#### Review

Ingrid Fricke-Galindo, Adrián LLerena and Marisol López-López\*

## An update on *HLA* alleles associated with adverse drug reactions

DOI 10.1515/dmpt-2016-0025 Received July 27, 2016; accepted February 7, 2017; previously published online March 18, 2017

**Abstract:** Adverse drug reactions (ADRs) are considered as an important cause of morbidity and mortality. The hypersensitivity reactions are immune-mediated ADRs, which are dose-independent, unpredictable and have been associated with several HLA alleles. The present review aimed to describe HLA alleles that have been associated with different ADRs in populations worldwide, the recommendations of regulatory agencies and pharmacoeconomic information and databases for the study of HLA alleles in pharmacogenetics. A systematic search was performed in June 2016 of articles relevant to this issue in indexed journals and in scientific databases (PubMed and PharmGKB). The information of 95 association studies found was summarized. Several HLA alleles and haplotypes have been associated with ADRs induced mainly by carbamazepine, allopurinol, abacavir and nevirapine, among other drugs. Years with the highest numbers of publications were 2013 and 2014. The majority of the reports have been performed on Asians and Caucasians, and carbamazepine was the most studied ADR drug inducer. Two HLA alleles' databases are described, as well as the recommendations of the U.S. Food and Drug Administration, the European Medicine Agency and the Clinical Pharmacogenetics Implementation Consortium. Pharmacoeconomic studies on this issue are also mentioned. The strongest associations remain for HLA-B\*58:01, HLA-B\*57:01, HLA-B\*15:02 and HLA-A\*31:01 but only in certain populations; therefore, studies on different ethnic groups would be useful.

\*Corresponding author: Marisol López-López, PhD, Biological Systems Department, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán, 04960 Ciudad de México (CDMX), Mexico, Phone: (+52) (55) 5483 7250, Fax: (+52) (55) 5483 7237, E-mail: mlopez@correo.xoc.uam.mx

Ingrid Fricke-Galindo: Doctorate in Biological and Health Sciences, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico

Adrián LLerena: CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain

Due to the improvement of drug therapy and the economic benefit that *HLA* screening represents, investigations on *HLA* alleles associated with ADR should continue.

**Keywords:** abacavir; allopurinol; adverse drug reactions; carbamazepine; human leukocyte antigen (HLA); hypersensitivity syndrome; pharmacogenetics; Stevens-Johnson syndrome.

### Introduction

Immunologic-mediated adverse drug reactions (ADRs) are included in type B ADRs which are not related to the dose and that are uncommon and unpredictable in that they are not related with the pharmacodynamics of the drug and present high mortality [1]. There is evidence that susceptibility to at least some Type B ADR is found under strong genetic influence [2], and identifying genetic risk factors for this type of ADRs could significantly decrease healthcare costs and improve the process of drug development [3].

The drug-activated immune response is known to be mediated by T cells when the drug molecule binds to T-cell receptors (TCR). The majority of existing drug molecules have a comparable size of one to three amino acids, which is much smaller than the peptide ligands of human leukocyte antigen (HLA) class I (8–12 mers) and class II (9–25 mers) molecules [4]. Accordingly, the following five hypotheses have been proposed in order to explain T-cell recognition of a drug antigen presented by a HLA molecule: (i) the hapten/pro-hapten theory, (ii) the p.i. concept, (iii) the "altered repertoire" model, (iv) the "altered T-cell receptor repertoire" model and (v) the danger hypothesis [4–6] (Figure 1).

