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lativitätstheorie erwiesen, und auch von der Entwick­
lung der Spektraltheorie durch Hilbert bis zu ihrer 
Anwendung in Schroedingers Quantenmechanik ver­
gingen zwanzig Jahre, aber umso bemerkenswerter 
waren die Früchte. 
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Mordell's review, Siegel's Ietter to Mordell, 
diophantine geometry, and 20th century mathematics 

by Serge Lang 

In 1962, I published Diophantine Geometry. Mordeil 
reviewed this book (Mor 1964](note 1) , and the re­
view became famous. Immediately after the review 
appeared, in that same year, Siegel wrote a Ietter to 
Mordeil to express his agreement with Mordell's re­
view concerning the overallnature of the book, and to 
express more generally hisnegative reaction to trends 
in mathematics of the 1950's and 1960's. I learned 
of Siegel's Ietter to Mordeil only in the seventies by 
hearsay, without knowing its precise content. At that 
time, in a Ietter dated 11 December 1975, I wrote to 
Siegel to teil him I got the message, and I sent a copy 
of my Ietter to many people. There was considerable 
gossip about Siegel's Ietter to Mordell, but I saw the 
Ietter for the first time only in March 1991, when I 
received from Michel Waldschmidt a copy which he 
made from the original in the Cambridge library of 
St John College. 

Siegel's Ietter is a historical document of interest 
from many points of view. I would like to deal here 
with one of these points of view having to do with the 
relation between number theory and algebraic geo­
metry, or what has come to be known as the number 
field case and the function field case. I shall document 
part of the 20th century history of the way these two 
cases have benefited from each other, and the extent 
to which both Mordeil and Siegel failed to under­
stand the accomplishments of the fifties and sixties in 
connection with them (note 2). Among other things, 
Siegel wrote to Mordell: 

- that "the whole style of the author (of Diaphanti­
ne Geometry] contradicts the sense for simplicity 
and honesty which we admire in the works of the 
masters in number theory ... " ; 
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- that "just now, Lang has published another book 
on algebraic numbers which, in my opinion, is 
still worse than the former one. I see a pig bro­
ken into a beautiful garden and rooting up all 
ftowers and trees"; 

- that "unfortunately, there are many 'fellow tra­
velers' who have already disgraced a large part 
of algebra and function theory"; 

- that "these people remind (Siegel] of the im­
pudent behaviour of the national socialists who 
sang: 'Wir werden weiter marschieren, bis alles 
in Scherben zerfällt!'" ; 

- and that "mathematics will perish before the end 
of this century if the present trend for senseless 
abstraction - I call it: theory of the empty set -
cannot be blocked up" . 

I shall also deal with some concrete instances of 
the more general problern mathematicians face in de­
aling with advances in mathematics which may pass 
them by. 

§1. From Dedekind-Weber to the Rie­
mann Hypothesis in function fields over 
finite fields 

The analogy between number fields and function 
fields has been realized since the latter part of the 
19th century. Kronecker was already in some sense 
aware of some of its aspects. Dedekind originated a 
terminology in his study of number fields which he 
and Weber applied to function fields in one varia­
ble (Ded-W 1882]. Rensei-Landsberg then provided 
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a first systematic book treatment of basic facts con­
cerning these function fields [Hen-1 1902], using the 
Dedekind-Weber approach. Artin in his thesis [Art 
1921] translated the Riemann hypothesis to the func­
tion field analogue (actually for quadratic fields). Se­
veral years later F. K. Schmidt treated general analy­
tic number theory including the functional equation 
of the zeta function for function fields of arbitrary 
genus [Schm 1931]. However , Artin thought that the 
Riemann hypothesis in the function field case would 
be as difficult as in the classical case of the ordina­
ry Riemann or Dedekind zeta function (he told me 
so around 1950). It was Hasse in 1934 and 1936 who 
pointed out the "key for the problem" in the func­
tion field case through the theory of correspondences, 
as Weil writes in [Wei 1940] . (Hasse also indicated 
another way through reduction mod p using complex 
multiplication in characteristic zero.) Hasse hirnself 
proved the Riemann hypothesis (Artin 's conjecture) 
for curves of genus 1 [Has 1934], [Has 1936] (note 
3). Then Deuring pursued the higher dimensional ge­
neralization of Hasse's theory of endomorphisms on 
elliptic curves and correspondences [Deu 1937], [Deu 
1940], by showing that some results of Severi [Sev 
1926] could be proved so that they applied in cha­
racteristic p, especially to curves over finite fields. 
Weil went much further than Hasse and Deuring in 
this direction. "Directly inspired" [Wei 1948a, p. 28] 
by works of Severi [Sev 1926] and Castelnuovo [Cas 
1905], [Cas 1906], [Cas 1921], Weil developed a purely 
algebraic theory of correspondences and abelian va­
rieties; and he formulated the positive definiteness of 
his trace (which he related to Castelnuovo's equiva­
lence defect), thus yielding the Riemann- Hypothesis 
in the function field case for curves of higher genus 
[Wei 1940], [Wei 1948a], [Wei 1948b]. 

Hasse also defined a zeta function for arbitrary va­
rieties over number fields and conjectured its analytic 
continuation and functional equation. This point of 
view was promoted by Weil in the fifties. There was 
a serious problern of algebraic geometry even dealing 
with varieties of higher dimension over finite fields , 
Iet alone number fields, because as Weil conjectured, 
the analogue of the functional equation and Riemann 
hypothesis in this case would depend on finding alge­
braic analogues of homology groups (homology func­
tors) satisfying the Lefschetz fixed point formula [Wei 
1949]. 

