Home Oxy+ (arthrospira) and its medicinal importance: an appraisal
Article
Licensed
Unlicensed Requires Authentication

Oxy+ (arthrospira) and its medicinal importance: an appraisal

  • Md Anzar Alam ORCID logo EMAIL logo , Mohd Aleemuddin Quamri , Muzafar Din Ahmad Bhat , Siddiqui Aafreen and Ghulamuddin Sofi
Published/Copyright: October 30, 2020

Abstract

Oxy+ is a natural source of arthrospira found in nature, used as a dietary supplement and manufactured in Aruba for lifefactors. Arthrospira contains good quality of proteins, sulfated polysaccharides, γ-linoleic acid, along with an array of carotene and phytopigments, vitamins, and minerals which are reported to be antioxidant, immunomodulator, antihyperglycemic, antidyslipidemic, cardioprotective, hepatoprotective, antiviral, anticancerous, antihypertensive, anti-inflammatory, analgesic, neuroprotective and renoprotective activities. Several studies have shown arthrospira, and active ingredients of it revealed various pharmacological activities. It can be used for the management of various ailments such as diabetes, dyslipidemia, obesity, hypertension, cancer, arthritis, osteoarthritis, autoimmune disorders, etc. This review attempts to explore the hidden benefits of Oxy+ (arthrospira).


Corresponding author: Md Anzar Alam, Department of Medicine (Moalajat), National Institute of Unani Medicine, 560091, Bangalore, India, Phone: +91 9916164662, E-mail:

Acknowledgments

Inger Croes, M.Eng. Founder and Managing Director. Alberto Fridolpho Produzione-a private label company - Gonzalito St. #4, Oranjestad, Aruba for providing information about Oxy+ or arthrospira.

  1. Research funding: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

References

1. Wollina, U, Voicu, C, Gianfaldoni, S, Lotti, T, França, K, Tchernev, G. Arthrospira platensis–potential in dermatology and beyond. Open Access Maced J Med Sci 2018;6:176–80. https://doi.org/10.3889/oamjms.2018.033.Search in Google Scholar

2. Alam, MA, Ahamd, M, Quamri, MA, Ansari, FR, Parveen, FS. Clinical efficacy and safety of ‘Oxy +’ in type 2 diabetes: a pilot study. IJHHS 2021;5:96–100 https://doi.org/10.31344/ijhhs.v5i1.241.Search in Google Scholar

3. Karkos, PD, Leong, SC, Karkos, CD, Sivaji, N, Assimakopoulos, DA. Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Alternat Med 2011;2011:531053. https://doi.org/10.1093/ecam/nen058.Search in Google Scholar

4. DiNicolantonio, JJ, Bhat, AG, OKeefe, J. Effects of spirulina on weight loss and blood lipids: a review. Open Heart 2020;7: e001003. https://doi.org/10.1136/openhrt-2018-001003.Search in Google Scholar

5. Gershwin, ME, Belay, A, editors. Spirulina in human nutrition and health. Boca Raton: CRC Press; 2008.10.1201/9781420052572Search in Google Scholar

6. Nowicka-Krawczyk, P, Mühlsteinová, R, Hauer, T. Detailed characterization of the arthrospira type species separating commercially grown taxa into the new genus Limnospira Cyanobacteria. Sci Rep 2019;9. https://doi.org/10.1038/s41598-018-36831-0 [Epub ahead of print].Search in Google Scholar

7. Michael, A, Kyewalyanga, MS, Lugomela, CV. Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Ann Microbiol 2019;69:1387–95. https://doi.org/10.1007/s13213-019-01520-4.Search in Google Scholar

8. Alam, MA, Haider, N, Ahmed, S, Alam, MT, Azeez, A, Perveen, A. Tahlab (Spirulina) and few other medicinal plants having anti-oxidant & immunomodulatory properties described in Unani medicine-A review. Int J Pharmaceut Sci Res 2013;4:4158. https://doi.org/10.13040/IJPSR.0975-8232.4(11).4158-64.Search in Google Scholar

9. García, JL, de Vicente, M, Galán, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 2017;10:1017–24. https://doi.org/10.1111/1751-7915.12800.Search in Google Scholar PubMed PubMed Central