Briefly, the first hypothesis postulates that the drug or its immunogenic metabolite binds by covalent bonds to an endogenous peptide and to the HLA molecule, which particularly explains the hypersensitivity to beta-lactam antibiotics. The p.i. ("pharmacological interaction with the immune receptor") concept considers a non-covalent and reversible binding of the molecule directly to the HLA

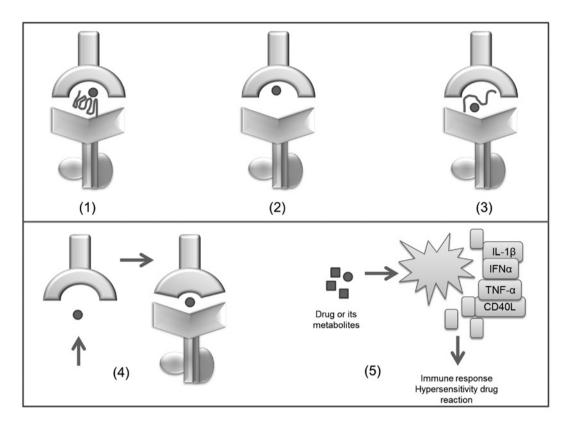



Figure 1: Models of drug interactions with immunology molecules.
(1) Hapten/pro-hapten theory, (2) p.i. concept, (3) "altered repertoire" model, (4) "altered T-cell receptor repertoire" model and (5) danger hypothesis.

molecule and/or the TCR, which could be the case for carbamazepine (CBZ)-induced Stevens-Johnson syndrome (SJS) and the HLA-B\*15:02 allele. The "altered repertoire" model proposes that a drug can non-covalently bind to the self-peptide repertoire and alter the conformation of this peptide repertoire presented to HLA and TCR protein, inducing cutaneous adverse drug reactions (cADRs); in this case, the drug may not directly bind to HLA, and this hypothesis elucidates in part the association of HLA-B\*57:01 and abacavir-induced cADRs. The "altered TCR repertoire" model suggests that the drug interacts first with the TCR, which undergoes a conformational change that, in turn, allows binding with an HLA molecule to induce the immune response. Finally, the danger hypothesis explains that immune responses are caused by endogenous cellular alarm signals (i.e. CD40L, TNF- $\alpha$ , IL-1 $\beta$  and IFN- $\alpha$ ) from distressed or injured cells, which could occur after the processing of the drug as antigen [4-6].

As mentioned previously, several *HLA* alleles have been associated with different induced ADRs. The majority of these are related with cADRs, which comprise mild ailments such as maculopapular exanthema (MPE)

and severe syndromes such as the SJS, toxic epidermal necrolysis (TEN) and the drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS) [6, 7]. Furthermore, there are reports that also support the implication of variations in immune genes with drug-induced liver injury (DILI) [8–12], drug-induced proteinuria [13] and agranulocytosis [14].

The most common descriptions of associations of *HLA* alleles with ADRs were reported for *HLA-B\*15:02* and CBZ-induced SJS [15], *HLA-B\*58:01* and allopurinol-induced SJS or DIHS [16] and *HLA-B\*57:01* with a hypersensitivity reaction to abacavir [17]. Over time, several association studies have been performed in different populations, and some of these have described that the associated *HLA* allele is drug-specific and that ethnicity matters [18]. Moreover, guideline recommendations by regulatory agencies have been published in order to prevent different cADRs by means of *HLA* genotyping prior to drug prescription, and databases are now available to supply information on *HLA* alleles associated with ADR throughout the world. Therefore, in the light of these advances in *HLA* alleles in ADRs the present review

aimed to describe HLA alleles that have been associated with several ADRs in worldwide populations, the recommendations of regulatory agencies, pharmacoeconomic information and databases for the study on HLA alleles in pharmacogenetics.

### Methods

We performed a systematic search in June 2016 of relevant articles for this issue in indexed journals and scientific databases (PubMed and PharmGKB). Search words included "HLA and adverse drug reactions". Association studies in which at least one HLA allele was related with the risk of ADR occurrences were included in the corresponding section. Articles were selected according to their relevance on the subject. The whole body of information was analyzed and summarized.