In the forties and fifties several subjects in ma­
thematics, including algebraic topology and algebraic 
geometry, systematically developed new foundations 
and internal results . Indeed, homological algebra de­
veloped first from algebraic topology, but soon saw its 
domain of applications extend to several other fields 
including algebraic geometry. This algebra was af­
fectionately called "abstract nonsense" by Steenrod 
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( with a quite different intent and meaning from Sie­
gel's "senseless abstraction"). A !arge body of mate­
rial, recognized to be fairly dry by some of its crea­
tors, had to be systematically worked out to provide 
appropriate background for more extensive applica­
tions. The dryness was unavoidable. 

One also saw the simultaneaus development of 
commutative algebra. One of its motivations was that 
in the context of algebraic geometry, a curve over a 
number field can be defined by equations whose coef­
ficients lie in the ring of algebraic integers, and so can 
be viewed as a family of curves obtained by reducing 
mod p for all primes p, or even mod pn for higher n so 
as to include infinitesimal properties. This case can 
be unified with the case of algebraic families of cur­
ves over an arbitrary field, including curves over the 
complex numbers. Furthermore, one wants to treat 
higher dimensional varieties in the same fashion, in 
an algebraic and analytic context. For the analytic 
context one is led to work over power series rings, 
and more generally over complete local rings because 
of the presence of singularities and the infinitesimal 
aspects. One was also led to globalize from modules 
to sheaves, in a context involving both homological 
algebra and commutative algebra, thus leading to fur­
ther abstractions. 

These developments were a prelude to the sub­
sequent conceptual unification of topology, complex 
differential geometry and algebraic geometry during 
the sixties, the seventies, and beyond. For such a uni­
fication to take place, it was necessary to develop not 
only a language, but an extensive theory containing 
very substantial results as weil, starting with commu­
tative algebra and merging into algebraic geometry. 
In the fifties and sixties, these developments appeared 
as "senseless abstractions" to some people, including 
Siegel, who writes as if these developments deal only 
with the "theory of the empty set". But it is precisely 
the insights of Grothendieck which led to an extensi­
on - including an abstraction - of algebraic geometry 
whereby he defined the cohomology functors algebrai­
cally; whereby he proved the Lefschetz formula [Gro 
1964] ; and whereby finally a decade later, Deligne fi­
nally proved the analogue of the Riemann hypothesis 
for varieties in the higher dimensional case [Del1974]. 
Deligne also proved related applications, because in a 
Bourbaki seminar talk [Dei 1969], he had previously 
shown how to reduce the Ramanujan-Petersson con­
jecture for eigenvalues of modular forms under Hecke 
operators to this Riemann hypothesis, in a direction 
first foreseen by Sato and also using some insights 
of Kuga-Shimura, to whom he refers at the begining 
of his Bourbaki seminar talk. A very short and clear 
account of the ideas, leading from a classical problern 
involving the partition function to the most advanced 
uses of Grothendieckian algebraic geometry, is given 
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in the first two pages of [Dei 1969]. 

§2. Some implications 

We now pause a moment to consider some implica­
tions of these great developments. As I wrote in my 
1961 review of Grothendieck's Elements de geometrie 
algebrique [Lan 1961] a decade before Deligne's appli­
cations of Grothendieckian geometry occurred: "The 
present work. . .is one of the major Iandmarks in the 
development of algebraic geometry ... Before we go in­
to a closer description of the contents of Chapter 0 
and I [ which were just appearing and prompted the re­
view] it is necessary to say a few words explaining why 
the present treatise differs radically in its point of 
view from previous ones." I then mentioned four spe­
cific points like those already listed above: the need 
to deal with algebraic families of varieties, applicati­
ons to number theory and reduction modulo a prime 
power, defining algebraically the functors from topo­
logy such as homology and homotopy, and the study 
of non-abelian coverings. I also emphasized throug­
hout the importance and far reaching implications of 
Grothendieck's functorial point of view. 

I ended my review as follows: "To conclude this 
review, I must make a remark intended to emphasize 
a point which might otherwise Iead to misunderstan­
ding. Some may ask: If Algebraic Geometry really 
consists of (at least) 13 Chapters, 2,000 pages [it tur­
ned out to be more like 10,000], all of commutative 
algebra, then why not just give up? The answer is 
obvious. On the one hand, to deal with special topics 
which may be of particular interest only portions of 
the whole work are necessary, and shortcuts can be 
taken to arrive faster to specific goals ... But even more 
important, theorems and conjectures still get disco­
vered and tested on special examples, for instance 
elliptic curves or cubic forms over the rational num­
bers. And to handle these, the mathematician needs 
no great machinery, just elbow grease and imaginati­
on to uncover their secrets. Thus as in the past, there 
is enough stuff lying around to fit everyone's taste. 
Those whose taste allow them to swallow the Ele­
ments, however, will be richly rewarded." Thus I did 
not see the developments of Grothendieck's algebraic 
geometry as incompatible with doing beautiful or de­
ep mathematics with only a minimum of knowledge. 

Five years later, when I wrote to Mordeil the Iet­
ter reproduced in [Lan 1970] and [Lan 1983], I con­
tinued to take such a balanced view. Since Mordeil 
had written in his review: "When proof of an exten­
sion makes it exceedingly difficult to understand the 
simpler cases, it might sometimes be better if the ge­
neralizations were left in the journals" (see below for 
the context of this judgment), I replied: 
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"I see no reason why it should be prohibited to 
write very advanced monographs, presupposing sub­
stantial knowledge in some fields, and thus allowing 
certain expositions at a Ievel which may be apprecia­
ted only by a few, but achieves a certain coherence 
which would not otherwise be possible. 