10. Shirnalli, GG, Kaushik, MS, Kumar, A, Abraham, G, Singh, PK. Isolation and characterization of high protein and phycocyanin producing mutants of Arthrospira platensis. J Basic Microbiol 2018;58:162–71. https://doi.org/10.1002/jobm.201700464.Search in Google Scholar PubMed

11. Martínez-Galero, E, Pérez-Pastén, R, Perez-Juarez, A, Fabila-Castillo, L, Gutiérrez-Salmeán, G, Chamorro, G. Preclinical antitoxic properties of spirulina (Arthrospira). Pharm Biol 2016;54:1345–53. https://doi.org/10.3109/13880209.2015.1077464.Search in Google Scholar

12. Ravi, M, De, SL, Azharuddin, S, Paul, SF. The beneficial effects of Spirulina focusing on its immunomodulatory and antioxidant properties. Nutr Diet Suppl 2010;2:73–83.10.2147/NDS.S9838Search in Google Scholar

13. Koyande, AK, Chew, KW, Rambabu, K, Tao, Y, Chu, DT, Show, PL. Microalgae: a potential alternative to health supplementation for humans. Food Science and Human Wellness 2019;8:16–24. https://doi.org/10.1016/j.fshw.2019.03.001.Search in Google Scholar

14. Markou, G, Angelidaki, I, Nerantzis, E, Georgakakis, D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 2013;6:3937–50.10.3390/en6083937Search in Google Scholar

15. Hudson, BJ, Karis, IG. The lipids of the alga Spirulina. J Sci Food Agric 1974;25:759–63.10.1002/jsfa.2740250703Search in Google Scholar

16. Cohen, Z. The chemicals of Spirulina. Spirulina platensis 1997:175–204.Search in Google Scholar

17. Babadzhanov, AS, Abdusamatova, N, Yusupova, FM, Faizullaeva, N, Mezhlumyan, LG, Malikova, MK. Chemical composition of spirulina platensis cultivated in Uzbekistan. Chem Nat Compd 2004;40:1–10.10.1023/B:CONC.0000039141.98247.e8Search in Google Scholar

18. Stahl, W, Sies, H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 2005;1740:101–7. https://doi.org/10.1016/j.bbadis.2004.12.006.Search in Google Scholar

19. Park, WS, Kim, HJ, Li, M, Lim, DH, Kim, J, Kwak, SS, et al. Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities. Molecules 2018;23:2065. https://doi.org/10.3390/molecules23082065.Search in Google Scholar

20. Careri, M, Furlattini, L, Mangia, A, Musci, M, Anklam, E, Theobald, A, et al. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: a chemometric approach. J Chromatogr A 2001;912:61–71.10.1016/S0021-9673(01)00545-3Search in Google Scholar

21. Sarada, RM, Pillai, MG, Ravishankar, GA. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 1999;34:795–801.10.1016/S0032-9592(98)00153-8Search in Google Scholar

22. Ali, SK, Saleh, AM. Spirulina-an overview. Int J Pharm Pharmaceut Sci 2012;4:9–15.Search in Google Scholar

23. Alam, A, Quamri, S, Fatima, S, Roqaiya, M, Ahmad, Z. Efficacy of spirulina (Tahlab) in patients of type 2 diabetes mellitus (Ziabetus shakri)-A randomized controlled trial. J Diabetes Metabol 2016;7:10. https://doi.org/10.4172/2155-6156.1000710.Search in Google Scholar

24. Lee, EH, Park, JE, Choi, YJ, Huh, KB, Kim, WY. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutrition Research and Practice 2008;2:295–300.10.4162/nrp.2008.2.4.295Search in Google Scholar

25. Parikh, P, Mani, U, Iyer, U. Role of Spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus. J Med Food 2001;4:193–9.10.1089/10966200152744463Search in Google Scholar

26. Ponce-Canchihuamán, JC, Pérez-Méndez, O, Hernández-Muñoz, R, Torres-Durán, PV, Juárez-Oropeza, MA. Protective effects of Spirulina maxima on hyperlipidemia and oxidative-stress induced by lead acetate in the liver and kidney. Lipids Health Dis 2010;9:35. https://doi.org/10.1186/1476-511X-9-35.Search in Google Scholar