## **HLA** alleles associated with adverse drug reactions

Ninety-five articles reporting that HLA alleles have been associated with ADRs were selected, and the main information of the association study was summarized in Table 1 for CBZ-induced cADRs, Table 2 for HLA alleles related to other antiepileptic drugs-induced cADRs, Table 3 for allopurinol, abacavir and nevirapine studies with HLA and ADRs and Table 4 for reports of HLA alleles in ADRs produced by different drugs.

The association of HLA alleles with CBZ-induced cADRs has been widely reported for several populations, including Asians (Han Chinese, Japanese, Korean, Thai, Malaysian, Indian, Vietnamese and Singaporean), European, North American and Mexican mestizos. The most significant associations have been described for HLA-B\*15:02 allele in Asian populations; however, important associations have been found for the HLA-A\*31:01 allele in European, North American, Mexican mestizos and Japanese populations. Other alleles associated with CBZ-induced cADRs are *HLA-A\*01:01:01*, -*A\*02:01*, -DRB1\*14:05, -B\*51:01, -B\*15:11, -A\*02:06, -A\*24:02, -C\*08:01 and -DRB1\*12:02 (Table 1). The HLA-B\*15:02 allele also has been associated with other antiepileptic drugs-induced cADRs, such as phenytoin and oxcarbazepine. In addition, other HLA alleles have exhibited an association with lamotrigine-, phenobarbital-, phenytoinand zonisamide-induced cADRs (Table 2).

Several investigations have found a strong association of *HLA-B\*58:01* with cADRs induced by allopurinol, mainly in patients with Asian ancestry; however, there are also reports that include European and Portuguese populations in whom this allele has also been associated. Other alleles that have been related with allopurinol-induced cADRs include HLA-C\*03:02 and -A\*33:03 in Koreans and HLA-DRB1\*15:02 and -DRB1\*13:02 in Caucasians. Studies of abacavir hypersensitivity have been mostly performed in Caucasians from the U.S. and Australia. The main associated HLA allele is HLA-B\*57:01, and only one study (to our knowledge) has reported the association of two different alleles from HLA class II (HLA-DR7 and -DQ3) with abacavir-induced hypersensitivity. For nevirapine, four different HLA alleles in four studies have been found associated with ADRs induced by this drug; two of these reports identified an association between the HLA-C\*04 allele and hypersensitivity in Han Chinese and SJS/NET in Malawian patients. There are also reports that have investigated the relation of HLA alleles with hepatotoxicity induced by this drug (Table 3).

There are several reports of other HLA alleles associated with other different drugs-induced ADRs, for instance, amoxicillin-clavulanate, antituberculosis drugs, asparaginase, aspirin, clozapine, cold medications, co-trimaxole, dapsone and penicillins, among others. The type of ADRs included in these studies comprises hypersensitivity, cADR, drug-induced liver injury, proteinuria, agranulocytosis and other specific reactions, such as aspirin-exacerbated respiratory disease and cold medicine-related SJS/TEN with severe ocular-surface complications. In some cases, the studies have only been performed in one population, and the information remains not sufficiently strong to be considered in clinical recommendations (Table 4).

The studies included comprise years of publication from 1993 to 2016 with at least one study reporting an association between HLA alleles and ADRs published per year. The highest number of reports was published in 2013 and 2014 (13 per year), which is 6 years after the U.S. Food and Drug Administration (FDA) recommendation on genetic screening for patients of Asian ancestry prior to the initiation of CBZ therapy [112] and when the number of studies in this subject increased. The majority of the investigations have studied CBZ-induced cADRs (29%), followed by allopurinol- and lamotrigine-induced cADRs (13% and 7%, respectively). Few studies have been performed for abacavir- and phenytoin-induced hypersensitivity (6% for each) and for ADRs induced by amoxicillin-clavulanate, nevirapine and oxcarbazepine (4% for each). Fifty-five percent of the studies have included

Table 1: HLA alleles associated with carbamazepine-induced cutaneous adverse drug reactions.