"This of course does not preclude the writing of 
elementary monographs. For instance, I could rewrite 
Diophantine Geometry by working entirely on ellip­
tic curves, and thus make the book understandable 
to any first year graduate student (not mentioning 
you) ... ) Both books would then coexist amicably, and 
neither would be better than the other. Each would 
achieve different ends. [In fact , I eventually wrote El­
liptic Curves: Diophantine Analysis, Springer Verlag, 
1978.] 

" ... When I write a standard text in Algebra, I at­
tempt something very different from writing a book 
which for the first time gives a systematic point of 
view on the relations of diophantine equations and 
the advanced contexts of algebraic geometry. The 
purpose of the latter is to jazz things up as much 
as possible. The purpose of the former is to educa­
te someone in the first steps which might eventually 
culminate in his knowing the jazz too, if his tastes 
allow him that path. And if his tastes don't, then 
my blessings to him also. This is known as aesthe­
tic tolerance. But just as a composer of music (be it 
Bach or the Beatles), I have to take my responsibility 
as to what I consider to be beautiful and write my 
books accordingly, not just with the intent of pleasing 
one segment of the population. Let pleasure then fall 
where it may." 

Thus I advocated "aesthetic tolerance" - which is 
certainly absent from Siegel's Ietter, to say the least. 

It is of course not only a matter of "taste" or 
"aesthetic tolerance". It may also have to do with 
one's natural limitations. For instance, I had my 
own limitations vis a vis Grothendieck's work (and 
other works). Having gone through Weil's Faunda­
tians right after my PhD, I myself was unable la­
ter to absorb completely Grothendieck's work, and I 
was unable to read much of that work, as weil as so­
me of its applications, such as those by Deligne [Dei 
1969], [Dei 1974]. However, I did not put down Gro­
thendieck's work. I admired it (as quoted above), and 
merely regretted my own limitations. I also could not 
read the Italian geometers myself and I needed van 
der Waerden and Weil as intermediaries in algebrai­
cizing and modernizing italian geometry. 
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§3. Diophantine results over number 
fields and function fields 

Next we consider diophantine questions over the ra­
tionals or over number fields . At the turn of the cen­
tury, Poincare defined the "rank" of the group of ra­
tional points on an elliptic curve over the rational 
numbers [Poi 1901]. By " rank" he actuaily meant so­
mething different from what we mean today. Roughly 
speaking, he meant the smallest number of generators 
of the set of rational points using the secant and tan­
gent method to generate points. Poincare wrote as if 
this rank is always finite . The finite generation was 
proved by Mordeil [Mor 1921], and again Weil exten­
ded this result to abelian varieties over number fields 
using more algebraic geometry in his thesis at the end 
ofthat decade [Wei 1928]. The analytic parametriza­
tion of abelian varieties, and especiaily Jacobians of 
curves, was a convenient tool at the time, and for 
this particular application a complete algebraization 
of curves and their Jacobians was not yet needed. 

At the purely algebraic Ievel, the fifties saw a cla­
rification of the Mordeil-Weil theorem and its relati­
ons to the algebraic-geometric Situation in the func­
tion field case. The Artin-Whaples product formula 
of the forties [Ar-W 1945] was the number theore­
tic analogue of the geometric theorem that a rational 
function on a curve has the same number of zeros and 
poles (counting multiplicities) , or in higher dimension 
that the degree in projective space of the divisor of a 
rational function is zero. I used this product formula 
as the basic axiom for the theory of heights in Dio­
phantine Geometry, applicable simultaneously to the 
number field and function field case, in any dimensi­
on. Mordeil complained that here "we have definiti­
ons which many other authors do not find necessary". 
However, varieties over number fields have their ana­
logues in algebraic families of varieties over any field, 
especially over the complex numbers. Rationalpoints 
have their analogues in sections of such families, and 
in fact are sections when the proper language and 
setting has been defined. The analogy has been inte­
resting and fruitful not only because it has ailowed 
techniques to go back and forth enriching the two ca­
ses, but because for instance in the study of algebraic 
surfaces, cases occur systematicaily when these varie­
ties are genericaily fibered by curves of genus 1. One 
then wants to know which fibers have rational points, 
and how many. In case the generic fiber of an alge­
braic family is an abelian variety, the sections form a 
group, and Lang-Neron proved that this group is fi­
nitely generated modulo the subgroup of "constant" 
sections [La-Ne 1959], this being the function field 
analogue of the Mord eil-Weil theorem. Furthermore, 
Severi long ago conjectured that the algebraic part of 
the first cohomology group, i.e. the group of divisors 
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modulo algebraic equivalence, was finitely generated 
(Theorem of the Base), and he had the intuition that 
such a result was also analogaus in some way to the 
Mordeil-Weil theorem. Neron proved Severi's conjec­
ture [Ner 1952], and Lang-Neron established an ac­
tual isomorphism between the Neron-Severi group of 
a variety, and a subgroup of the group of sections 
(modulo constant sections) of the Jacobian of the ge­
neric curve in some projective imbedding. These re­
sults of the fifties formed the backhone of my book 
Diophantine Geometry, but were viewed as "senseless 
abstraction ... the theory of the empty set" by Siegel. 