27. Ngo-Matip, ME, Pieme, CA, Azabji-Kenfack, M, Biapa, PC, Germaine, N, Heike, E, et al. Effects of Spirulina platensis supplementation on lipid profile in HIV–infected antiretroviral naïve patients in Yaounde-Cameroon: a randomized trial study. Lipids Health Dis 2014;13:191. https://doi.org/10.1186/1476-511X-13-191.Search in Google Scholar

28. Torres-Duran, PV, Ferreira-Hermosillo, A, Juarez-Oropeza, MA. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Lipids Health Dis 2007;6:33. https://doi.org/10.1186/1476-511X-6-33.Search in Google Scholar

29. Martínez-Sámano, J, Torres-Montes de Oca, A, Luqueño-Bocardo, OI, Torres-Durán, PV, Juárez-Oropeza, MA. Spirulina maxima decreases endothelial damage and oxidative stress indicators in patients with systemic arterial hypertension: results from exploratory controlled clinical trial. Mar Drugs 2018;16:496. https://doi.org/10.3390/md16120496.Search in Google Scholar

30. Ichimura, M, Kato, S, Tsuneyama, K, Matsutake, S, Kamogawa, M, Hirao, E, et al. Phycocyanin prevents hypertension and low serum al adiponectin level in a rat model of metabolic syndrome. Nutr Res 2013;33:397–405. https://doi.org/10.1016/j.nutres.2013.03.006.Search in Google Scholar

31. Konícková, R, Vanková, K, Vaníková, J, Vánová, K, Muchová, L, Subhanová, I, et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol 2014;13:273–83.10.1016/S1665-2681(19)30891-9Search in Google Scholar

32. Jiang, L, Wang, Y, Yin, Q, Liu, G, Liu, H, Huang, Y, et al. Phycocyanin: a potential drug for cancer treatment. J Canc 2017;8:3416–29. https://doi.org/10.7150/jca.21058.Search in Google Scholar PubMed PubMed Central

33. Mathew, B, Sankaranarayanan, R, Nair, PP, Varghese, C, Somanathan, T, Amma, BP, et al. Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Canc 1995;24:197–202. https://doi.org/10.1080/01635589509514407.Search in Google Scholar PubMed

34. Czerwonka, A, Kaławaj, K, Sławińska-Brych, A, Lemieszek, MK, Bartnik, M, Wojtanowski, KK, et al. Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomed Pharmacother 2018;106:292–302. https://doi.org/10.1016/j.biopha.2018.06.116.Search in Google Scholar

35. El-Shanshory, M, Tolba, O, El-Shafiey, R, Mawlana, W, Ibrahim, M, El-Gamasy, M. Cardioprotective effects of spirulina therapy in children with beta-thalassemia major. J Pediatr Hematol Oncol 2019;41:202–6. https://doi.org/10.1097/MPH.0000000000001380.Search in Google Scholar

36. Ibrahim, AE, Abdel-Daim, MM. Modulating effects of Spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell J 2015;17:137–44. Spring. https://doi.org/10.22074/cellj.2015.520.Search in Google Scholar

37. Chen, YH, Chang, GK, Kuo, SM, Huang, SY, Hu, IC, Lo, YL, et al. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci Rep 2016;6:24253. https://doi.org/10.1038/srep24253.Search in Google Scholar

38. Hernández-Corona, A, Nieves, I, Meckes, M, Chamorro, G, Barron, BL. Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antivir Res 2002;56:279–85. https://doi.org/10.1016/s0166-3542(02)00132-8.Search in Google Scholar

39. Hayashi, T, Hayashi, K, Maeda, M, Kojima, I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 1996;59:83–7. https://doi.org/10.1021/np960017o.Search in Google Scholar PubMed

40. Lee, JB, Srisomporn, P, Hayashi, K, Tanaka, T, Sankawa, U, Hayashi, T. Effects of structural modification of calcium spirulan, a sulfated polysaccharide from Spirulina platensis, on antiviral activity. Chem Pharm Bull (Tokyo) 2001;49:108–10. https://doi.org/10.1248/cpb.49.108.Search in Google Scholar PubMed