| ADR type        | Population            | HLA allele  | n +/tot    | OR      | 95% CI       | p-Value                | References |
|-----------------|-----------------------|-------------|------------|---------|--------------|------------------------|------------|
| cADR            | Japanese              | -A*31       | 10/15      | 11.20   | 2.668-47.105 | 0.001                  | [19]       |
| cADR            | Japanese              | -A*31:01    | 37/61      | 10.80   | 5.9-19.6     | $3.64 \times 10^{-15}$ | [20]       |
| DRESS           | European              | -A*31:01    | 7/10       | 57.60   | 11.0-341.0   | < 0.001                | [21]       |
| DRESS           | Chinese               | -A*31:01    | 5/10       | 23.00   | 4.2-125      | < 0.001                | [21]       |
| HSS             | North American        | -A*31:01    | 3/6        | 26.36   | 2.53-307.89  | 0.002                  | [22]       |
| HSS             | European              | -A*31:01    | 10/27      | 12.41   | 1.27-121.03  | $3.5 \times 10^{-8}$   | [23]       |
| MPE             | Mexican mestizo       | -A*01:01:01 | 3/5        | 7.29    | 1.02-52.01   | 0.028                  | [24]       |
| MPE             | Mexican mestizo       | -A*31:01:02 | 2/5        | ND      | ND           | 0.006                  | [24]       |
| MPE             | Han Chinese           | -A*02:01    | 11/80 (2n) | ND      | ND           | 0.033                  | [25]       |
| MPE             | Han Chinese           | -DRB1*14:05 | 7/80 (2n)  | ND      | ND           | 0.003                  | [25]       |
| MPE             | North America         | -A*31:01    | 6/26       | 8.57    | 1.67-57.50   | 0.004                  | [22]       |
| MPE             | European              | -A*31:01    | 23/106     | 8.33    | 3.59-19.36   | $8.0 \times 10^{-7}$   | [23]       |
| MPE/DRESS       | Han Chinese           | -A*31:01    | 14/74      | 6.86    | 2.4-19.9     | $2.7 \times 10^{-3}$   | [26]       |
| MPE/DRESS       | Han Chinese           | -B*51:01    | 18/74      | 4.56    | 2.0-10.5     | 0.01                   | [26]       |
| MPE/HSS         | Chinese               | -A*31:01    | 8/31       | 12.17   | 3.6-41.2     | 0.0021                 | [27]       |
| SCAR            | Japanese              | -A*31:01    | 11/44 (2n) | 4.33    | 2.07-9.06    | 0.0004                 | [28]       |
| SJS             | Han Chinese           | -B*15:02    | 44/44      | 2504    | 126-49,522   | $3.1 \times 10^{-27}$  | [15]       |
| SJS             | North American        | -B*15:02    | 3/9        | 38.65   | 2.68-2239.5  | 0.002                  | [22]       |
| SJS             | Chinese and Malaysian | -B*15:02    | 6/6        | ND      | ND           | 0.0345                 | [29]       |
| SJS             | Korean                | -B*15:11    | 3/7        | 18.00   | 2.3-141.2    | 0.011                  | [30]       |
| SJS             | Indian                | -B*15:02    | 6/8        | 71.40   | 3.0-1698     | 0.0014                 | [31]       |
| SJS             | Thai                  | -B*15:02    | 6/6        | 25.50   | 2.68-242.61  | 0.0005                 | [32]       |
