— “Direct-to-consumer” defined as marketed directly to individuals and not meant to primarily facilitate

conversation with a clinician

- “Diagnostic” defined as providing an initial or provisional diagnosis and not mainly providing additional
information after initial diagnosis by a physician

- “Interactive” defined as excluding physical tests, such as Bluetooth-connected pregnancy tests, and static
content, such as search engine keyword searches

— Abstracts and/or full text reviewed by two authors (MLM and JLB) to determine if criteria met

1.4 Charting the data
Charting akin to narrative
review, with general and
specific information

- Selected articles reviewed by two investigators (MLM and JLB) as to study design, app characteristics,
functional outcomes investigated, and other major findings
— Reviewer analysis and notes recorded in a spreadsheet to facilitate final summarization using SPIDER

format: Sample (clinical category and type of apps); Phenomena of Interest (attributes studied); Design;
Evaluation (findings and discussion); and Research type?

1.5 Summarizing and reporting results
Summarization with Findings organized according to
descriptive narrative - Disease area
aligned with primary — Technological functionality of apps
research questions - Methodology of evaluation

— Results

aRef. [17].

Results

Overview of selected studies

We identified 30 peer-reviewed articles and research
letters (Tables 2 and 3) and six non-peer reviewed arti-
cles [47-52] meeting our definition. Although we focused
on diagnostic apps, these were often described within
broader studies evaluating medical apps.

Conditions evaluated

The greatest number of articles (10) focused on dermatol-
ogy-related diagnostic apps, primarily conditions associ-
ated with malignancy [20, 25, 28, 34, 36, 39-41, 45, 46]. Next
were eight articles on apps providing diagnostic and triage
advice for a broad range of conditions [6, 19, 22, 24, 26, 27,
43, 44). Other diagnostic areas included infectious disease
[one article on acute infectious conditions; one article
on sexually transmitted infections (STIs) [23, 38]; mental
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health issues (one article on depression) [32]; neurology
(one article on Alzheimer’s disease) [30]; general oncology
(two) [18, 21]; orthopedics (one on knee pain [33], one on
hand surgery) [37]; eye and vision issues (one) [31]; otolar-
yngology (one general) [35]; rheumatology (one on inflam-
matory arthritis) [42]; and urology (one general) [29].

App functionality

The evaluations covered three broad functional catego-
ries of apps, with some articles including apps falling into
more than one category. The largest category (20) involved
medical symptom checkers that apply algorithms to user-
answered questions to generate probable diagnoses and/
or triage advice. The second most-common category (12)
included apps that applied image processing technology
and algorithms to smartphone photos. Articles we found
were exclusively focused on conditions of the skin and
eyes. Finally, five articles involved crowdsourcing using
an online, distributed problem-solving model. (A promi-
nent app in this category, CrowdMed, applies an algorithm
to diagnostic suggestions submitted online by clinical and
non-clinical “medical detectives” and then provides a
second opinion.)

Evaluation methodologies

Most studies evaluated multiple apps. However, some
focused on a specific app due to app developer funding
[24], app prominence (e.g. WebMD’s symptom checker)
or a desire to show the need for greater regulation [36].
Selection criteria for which apps were included in evalua-
tions appeared somewhat arbitrary. Some studies simply
described the presence or absence of particular attributes,
such as whether there was a disclosed privacy policy. App
cost was not consistently addressed, nor did researchers
consistently note that “free” apps may sell user data.
Assessment methodologies ranged from a structured
rating grid completed by two expert panels to “think-
aloud” feedback from consumers during use. User char-
acteristics that were examined included age, gender,
education, income, years of home ownership, health lit-
eracy, and computer literacy. As noted in Table 3, some
studies engaged multiple experts to review app content
and features, while others assessed performance directly
by comparing an app’s suggested diagnosis to a reference
diagnosis from a clinician or other source, such as struc-
tured clinical vignettes. Although these apps are classified
as low-risk devices by the FDA, it is important to note that
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we found no studies of accuracy or clinical risks and ben-
efits based upon real-world use by consumers.
Quantitative studies of these apps’ accuracy most
often expressed their results in terms of percentage of
true positives (or percent of responses correctly assigned
to a specific category), sensitivity, and/or specificity for
app-generated diagnoses when compared to diagnoses
from a clinician or other reference source. Less commonly
reported quantitative measures included positive predic-
tive value, negative predictive value, and nonparametric
statistics (e.g. kappa, chi-square, odds ratio) (Table 3).