Using Weil's results, and his own results on dio­
phantine approximations (Thue-Siegel theorem) , Sie­
gel proved that an affine curve of genus at least 1 over 
a number field has only a finite number of integral 
points [Sie 1929]. In [Lan 60] and in another part of 
Diophantine Geometry, I also showed how the Thue­
Siegel-Schneider-Roth theorem and Siegel's theorem 
on integral points had analogues in the function field 
case. The interdependence between the number field 
case and the function field case lies not only in the 
analogy of results and methods applicable to both 
cases, but also in the fact that when, say, a curve de­
pending on parameters defined by a family of equati­
on ft(x, y) = 0 has solutions in polynomials x = x(t) 
and y = y(t), such polynomials may have complex 
coefficients, or in a more arithmetic setting they may 
have ordinary integer coefficients. In the latter case, 
by specialization of the parameter t in integers, one 
obtains integral solutions of the specialized equation. 
It is a problern to classify all surfaces which admit 
such a generic fibration by rational curves, over the 
complex numbers and over the ordinary integers. Mo­
re generally, one can consider the case when x and y 
are int.egral affine algebraic functions rather than po­
lynomials. In order to treat both the number field 
and function field case simultaneously, there deve­
loped a language and results which are now natural 
throughout the world. At the time, this language and 
results appeared unnatural or worse to some people. 
As Siegel wrote to Mordeil: "The whole style of the 
author contradicts the sense for simplicity and hone­
sty which we admire in the works of the masters of 
number theory" . 

In part of the proof of Roth's theorem, it is ne­
cessary to solve certain linear equations with upper 
bounds on the size of the solution. A lower bound 
on the number of solutions is required in the num­
ber field case, and a lower bound on the dimensi­
on of the space of solutions is required in the func­
tion field case. Classically, the Riemann-Roch theo­
rem on curves provides the desired estimates in the 
function field case, and I drew the analogy explicitly 
with the number field case by an appropriate axio­
matization, whereby I treated both cases simultane-
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ously. But Mordell states in his review: "The aut­
hor claims to follow Roth's proof. The reader might 
prefer to read this which requires only a knowled­
ge of elementary algebra and then he need not be 
troubled with axioms which are very weak forms of 
the Riemann-Roch theorem." But drawing closer to­
gether various manifestations of what goes under the 
trade name of Riemann-Roch has been a very fruit­
ful viewpoint over decades. Already in [Schm 1931) 
we see the Riemann-Roch theorem closely related to 
the functional equation of the zeta function in the 
function field case. In the thirties, Artin recognized 
the functional equation of the theta function as an 
analogue of Riemann-Roch in the number field ca­
se. Following the ideas in a course of Artin, Weissin­
ger gave the connection between Riemann-Roch and 
the functional equation of L-functions in the function 
field case [Weis 1938). Weil went further by giving an 
analogy of Riemann-Roch not only to the problern of 
counting lattice points in parallelotopes, but also by 
formulating an analogue for Cauchy's residue formu­
la in the number field case [Wei 1939). In my book on 
algebraic number theory, I emphasized the Riemann­
Roch viewpoint in these ways. First I gave a formula 
for the number of lattice points in adelic paralleloto­
pes, asymptotic with respect to the normalized vo­
lume; and second, I reproduced the formulation and 
proof of the functional equation for the zeta function 
and L-functions via the adelic method in Tate's the­
sis, especially the adelic Poisson summation formula 
having as corollary what was properly called by Tate 
a number theoretic Riemann-Roch theorem (note 4) . 
But Siegel found my book on algebraic numbers "­
still worse than the former one" . Nevertheless, I shall 
continue below to describe the ever expanding extent 
to which the Riemann-Roch umbrella covers aspects 
of number theory and algebraic geometry. 

Naturally, to deal simultaneously with the num­
ber field and function field case in diophantine geo­
metry, I had to assume the basic language and results 
of algebraic geometry and abelian varieties. Mordeil 
in his review of the book complained: "Let us note 
some of the concepts required in the chapter. There 
are a 'K/k-trace of A', a 'Theorem of Chow', 'Chow's 
Regularity Theorem', 'Chow Coordinates', 'compati­
bility of projections and specializations', 'blowing up 
a point', 'Albanese Variety' , 'Picard variety', 'Jaco­
bian of a curve,' 'Chow's theory of the k(u)/ k-trace'. 
When proof of an extension makes it exceedingly dif­
ficult to understand the simpler cases, it might so­
metimes be better if the generalizations were left in 
the Journals." I ask: exceedingly difficult to whom? 
Current readers and subsequent generations can eva­
luate for themselves Mordeil 's admonition to leave 
what he calls "generalizations" to the journals. But 
Mordeil went on: "The reviewer was reminded of Rip 
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Van Winkle, who went to sleep for a hundred years 
and woke up to a state of affairs and a civilization 
(and perhaps a language) completely different from 
that to which he had been accustomed." Siegel ac­
cepted the comparison with Rip Van Winkle when he 
wrote to Mordell: "My feeling is very weil expressed 
when you mention Rip Van Winkle." In particular 
both Siegel and Mordeil had difficulty understanding 
some basic notions of algebraic geometry as recalled 
above. But these notions were of course accepted wi­
thout further ado by younger mathematicians and by 
other schools of mathematics and algebraic geometry, 
notably by the Russian school, whose contributions 
to diophantine geometry were to dominate the sixties 
and seventies, as weshall now indicate. 