| SJS/TEN         | Vietnamese            | -B*15:02    | 32/38      | 33.78   | 7.55-151.03  | < 0.001                | [33]       |
| SJS/TEN         | Han Chinese           | -B*15:02    | 24/26      | 89.25   | 19.25-413.83 | $3.51 \times 10^{-18}$ | [34]       |
| SJS/TEN         | North Indian          | -B*15:02    | 2/9        | ND      | ND           | 0.035                  | [35]       |
| SJS/TEN         | Han Chinese           | -B*15:02    | 8/35       | 18.22   | 3.66-90.66   | 0.000                  | [36]       |
| SJS/TEN         | Singaporean           | -B*15:02    | 13/13      | 181.00  | 8.7-3785     | $6.9 \times 10^{-8}$   | [37]       |
| SJS/TEN         | Chinese               | -B*15:02    | 41/53      | 58.10   | 17.6-192     | < 0.001                | [21]       |
| SJS/TEN         | Singaporean           | -B*15:02    | 5/5        | 27.20   | 2.67 to ∞    | < 0.05                 | [38]       |
| SJS/TEN         | Han Chinese           | -B*15:02    | 24/26      | 89.25   | 19.25-413.83 | $3.51 \times 10^{-18}$ | [39]       |
| SJS/TEN         | Japanese              | -A*02:06    | 51/110     | 5.07    | ND           | $6.9 \times 10^{-10}$  | [40]       |
| SJS/TEN         | Han Chinese           | -A*24:02    | 9/16       | 3.18    | 1.11-9.11    | 0.03                   | [41]       |
| SJS/TEN         | Han Chinese           | -B*15:02    | 13/18      | 17.55   | 5.31-58.06   | < 0.001                | [41]       |
| SJS/TEN         | Thai                  | -B*15:02    | 32/34      | 75.40   | 13.0-718.9   | < 0.001                | [42]       |
| SJS/TEN         | European              | -A*31:01    | 5/12       | 25.93   | 4.93-116.18  | $8.0 \times 10^{-5}$   | [23]       |
| SJS/TEN         | Han Chinese           | -B*15:02    | 16/17      | 152.00  | 12-1835      | < 0.0001               | [43]       |
| SJS/TEN         | Han Chinese           | -B*15:02    | 9/9        | 114.83  | 6.25-2111.03 | < 0.001                | [44]       |
| SJS/TEN         | Malaysian             | -B*15:02    | 12/17      | 16.15   | 4.57-62.4    | $7.87 \times 10^{-6}$  | [45]       |
| SJS/TEN         | Japanese              | -B*15:11    | 4/28       | 16.30   | 4.76-55.6    | 0.0004                 | [46]       |
| SJS/TEN         | Chinese               | -B*15:02    | 8/8        | 184.00  | 33.2-1021.0  | < 0.05                 | [47]       |
| SJS/TEN         | Thai                  | -B*15:02    | 37/42      | 54.76   | 14.62-205.13 | $2.89 \times 10^{-12}$ | [48]       |
| SJS/TEN         | Chinese               | -B*15:02    | 59/60      | 1357.00 | 193.4-8838.3 | $1.6 \times 10^{-41}$  | [27]       |
| SJS/TEN         | Chinese               | -C*08:01    | 56/60      | 86.80   | 29.3-254.6   | $7.8 \times 10^{-27}$  | [27]       |
| SJS/TEN         | Chinese               | -DRB1*12:02 | 41/60      | 11.40   | 5.6-22.9     | 2.3×10 <sup>-11</sup>  | [27]       |
| SJS/TEN > 5%    | Han Chinese           | -B*15:02    | 25/25      | 97.60   | 42.0-226.8   | $5.8 \times 10^{-43}$  | [26]       |
| skin detachment |                       |             |            |         |              |                        |            |