Evaluation results

Potential privacy and security problems were highlighted
by several studies; e.g. symptom checkers for STIs were
rated as “poor to very poor” on informed consent, disclo-
sure of privacy and confidentiality policies and possible
conflicts of interest [23]. A similar conclusion was reached
in a study of apps for detecting Alzheimer’s disease [30].

Meanwhile, the cost of apps was difficult to ascer-
tain. In the most comprehensive information we found,
symptom checkers for both professionals and patients
were said to range in price from “under $1 to $80 or
more” [6]. In a study of dermatological diagnostic and
management apps, app prices were given as ranging from
99 cents to $139.99 [20]. In neither study were prices for
DTC diagnostic apps broken down separately. Only one of
the three studies of the CrowdMed app mentioned its sig-
nificant cost; i.e. users must offer a minimum $200 reward
to the “crowd” of “medical detectives™.

Actual diagnostic performance varied widely. A study
of 23 general symptom checkers by Semigran et al. found
an 80% rate of appropriate triage advice in emergent
cases, but just 33% for appropriate self-care suggestions.
Still, researchers judged these interactive apps prefer-
able to a static Google search [43]. In a non-peer reviewed
“contest”, the Babylon Check symptom checker, which
was not included in the Semigran study, was pitted against
a junior doctor and experienced nurse using a standard-
ized case and compared favorably [47]. A separate, non
peer-reviewed article by the app’s sponsor concluded that
Babylon Check produced accurate triage advice in 88.2%
of cases (based on pre-determined case vignettes), vs.
75.5% for doctors and 73.5% for nurses [50]. However, we
also found articles calling into question some of the find-
ings and asking for an independent evaluation and addi-
tional evidence for its accuracy [53].

Peer-reviewed results of general symptom checkers
for particular diseases, rather than for general medical
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and triage advice, showed few favorable results. In one
study, the diagnosis suggested by a symptom checker
matched a final diagnosis related to hand surgery
just 33% of the time [37], while in another, a symptom
checker provided “frequently inaccurate” advice related
to inflammatory joint disease [42]. Specialty symptom
checkers — like the general ones, based on answers
to user questions — also fared poorly. An app for knee
pain diagnoses had an accuracy rate of 58% [33]. Apps
to screen for Alzheimer’s disease were all rated “poor to
very poor”, and the authors noted that one tested app
even concluded the user had the condition no matter
what data were entered [30].

However, when specialty symptom checkers used
data directly entered from sensors, they sometimes
showed more promise, albeit with significant variability
in the findings. For example, while one study warned of
substantial potential for patient harm from a dermatology
app’s misleading results [36], another study of that same
app using a different methodology 2 years later found an
accuracy rate of 81% in detecting melanoma, a sensitivity
of 73% and a specificity of 39.3% [39]. Meanwhile, vision
diagnostic apps using sensors and directly targeting con-
sumers received cautiously positive assessments in two
non peer-reviewed articles [48, 51].

No studies examined actual patient outcomes. The
closest approximation came in two studies of CrowdMed.
In one study, patients said the app provided helpful guid-
ance [27], while in another, users had fewer provider visits
and lower utilization [24]. The patient’s ultimate correct
diagnosis was however, never confirmed. There were
evaluations of consumer characteristics related to perfor-
mance with varying results. Luger et al. found that indi-
viduals who diagnosed their symptoms more accurately
using a symptom checker were slightly younger [38] while
Powley et al. concluded that neither age nor gender had a
significant impact on usability [42]. Hageman et al. identi-
fied more familiarity with the Internet as contributing to
“optimal use and interpretation” [37].