Mordeil hirnself in [Mor 1922) had conjectured 
that a curve of genus at least 2 over the rational num­
bers has only a finite number of rational points. In 
[Lan 1960) and in Diophantine Geometry I transla­
ted this conjecture into the function field analogue, 
to the effect that for an algebraic family of such cur­
ves, there is only a finite number of sections unless the 
family is constant, in a suitable sense. Independently, 
Manin had already started his investigations of the 
Picard-Fuchs differential equations and their Connec­
tions with algebraic families of curves, their Jaco­
bians and their periods, via horizontal differentiation 
and the Gauss-Manin connection [Man 1958). Manin 
put these two mathematical threads tagether by pro­
ving the function field analogue of the Mordeil conjec­
ture viahisdifferential methods [Man 1963) . We note 
in passingthat the function field analogue of Siegel's 
theorem on integral points is needed to complete that 
proof. (See [Col1990).) Manin's work kindled various 
people's interests in various directions lying between 
algebraic geometry and the theory of algebraic diffe­
rential equations. Furthermore in 1970-1971 Deligne 
proved the semisimplicity of the action of the mono­
dromy group on the cohomology of a family of pro­
jective smooth varieties [Dei 1972). After Coleman 
pointed out that Manin's "theorem of the kerne!" 
had not been completely proved [Col1990), Deligne's 
theorem was applied by Chai to complete the proof, 
independently of the application to the Mordeil con­
jecture in the function field case [Cha 1990). Even 
more recently, Buium has pursued the application of 
differential algebra in this direction and he has ob­
tained a substantial extension of results showing that 
the intersection of a curve with certain subsets of its 
Jacobian defined by algebraic differential conditions 
is finite [Bui 1991). 

I learned of Manin's proof on a trip to Moscow 
in 1963, and I lectured on it at the Arbeitstagung in 
Bonn upon returning. Grauert was in the audience, 
and was then led to find another proof of the func­
tion field case of Mordell's conjecture [Gra 1965) (see 
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among others the final remarks of the introduction to 
his paper) . Grauert's method also involved horizontal 
differentiation, taking the derivative of a section into 
the projectivized tangent bundle. For the latest de­
velopment of this method in a quantitative direction, 
see Vojta (Vo 1991]. Grauert's proof also worked in 
characteristic p, as pointed out by Samuel (Sa 1966] . 
For further insight in the problern in characteristic p, 
see Voloch (Vo 1990] . 

To this day, no one has seen how to translate Ma­
nin's or Grauert's proofs of Mordell's conjecture from 
the function field case to the number field case. Ho­
wever, in the early sixties, Shafarevich conjectured 
that over a number field , given a finite set of pla­
ces, there exists only a finite number of isomorphism 
classes of curves of given genus at least 1 and having 
good reduction outside this finite set (Sha 1963] . In 
1968, Parshin showed how Shafarevich's conjecture 
implied Mordell's conjecture (Par 1968], and he pro­
ved the analogue of Shafarevich's conjecture in the 
function field case (under an additional technical con­
dition, later removed by Arakelov (Ara 1971]). Par­
shin's proof was based entirely on the intersection 
theory of surfaces, without making use of horizontal 
differentiation. This provided hope for an eventual 
translation to the number field case. As we have al­
ready mentioned, a curve over the ring of integers 
of a number field can be viewed as a family of cur­
ves obtained by reduction mod p for all primes p. In 
a fundamental paper, Arakelov showed how to com­
plete such a family of curves over a number field by 
introducing the components at infinity, and by de­
fining a new type of divisor dass group taking the 
components at infinity into account (Ara 1974]. With 
this point of view, a curve over the ring of integers of 
a number field is called an arithmetic surface. Where­
as the Artin-Whaples product formula had been the 
starting point for unifying the case of number fields 
and function fields in one variable, Arakelov theory 
laid the foundations for unifying intersection theory 
on arithmetic surfaces and the classical intersection 
theory, thus making Parshin's method more accessi­
ble to the number field case (note 5). 

Arakelov defined intersection numbers at infinity 
as the values of Green's functions, and made exten­
sive use of hermitian metrics on line bundles (Ara 
1974]. His foundations could lead in several direc­
tions. In one direction, inspired by the basic idea of 
carrying out algebraic geometry with complete ob­
jects, including the components at infinity and the 
metrized line bundles, Faltings gave his proof of Mor­
dell's conjecture a decade later (Fal 1983] (note 6) . 
Be it noted that Faltings also depended on the full­
fledged abstractions of contemporary algebraic geo­
metry, for instance by using techniques of Raynaud 
(Ray 1974], reducing modulo a primepower (actually 
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mod p2 ), to bound the degrees of certain isogenies of 
abelian varieties. 

We now come back to the Riemann-Roch theme. 
In the direction of algebraic geometry, the ltalian al­
gebraic geometersdealt classically with the Riemann­
Roch theorem on algebraic surfaces. Hirzebruch in 
the early fifties gave an entirely new slant to the 
theorem by his formula expressing the (holomorphic­
algebraic) Euler characteristic as a polynomial in the 
Chern classes, for non-singular projective varieties 
of arbitrary dimension (Hir 1956]. Thus Hirzebruch 
drew together algebraic geometry, topology, and com­
plex differential geometry. Siegel did not apprecia­
te Hirzebruch's mathematics any more than some 
other mathematics of the period. Indeed, Siegel was 
the principal factor causing the collapse of negotiati­
ons between Göttingen and Hirzebruch in the fifties, 
when Hirzebruch was in the process of returning to 
Germany after his stay in America. Furthermore, in 
1960, there was an early attempt to create a Max 
Planck Institute to be headed by Hirzebruch. Siegel 
wrote negatively about Hirzebruch and his mathema­
tics in this connection (note 7) . 