ADR, adverse drug reaction; cADR, cutaneous adverse drug reaction; CI, confidence interval; DRESS, drug reactions with eosinophilia and systemic symptoms; HLA, human leukocyte antigen; HSS, hypersensitivity syndrome; MPE, maculopapular exanthema; ND, not determined; n +/tot, number of subjects positive for the HLA allele associated/total of subjects included in the association study; OR, odds ratio; SCAR, severe cutaneous adverse drug reactions; SJS, Stevens-Johnson syndrome; TEN, toxic epidermal necrolysis.

Asian patients in whom there is a notably higher incidence of cADRs than in Caucasians [113]; however, an important percentage of these reports was also performed in individuals of Caucasian ancestry (42%); Africans have only been included in one study and individuals from America in three.

Table 2: HLA alleles associated with antiepileptic drugs-induced cutaneous adverse drug reactions.

| Drug                | ADR     | Population       | HLA allele                                  | n +/tot   | OR    | 95% CI       | p-Value               | References |
|---------------------|---------|------------------|---------------------------------------------|-----------|-------|--------------|-----------------------|------------|
| Antiepileptic drugs | SJS/TEN | Han Chinese      | -B*15:02                                    | 6/6       | 71.9  | 3.7-1,415.8  | 1.48×10 <sup>-4</sup> | <br>[49]   |
|                     | SJS/TEN | Han Chinese      | -B*15:02                                    | 15/27     | 18.75 | 5.29-66.44   | 0.000                 | [50]       |
| Lamotrigine         | cADR    | Norwegian        | -A*24:02                                    | 10/28     | ND    | ND           | 0.027                 | [51]       |
|                     | cADR    | Japanese         | -DRB1*04:05                                 | 6/16      | ND    | ND           | 0.01                  | [52]       |
|                     | cADR    | Japanese         | -DQB1*04:01                                 | 6/16      | ND    | ND           | 0.01                  | [52]       |
|                     | MPE     | Korean           | -A*24:02                                    | 15/21     | 4.09  | 1.22-13.69   | 0.025                 | [53]       |
|                     | MPE     | Korean           | -A*24:02/<br>-C*01:02                       | 10/21     | 7.88  | 1.81-34.28   | 0.007                 | [53]       |
|                     | MPE     | Mexican mestizo  | -A*02:01:01/<br>-B*35:01:01/<br>-C*04:01:01 | 4/10      | 18.33 | 1.99-169.08  | 0.0048                | [24]       |
|                     | MPE     | Han Chinese      | -A*30:01                                    | 6/86 (2n) | ND    | ND           | 0.013                 | [25]       |
|                     | MPE     | Han Chinese      | -B*13:02                                    | 6/86 (2n) | ND    | ND           | 0.013                 | [25]       |
|                     | SCAR    | European         | -A*68:01                                    | 4/44 (2n) | 19.22 | 1.01-365     | 0.012                 | [54]       |
|                     | SJS/TEN | Korean           | -B*44:03                                    | 3/5       | ND    | ND           | 0.099                 | [55]       |
| Oxcarbazepine       | MPE     | Han Chinese      | -B*38:02                                    | 3/28 (2n) | 3.33  | 1.78-22.46   | 0.018                 | [56]       |
|                     | MPE     | Han Chinese      | -B*13:02                                    | 4/28 (2n) | 7.83  | 2.32-26.41   | 0.001                 | [57]       |
|                     | MPE     | Han Chinese      | -B*15:02                                    | 4/9       | 8.8   | 1.85-41.79   | 0.011                 | [58]       |
|                     | SJS     | Han Chinese      | -B*15:02                                    | 3/3       | 80.7  | 3.8-1714.4   | $8.4 \times 10^{-4}$  | [59]       |
| Phenobarbital       | SJS/TEN | Japanese         | -B*51:01                                    | 6/8       | 16.71 | 3.66-83.06   | 0.004                 | [60]       |
| Phenytoin           | DRESS   | Malay            | -B*15:13                                    | 3/3       | 59    | 2.49-1395.74 | 0.003                 | [61]       |
|                     | MPE     | Mexican mestizos | -C*08:01                                    | 2/2       | ND    | ND           | 0.002                 | [24]       |
|                     | SJS     | Thai             | -B*15:02                                    | 4/4       | 18.5  | 1.82-188.40  | 0.005                 | [32]       |
|                     | SJS/TEN | Malay            | -B*15:13                                    | 7/13      | 11.28 | 2.25-59.60   | 0.003                 | [61]       |
|                     | SJS/TEN | Malay            | -B*15:02                                    | 8/13      | 5.71  | 1.41-23.10   | 0.016                 | [61]       |
|                     | SJS/TEN | Han Chinese      | -B*15:02                                    | 7/15      | 3.44  | 1.08-11.00   | 0.047                 | [34]       |
|                     | SJS/TEN | Han Chinese      | -B*15:02                                    | 7/15      | 3.5   | 1.10-11.18   | 0.045                 | [39]       |
|                     | SJS/TEN | Han Chinese      | -B*15:02                                    | 8/26      | 5.1   | 1.8-15.1     | 0.0041                | [59]       |
|                     | SJS/TEN | Han Chinese      | -B*13:01                                    | 9/26      | 3.7   | 1.4-10.0     | 0.0154                | [59]       |
|                     | SJS/TEN | Han Chinese      | -C*08:01                                    | 9/26      | 3     | 1.1-7.8      | 0.0281                | [59]       |
|                     | SJS/TEN | Han Chinese      | -DRB1*16:02                                 | 7/26      | 4.3   | 1.4-12.8     | 0.0128                | [59]       |
| Zonisamide          | SJS/TEN | Japanese         | -A*02:07                                    | 5/12      | 9.77  | 3.07-31.1    | 0.018                 | [60]       |