41. McCarty, MF, DiNicolantonio, JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis 2020. https://doi.org/10.1016/j.pcad.2020.02.007 [Epub ahead of print].Search in Google Scholar PubMed PubMed Central

42. Yakoot, M, Salem, A. Spirulina platensis versus silymarin in the treatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterol 2012;12:32. https://doi.org/10.1186/1471-230X-12-32.Search in Google Scholar PubMed PubMed Central

43. Banji, D, Banji, OJ, Pratusha, NG, Annamalai, AR. Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride. Food Chem 2013;140:321–31. https://doi.org/10.1016/j.foodchem.2013.02.076.Search in Google Scholar PubMed

44. Stancioiu, F, Mihai, D, Papadakis, GZ, Tsatsakis, A, Spandidos, DA, Badiu, C. Treatment for benign thyroid nodules with a combination of natural extracts. Mol Med Rep 2019;20:2332–8. https://doi.org/10.3892/mmr.2019.10453.Search in Google Scholar PubMed PubMed Central

45. Abu-Taweel, GM, Antonisamy, P, Arokiyaraj, S, Kim, HJ, Kim, SJ, Park, KH, et al. Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. J Infect Public Health Nov-Dec 2019;12:777–82. https://doi.org/10.1016/j.jiph.2019.04.014.Search in Google Scholar PubMed

46. Remirez, D, González, R, Merino, N, Rodriguez, S, Ancheta, O. Inhibitory effects of Spirulina in zymosan-induced arthritis in mice. Mediat Inflamm 2002;11:75–9. https://doi.org/10.1080/09629350220131917.Search in Google Scholar PubMed PubMed Central

47. Shih, CM, Cheng, SN, Wong, CS, Kuo, YL, Chou, TC. Antiinflammatory and antihyperalgesic activity of C-phycocyanin. Anesth Analg 2009;108:1303–10. https://doi.org/10.1213/ane.0b013e318193e919.Search in Google Scholar PubMed

48. Lima, FA, Joventino, IP, Joventino, FP, de Almeida, AC, Neves, KR, do Carmo, MR, et al. Neuroprotective activities of Spirulina platensis in the 6-OHDA model of Parkinson’s disease are related to its anti-inflammatory effects. Neurochem Res 2017;42:3390–400. https://doi.org/10.1007/s11064-017-2379-5.Search in Google Scholar PubMed

49. Pérez-Juárez, A, Chamorro, G, Alva-Sánchez, C, Paniagua-Castro, N, Pacheco-Rosado, J. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death. Pharm Biol 2016;54:1408–12. https://doi.org/10.3109/13880209.2015.1103756.Search in Google Scholar PubMed

50. Thaakur, S, Sravanthi, R. Neuroprotective effect of Spirulina in cerebral ischemia–reperfusion injury in rats. J Neural Transm 2010;117:1083–91. https://doi.org/10.1007/s00702-010-0440-5.Search in Google Scholar PubMed

51. Wang, P, Wang, Y, Zhang, Q, Zhang, H, Li, Z, Liu, X, et al. Amelioration of cognitive deficits by Spirulina platensis in L-methionine-induced rat model of vascular dementia. Phcog Mag 2020;16:133–41. https://doi.org/10.4103/pm.pm_438_19.Search in Google Scholar

52. Hwang, JH, Lee, IT, Jeng, KC, Wang, MF, Hou, RC, Wu, SM, et al. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice. J Nutr Sci Vitaminol 2011;57:186–91. https://doi.org/10.3177/jnsv.57.186.Search in Google Scholar PubMed

53. Zahran, WE, Emam, MA. Renoprotective effect of Spirulina platensis extract against nicotine-induced oxidative stress-mediated inflammation in rats. Phytomedicine 2018;49:106–10. https://doi.org/10.1016/j.phymed.2018.06.042.Search in Google Scholar PubMed

54. Avdagić, N, Ćosović, E, Nakaš-Ićindić, E, Mornjaković, Z, Začiragić, A, Hadžović-Džuvo, A. Spirulina platensis protects against renal injury in rats with gentamicin-induced acute tubular necrosis. Bosn J Basic Med Sci 2008;8:331–6. https://doi.org/10.17305/bjbms.2008.2892.Search in Google Scholar PubMed PubMed Central