Later in the fifties , Grothendieck vastly extended 
Hirzebruch's Riemann-Roch theorem partly by for­
mulating it in such a way that it applies to fami­
lies and partly by making the theorem more functo­
rial (Bor-S 1957]. Stilllater, he further expanded the 
formulation of the theorem so that in particular, it 
applied over arbitrary Noetherian rings, and there­
fore could be used in the number theoretic context 
over the ring of algebraic integers of a number field 
(Gro 1971]. Theseextensions required the full fledged 
abstractions of algebraic geometry and algebraic to­
pology which he had developed, including both the 
cohomology functors and the K-theory functors (Gro 
EGA], (Gro SGA]. An especially interesting appli­
cation of Grothendieck Riemann-Roch was made by 
Mumford in his contributions to the theory of moduli 
spaces for curves and abelian varieties (Mum 1977]. 

Just before Faltings proved Mordell's conjecture, 
he developed Arakelov theory so far as to give an 
arithmetic version of the Riemann-Roch theorem on 
arithmetic surfaces (Fal1984]. This versionwas vastly 
extended recently by Gillet-Soule, for varieties of ar­
bitrary dimension, putting tagether the Hirzebruch­
Grothendieck Riemann-Roch theorems, the complex 
differential geometry inherent in the components at 
infinity, and also the theories of real partial differen­
tial equations most recently developed by Bismut, 
necessary to handle the analogues of Green's func­
tions in the higher dimensional case (Gi-S 1990], (Gi-S 
1991]. Thus comes a grand unification of several fields 
of mathematics, under the heading of the code-word 
Riemann-Roch. At the moment, a complete transla­
tion of Parshin's proof of Mordell's conjecture from 
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the function field case has not yet taken place. It still 
requires a proof of an inequality conjectured by Par­
shin in the number field case, whose known analogue 
in the case of algebraic surfaces evolved from work of 
van de Ven, Bogomolov, Parshin, Miyaoka and Yau 
[Par 1989] (see also [Voj 1988]). Such an inequali­
ty is related to the so-called Noether formula in the 
theory of algebraic surfaces. It is known that such an 
inequality implies Fermat's theorem for all but a fi­
nite number of cases, which cases depending on how 
effectively the Parshin inequality can be proved. 

The Riemann-Roch story in its arithmetic con­
text does not end there. Vojta, in a major develop­
ment, showed how to globalize and sheafify on curves 
of higher genus the basic ideas of the proof of Roth 's 
theorem, in such a way that he found an entirely new 
proof of Mordell's conjecture (Faltings' theorem) (Voj 
1990]. Be it noted that Vojta first gave his proof in the 
function field case, using intersection theory on sur­
faces (Voj 1989] . He then translated his proof to the 
number field case using the Arakelov type intersec­
tion theory and the newly found (asymptotic) arith­
metic Riemann-Roch theorem of Gillet-Soule. Alt­
hough Bombieri subsequently simplified Vojta's proof 
by eliminating the Arakelov part (Born 1990], he still 
used the classical Riemann-Roch theorem on surfa­
ces. The use of Riemann-Roch in one form or another 
occurs at the same point in the pattern of proof as 
in Roth's theorem, but of course in the more sophi­
sticated context of curves of higher genus and their 
products, rather than the projective or affine Jine. 
Vojta's idea and a heavy dose of algebraic geome­
try were then used by Faltings to prove a conjecture 
of mine dating back to (Lan 1960], concerning higher 
dimensional diophantine analogues for subvarieties of 
abelian varieties (Fal 1990]. Neither Vojta, Bombieri 
nor Faltings has shown that he is "troubled" about 
using Riemann-Roch theorems, and major breakth­
roughs have thus been made by expanding the per­
spectives on old problems, rather than by narrowing 
the viewpoint to "simpler cases" . 

Thus we see that since the translation of the Rie­
mann hypothesis in the twenties and the very first 
translations of the Mordell-Weil theorem from the 
number field case into the function field analogue in 
the fifties, there has been constant interaction bet­
ween the number field case and the function field ca­
se. A number of subsequent results have been proved 
first in the function field case, using geometric in­
tuition and methods from algebraic geometry as weil 
as differential geometry. In some, but not yet all ca­
ses, these proofs could then be translated back to the 
number field case, thus giving new results in number 
theory. 
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§4. Further implications 

Mordeil and Siegel were great mathematicians, a fact 
which is made obvious once more by their great theo­
rems cited repeatedly in this article. But their lack 
of vision and understanding at certain periods of 
their life obstructed the development of certain are­
as of mathematics in their own countries. Of course 
they did not have absolute power. In England, Ati­
yah could develop the Riemann-Roch theme in the 
topological and analytic direction for elliptic opera­
tors on vector bundles, for instance, but the direction 
of number theory in England was seriously affected 
by Mordell's obstructions. In Germany, Hirzebruch 
could create an independent center in Bonn, but Sie­
gel did have an effect in Göttingen and some other 
places, although his influence has waned to the point 
where I don't see it explicitly any more. 

In the Soviet Union and France, the obstructing 
influence of Mordell or Siegel in algebra and algebraic 
geometry was nil. The development of Grothendieck's 
school in France needs no further comment. In the 
Soviet Union, one sees the absence of obstructing in­
fluence in the existence of the school of algebraic geo­
metry created by Shafarevich. One also sees the ab­
sence of obstructing influence in concrete instances, 
such as the introductions to Manin's and Parshin's 
papers (Man 1963] and (Par 1968] (as mentioned in 
note 5) . Furthermore, for the Russian translation of 
Fundamentals of Diophantine Geometry, I was asked 
if it was OK with me to omit the appendices consi­
sting of Mordell's review and my review of his book, 
and to replace them with an appendix by Parshin and 
Zarhin describing previous work of theirs on a net 
of conjectures (Mordell-Shafarevich-Tate) , as weil as 
the latest developments concerning Faltings' proof of 
these conjectures. I agreed without reservations. 