ADR, adverse drug reaction; cADR, cutaneous adverse drug reaction; CI, confidence interval; DRESS, drug reactions with eosinophilia and systemic symptoms; HLA, human leukocyte antigen; MPE, maculopapular exanthema; ND, not determined; n +/tot, number of subjects positive for the HLA allele associated/total of subjects included in the association study; OR, odds ratio; SCAR, severe cutaneous adverse drug reactions; SJS, Stevens-Johnson syndrome; TEN, toxic epidermal necrolysis.

## Databases with HLA alleles and adverse drug reactions

As can be observed in Tables 1-4, several class I and II HLA alleles have been associated with ADRs in different populations. The *HLA* allele associated in a certain ethnic group is largely influenced by the frequency of the specific allele among the studied population [18, 114]. In order to facilitate the investigation and associations of *HLA* alleles and ADRs, two databases have been designed [115, 116]. Both of these permit easy and rapid access to relevant information about a specific drug, ADR or HLA allele related with ADR pharmacogenomics.

One of these belongs to the Allele Frequency Net Database (http://www.allelefrequencies.net), a free, centralized resource that contains information on the allele, the haplotype and the genotype frequencies of several immune genes, including HLA alleles, in different populations [117]. This website was released in 2003 [118], and since then, the database has grown significantly in terms of the number of populations covered and the number of users and citations [115]. Therefore, to assist HLA and pharmacogenetic studies, this database contains collated data sets from the literature, with information that not only facilitates metaanalyses but that also enables users to examine the quality of published studies by comparing the frequencies of HLA alleles reported in healthy volunteers' cohorts with those

Table 3: HLA alleles associated with adverse reactions induced by allopurinol, abacavir and nevirapine.