55. Kuhad, A, Tirkey, N, Pilkhwal, S, Chopra, K. Renoprotective effect of Spirulina fusiformis on cisplatin-induced oxidative stress and renal dysfunction in rats. Ren Fail 2006;28:247–54. https://doi.org/10.1080/08860220600580399.Search in Google Scholar PubMed

56. Jiang, L, Wang, Y, Yin, Q, Liu, G, Liu, H, Huang, Y, et al. Phycocyanin: a potential drug for cancer treatment. J Canc 2017;8:3416–29. https://doi.org/10.7150/jca.21058.Search in Google Scholar PubMed PubMed Central

57. Nagaoka, S, Shimizu, K, Kaneko, H, Shibayama, F, Morikawa, K, Kanamaru, Y, et al. A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr 2005;135:2425–30. https://doi.org/10.1093/jn/135.10.2425.Search in Google Scholar PubMed

58. Jensen, GS, Drapeau, C, Lenninger, M, Benson, KF. Clinical safety of a high dose of Phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis: results from a randomized, double-blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation. J Med Food 2016;19:645–53. https://doi.org/10.1089/jmf.2015.0143.Search in Google Scholar PubMed PubMed Central

59. Li, B, Gao, MH, Zhang, XC, Chu, XM. Molecular immune mechanism of C‐phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem 2006;43:155–64. https://doi.org/10.1042/BA20050142.Search in Google Scholar PubMed

60. Ichimura, M, Kato, S, Tsuneyama, K, Matsutake, S, Kamogawa, M, Hirao, E, et al. Phycocyanin prevents hypertension and low serum adiponectin level in a rat model of metabolic syndrome. Nutr Res 2013;33:397–405. https://doi.org/10.1016/j.nutres.2013.03.006.Search in Google Scholar PubMed

61. Khan, Z, Bhadouria, P, Bisen, PS. Nutritional and therapeutic potential of Spirulina. Curr Pharmaceut Biotechnol 2005;6:373–9. https://doi.org/10.2174/138920105774370607.Search in Google Scholar PubMed

62. Kumar, A, Christian, PK, Panchal, K, Guruprasad, BR, Tiwari, AK. Supplementation of spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1β Δ93 flies, a Parkinson’s disease model in Drosophila melanogaster. J Diet Suppl 2017;14:573–88. https://doi.org/10.1080/19390211.2016.1275917.Search in Google Scholar PubMed

63. Alam, M A, Quamri, MA, Sofi, G, Tarique, B M. Understanding hypothyroidism in Unani medicine. J Integr Med 2019;17:387–91. https://doi.org/10.1016/j.joim.2019.05.006.Search in Google Scholar PubMed

64. El-Sheekh, MM, Daboor, SM, Swelim, MA, Mohamed, S. Production and characterization of antimicrobial active substance from Spirulina platensis. Iran J Microbiol 2014;6:112–9.Search in Google Scholar

65. Souza, MM, Prietto, L, Ribeiro, AC, Souza, TD, Badiale-Furlong, E. Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Cienc E Agrotecnol 2011;35:1050–8. https://doi.org/10.1590/S1413-70542011000600003.Search in Google Scholar

66. Montalvo, GE, Vandenberghe, LP, Soccol, VT, de Carvalho, JC, Soccol, CR. The antihypertensive, antimicrobial and anticancer peptides from Arthrospira with therapeutic potential: a mini review. Curr Mol Med 2020. https://doi.org/10.2174/1566524020666200319113006 [Epub ahead of print].Search in Google Scholar PubMed

67. Liu, Q, Huang, Y, Zhang, R, Cai, T, Cai, Y. Medical application of Spirulina platensis derived C-phycocyanin. Evid Based Complement Alternat Med 2016;2016:7803846. https://doi.org/10.1155/2016/7803846.Search in Google Scholar PubMed PubMed Central

68. Finamore, A, Palmery, M, Bensehaila, S, Peluso, I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxid Med Cell Longev 2017;2017:3247528. https://doi.org/10.1155/2017/3247528.Search in Google Scholar PubMed PubMed Central

Received: 2020-09-07
Accepted: 2020-09-21
Published Online: 2020-10-30

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dmpt-2020-0152/html
Scroll to top button