In the United States, the influence is more com­
plex to evaluate. Be it noted here only that as re­
cently as December 1989, in the context of my conti­
nued activities concerning the non-election of Samuel 
P. Huntington to the National Academy of Sciences, 
MacLane wrote me a Ietter commenting in part on 
my own 1986 election to the NAS: "I welcomed your 
election to the NAS. But please observe that if some 
social scientist had then known and used Mordell's fa­
maus comments on your Diophantine book plus the 
silly mistakes in the last chapter of your Differenti­
al Manifolds plus ... you too would have been soundly 
defeated on the floor of the Academy." 

Mordeil used to pull out Siegel's Ietter from his 
wallet to show people, to my knowledge without re­
ceiving comments that both his and Siegel's attitudes 
were parochial and blind (ifnot worse) (note 8). Thus 
some members of the mathematical community be­
haved with "collegiality" and bowed to authority, in 
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the face of claims such as those quoted at the begin­
ning of this article. Those members of the mathema­
tical community who did not stand up to Mordell and 
Siegel are not entirely blameless for the obstructing 
influence of Mordell's review and Siegel's Ietter, such 
as it was. 

Notes: 

1. I reproduced Mordeil's review in toto as an appendix 

to the greatly expanded version Fundamentals of Dio­

phantine Geometry (Lan 1983) because I wanted future 

generations to evaluate his position for themselves. I also 

reproduced my review of his book (Lan 1970), including 

a Ietter which I wrote to Mordeil in 1966. 

2. For an account of results and conjectures in current 

diophantine geometry, much more systematic and com­

plete than I can give here, as weil as looking to the future 

rather than the past, see my book Number Theory III: 

Diophantine Geometry, Encyclopedia of Mathematics 

Vol. 60, Springer Verlag, 1991. 

3. In 1932-1933 Davenport and Hasse started coilabora­

ting on a classical paper concerning Gauss sums (Dav-H 

1934). Davenport had previously been concerned with 

Gauss sums, and he learned from Hasse the connection 

with the Riemann hypothesis in function fields as for­

mulated by Artin. I find it appropriate to quote here a 

historical comment made by Halberstam, who edited Vol 

IV of Davenport's coilected works, and states p. 1553: 

"In fact, Davenport spent part of the academic session 

1932-33 with Hasse in Marburg; he obviously learnt a 

great deal from Hasse ( cf. (8), (18), (27)) - in later years 

he would say that he had not learnt nearly as much as he 

would have done if he had been 'less pig-headed' - and it 

seems that he in turn sharpened Hasse's interest in the 

arithmetical questions discussed above. . .. According to 

Mordeil, Hasse was led to his proof of (5) [RH in elliptic 

function fields] in response to a chailenge from Davenport 

to produce a concrete application of abstract algebra." 

4. Be it said in passing that the adelic method of Tate's 

thesis was to become standard in the treatment of ana­

logous situations on linear algebraic groups. 

5. Parshin hirnself was quite aware of the historical con­

text in which he was writing, and gives a very different 

perspective from Mordeil and Siegel, as we find in the in­

troduction of (Par 1968): "Finaily when g > 1, numerous 

examples provide a basis for Mordeil 's conjecture that in 

this case X(Q) is always finite. The one general result 

in line with this conjecture is the proof by Siegel that 

the nurober of integral points (i.e. , points whose affine 

coordinates belong to the ring Z of integers) is finite. 

These results are also true for arbitrary fields of finite 

type over Q. Fundamentaily this is because the fields are 

global, i.e., there is a theory of divisors with er product 
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formula, which makes it possible to construct a theory of 

the height of quasi-projective schemes of finite type over 

K. Lang's book [Diophantine Geometry] contains a des­

cription ofthat theory and its application to the proof of 

the Mordeil and Siegel theorems. It appears that further 

progress in diophantine geometry involves a deeper use 

of the specific nature of the ground field. This is confirm­

ed by Ju. I. Manin's proof of the functional analogue of 

Mordeil's conjecture." 

6. In his thesis (Wei 1928) Weil refers explicitly to "Mor­

deil's conjecture", and states that "it seems confirmed to 

some extent" by Siegel's theorem on the finiteness of inte­

gral points on curves of genus at least 1. In (Wei 1936) he 

makes a similar evaluation without reference to Mordell: 

"On the other hand, Siegel's theorem, for curves of genus 

> 1, is only the first step in the direction of the following 

statement: On every curve of genus > 1, there are only 
finitely many rational points." However, some forty years 

later, he inveighed against "conjectures", when he wrote 

(Wei 1974): "For instance, the so-called 'Mordeil conjec­

ture' on Diophantine equations says that a curve of genus 

at least two with rational coefficients has at most finitely 

many rational points. It would be nice if this were so, 
and I would rather bet for it than against it. But it is no 

more than wishful thinking because there is not a shred 

of evidence for it, and also none against it." Finally in 

comments in his coilected works made in 1979 (Vol. III, 

p. 454), he goes one better: "Nous sommes moins avances 

a l'egard de Ia 'conjecture de Mordeil'. Il s'agit Ia d 'une 

question qu'un arithmeticien ne peut guere manquer de 

se poser; on n'apperc;;oit d'ailleurs aucun motif serieux 

de parier pour ou contre." First, concerning a "question 

which an arithmetician can hardly fail to raise", I would 

ask when? It's quite a different matter to raise the que­

stion in 1921 , as did Mordeil, or decades later. As for 

the statements in 1974 and 1979 that there is no "shred 
of evidence" or "motif serieux" for Mordeil 's conjecture, 

they not only went against Weil's own evaluations in ear­

lier decades, but they were made after Manin proved the 

function field analogue in 1963; after Grauert gave his 

other proof in 1965; after Parshin gave his other proof in 

1968, while indicating that Mordell's conjecture follows 
from Shafarevich's conjecture (which Shafarevich hirnself 

had proved for curves of genus 1) ; at the sametimethat 

Arakelov theory was being developed and that Zarhin 

was working actively on the net of conjectures in those 

directions; and within four years of Faltings' proof. 