Some study designs raised questions of evaluator
bias against the interactive apps. Among the criticisms
were whether a particular evaluation overweighed rela-
tively rare diagnoses [54] or failed to compare app use for
triage to a realistic consumer alternative, such as a tel-
ephone triage line [49]. Our scoping review raised similar
concerns; e.g. studies in which an orthopedist assessed
whether a symptom checker could “guess” the correct
diagnosis [37], a dermatologist setting out to show the
need for greater regulation [36] and an otolaryngologist
comparing a symptom checker’s diagnostic accuracy
to his own [35]. This potential bias could be due to the
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tendency to judge algorithms differently than fellow
humans [55].

Discussion

Patient diagnosis is evolving “from art to digital data-
driven science”, both within and outside the exam room
[56]. DTC diagnostic technology is rapidly evolving: the
second half of 2017, for example, witnessed the wide-
spread online dissemination of a depression-assessment
questionnaire [57], as well as with the debut of smart-
phone enhancements utilizing sensors and Al that target
the same condition [58]. The pace of change should
inspire urgency to improve the evidence base on app
performance. However, most of the studies we identi-
fied simply described various apps’ attributes, a finding
similar to the conclusions of a broad systematic review of
mHealth apps [59].

Our findings demonstrate the need to accelerate
investments into evaluation and research related to con-
sumer facing diagnostic apps. Conversely, there appears
to be some progress in evaluating physician-facing diag-
nostic apps, such as determining accuracy of diagnos-
ing complex cases by the Isabel clinical decision support
system [60] and determining test ordering and diagnostic
accuracy of an app for testing and diagnosis for certain
hematologic conditions [61]. A recent systematic review
and meta-analysis concluded that differential diagno-
sis generators (often used as apps) “have the potential
to improve diagnostic practice among clinicians” [62].
Nevertheless, the review found many studies with poor
methodological quality, in addition to high between-study
heterogeneity [62].

Based on our review, we make three key recommen-
dations to advance research, policy, and practice. First,
researchers should consistently name all individual apps
evaluated and provide all results by individual app. Apps
are medical devices, and accurate and timely diagnosis
is a significant public health issue. Given that some of
these publicly available apps seemed to perform far better
than others, identification is central to enabling the type
of clinician-patient partnership recommended by NAM’s
Improving Diagnosis report, as well as the accountabil-
ity that comes from policy oversight and replication of
research findings. Since these products are aimed at
consumers, price information should also routinely be
included.

Second, evaluations of apps should explicitly
address underlying technological and functional differ-
ences. These may or may not be tied to whether an app
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is accessed via a web browser or is downloaded. Func-
tionally, for example, an app relying on algorithmic
analysis of answers to questions, even if it is downloaded
to a mobile device, is very different than algorithmic
analysis of data from that device’s sensors. In turn, the
technological basis of those algorithms — for example,
the use of artificial intelligence (AI) — has substantial
future implications. For example, current evidence sug-
gests that the sensor-based diagnoses of DTC dermatol-
ogy apps are approaching high reliability [40] and that
general symptom checker accuracy might be significantly
improved with AI [50]. These technological distinctions
should be recognized by researchers and can inform evi-
dence-based discussions about the clinical and economic
impact of consumer use of DTC diagnostic apps and the
appropriate public policy response.

Third, researchers should validate and standardize
evaluation methodologies. The Standards for Universal
reporting of patient Decision Aid Evaluation (SUNDAE)
checklist for decision aids studies may serve as one
example [63]. In addition to ensuring that evaluations
name individual apps and identify their functionality
appropriately, a methodology should include agreed-upon
sampling and selection criteria; characteristics related to
usability and performance; and standards for assessing
sensitivity, specificity, and other measures of app accu-
racy. These actions will help avoid bias while also ensur-
ing that the evidence base aligns with the varying needs of
clinicians, patients, researchers, private-sector entrepre-
neurs, and policymakers.

Conclusions

Overall, the current evidence base on DTC, interactive
diagnostic apps is sparse in scope, uneven in the informa-
tion provided, and inconclusive with respect to safety and
effectiveness, with no studies of clinical risks and benefits
involving real-world consumer use. Although some studies
we examined rigorously determined the sensitivity and
specificity of app-generated diagnoses, methodologies
varied considerably. Given that DTC diagnostic apps are
rapidly evolving, more frequent and rigorous evaluations
are essential to inform decisions by clinicians, patients,
policymakers, and other stakeholders.
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