7. In June 1991 I wrote to the President of the Max 

Planck Society to ask for a copy of Siegel's Ietter so 

that one has primary sources on which to base factual 

historical reporting. I received a friendly answer and the 

Ietter was sent to me. Siegel wrote four and a half pages, 

discussing institutes in general, and giving his evalua­

tion of Hirzebruch in particular, as follows: "Was den 

zum Schluß vorgeschlagenen Leiter des zu gründenden 
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Instituts betrifft, so habe ich auch darüber eine abwei­
chende Meinung, .. Seine [Hirzebruchs] mathematischen 
Leistungen wurden allerdings damals auch hier ziemlich 
hoch bewertet, insbesondere wegen seiner Jugend. Jetzt 
erscheint es mir aber zweifelhaft, ob sich das von ihm bis­

her bearbeitete sehr abstrakte Gebiet weiter erschliessen 
und fruchtbar machen lässt, und ich halte es für möglich, 
ja sogar für wahrscheinlich, daß diese ganze Richtung 
sich schon in wenigen Jahren totlaufen wird. Nach den 
vorhergehenden Ausführungen möchte ich Ihre Fragen 
1), 2), 3) und 5) mit Nein beantworten." 
As for others, according to a Ietter from Behnke to Hir­
zebruch dated 7 September 1960: " Im übrigen liegen von 
Ihnen außer von Siegel nur die glänzendsten Gutachten 
vor. Es gibt jetzt zwei Hauptbedenken: 1) Man darf Sie 
nicht aus dem Universitätsleben nehmen, weil die Lücke 
nicht zu ersetzen ist. .. 2) Es würde nur die abstrakte 
Mathematik gepflegt ... " Courant was among those who 
wrote along these lines: " Hirzebruch ist sicherlich einer 
der allerbesten unter den Mathematikern der jüngeren 

Generation. Ich bin stets für ihn eingetreten und hege 
sehr freundschaftliche Gesinnungen für ihn. Er ist einer 
der besten Dozenten, die ich kenne. Nach meiner Meinung 
würde es ein schweres Unrecht an der Mathematik sein, 
ihn aus seiner produktiven Lehrtätigkeit herauszureißen. 
Außerdem würde er als Hauptleiter des Max Planck In­
stitutes die Präponderanz der abstrakten Richtung weit­
hin sichtbar symbolisieren. Leistungen und Renommee 
würden dies im Moment wohl rechtfertigen. Aber, auch 
in Hirzebruchs eigenem Interesse, und sicherlich in dem 
der Wissenschaft rate ich dringend davon ab. Es ist nicht 

nötig, das Institut in einer solchen persönlichen Art zu 
organisieren, um den höchsten Grad der Wirksamkeit 
zu erreichen ... " But Courant also added: "Meine Bemer­
kungen sind nicht sorgfältig ausgearbeitet. Sie brauchen 
nicht vertraulich behandelt zu werden ... " Thus Courant 
also expressed hirnself with caution. Courant made his 
Ietter public at the time. 
Some letters to the Max Planck Society were unreser­
vedly for the creation of the Institute, for instance van 

der Waerden's. After listing Hirzebruch's qualities in all 
directions (mathematical, personal , and administrative), 
he asks: "Was will man mehr?'' For more on the history of 
the Max Planck Institute, see Schappacher [Scha 1985]. 

8. For instance, Mostow remembers distinctly Mordeil 
showing Siegel's Ietter about me to those members of the 
math department at Yale in the sixties, when they were 
at dinner at the local restaurant Mori's. An instructor at 

Yale today, Jay Jorgenson, heard gossip about this Ietter 
when ~e was a freshman at the University of Minneso­
ta several years ago. An official of the National Science 
Foundation was shown the Ietter by Mordeil some 25 
years ago in Washington. And so it goes on and on. 
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Interview mit dem Vorsitzenden 
des Wissenschaftsrates 
Zum ersten Mal wurde ein Mathematiker als Vorsitzender des Wissenschaftrates gewählt, Herr Prof. Karl­
Heinz Hoffmann von der TU München. Im Anschluß an die Euler-Vorlesung im Mai in Potsdam hatte ich 
Gelegenheit mit ihm über seine neue Tätigkeit zu sprechen. 

Gerd Fischer 

Was ist der Wissenschaftsrat, was sind seine Auf­
gaben, wie ist er zusammengesetzt ? 

Er wurde im Jahre 1957 durch ein Abkommen 
des Bundes und der damals 11 Länder gegründet. 
Als wissenschaftspolitisches Beratungsgremium des 
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Bundes und der Länder erarbeitet der Wissenschafts­
rat Empfehlungen zur inhaltlichen und strukturellen 
Entwicklung der Hochschulen , der Wissenschaft und 
der Forschung. 1969 wurde ihm die Aufgabe übert­
ragen, Empfehlungen zum Rahmenplan für den von 
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