| Drug                     | ADR              | Population         | HLA allele          | n +/tot   | OR     | 95% CI         | p-Value                | References |
|--------------------------|------------------|--------------------|---------------------|-----------|--------|----------------|------------------------|------------|
| Allopurinol              | cADR             | Japanese           | -B*58:01            | 4/7       | 65.6   | 2.9-1497.0     | 9.73×10 <sup>-4</sup>  | [62]       |
|                          | cADR             | Han Chinese        | -B*58:01            | 38/38     | 580.07 | 32.18-10456.80 | $7.01 \times 10^{-18}$ | [63]       |
|                          | MPE              | Han Chinese        | -B*58:01            | 26/40     | 8.5    | 4.2-17.5       | $2.3 \times 10^{-9}$   | [64]       |
|                          | SCAR             | Han Chinese        | -B*58:01            | 96/106    | 44     | 21.5-90.3      | $2.6 \times 10^{-41}$  | [64]       |
|                          | SCAR             | Han Chinese        | -B*58:01            | 87/92     | 127.6  | 40.8-398.6     | < 0.001                | [65]       |
|                          | SCAR             | Han Chinese        | -B*58:01            | 45/48     | 108.5  | 33.7-346.3     | < 0.0001               | [66]       |
|                          | SCAR             | Portuguese         | -B*58:01            | 16/25     | 39.11  | 4.49-340.51    | $5.9 \times 10^{-4}$   | [67]       |
|                          | SCAR             | Han Chinese        | -B*58:01            | 19/19     | 229.7  | 11.7-4520.4    | < 0.0001               | [68]       |
|                          | SCAR             | Korean             | -B*58:01            | 23/25     | 97.8   | 18.3-521.5     | $2.45 \times 10^{-11}$ | [69]       |
|                          | SCAR             | Korean             | -C*03:02            | 23/25     | 82.1   | 15.8-426.5     | $9.39 \times 10^{-11}$ | [69]       |
|                          | SCAR             | Korean             | -A*33:03            | 22/25     | 20.5   | 5.4-78.6       | $3.31 \times 10^{-6}$  | [69]       |
|                          | SCAR             | Han Chinese        | -B*58:01            | 51/51     | 580.3  | 34.4-9780.9    | $4.7 \times 10^{-24}$  | [16]       |
|                          | SCAR             | Caucasian          | -B*58:01            | 3/7       | 13.6   | 2.77-69.45     | 0.003                  | [70]       |
|                          | SCAR             | Caucasian          | -DRB1*15:02         | 2/7       | 22.6   | 3.28-160.72    | 0.005                  | [70]       |
|                          | SCAR             | Caucasian          | -DRB1*13:02         | 2/7       | 11.1   | 1.94-7.64      | 0.037                  | [70]       |
|                          | SJS/TEN          | Korean             | -B*58:01            | 5/7       | ND     | ND             | 0.013                  | [71]       |
|                          | SJS/TEN          | Thai               | -B*58:01            | 27/27     | 348.3  | 19.2-6336.9    | < 0.001                | [72]       |
|                          | SJS/TEN          | Japanese           | -B*58:01            | 4/20 (2n) | 40.83  | 10.5-158.9     | < 0.0001               | [73]       |
|                          | SJS/TEN          | European           | -B*58:01            | 15/27     | 80     | 34-187         | <10-6                  | [74]       |
| Abacavir                 | AHS              | Caucasian          | -B*57:01            | 18/20     | 6934   | 321-149,035    | < 0.0001               | [75]       |
|                          | AHS              | White from U.S.    | -B*57:01            | 42/42     | 1945   | 110-34,352     | < 0.0001               | [17]       |
|                          | AHS              | Black from U.S.    | -B*57:01            | 5/5       | 900    | 38-21,045      | < 0.0001               | [17]       |
|                          | AHS              | Caucasian          | -B*57:01            | 7/7       | ND     | ND             | < 0.001                | [76]       |
|                          | AHS              | Western Australian | -B*57:01            | 17/18     | 960    | NS             | < 0.00001              | [77]       |
|                          | AHS              | North American     | -B*57               | 39/84     | 23.6   | 8.0-70.0       | < 0.01                 | [78]       |
|                          | AHS              | Western Australian | -B*57:01            | 14/18     | 117    | 29-481         | < 0.0001               | [79]       |
|                          | AHS              | Western Australian | -B*5701, -DR7, -DQ3 | 13/18     | 822    | 43-15,675      | < 0.0001               | [79]       |
| Nevirapine               | cADR             | Thai               | -B*35:05            | 25/243    | 18.96  | 4.87-73.44     | $4.6 \times 10^{-6}$   | [80]       |
| •                        | Hepatotoxicity   | South African      | -B*58:01            | 12/51     | ND     | ND             | 0.033                  | [81]       |
|                          | Hepatotoxicity   | South African      | -DRB1*01:02         | 8/51      | ND     | ND             | 0.044                  | [81]       |
|                          | Hypersensitivity | Han Chinese        | -C*04               | 8/64      | 3.61   | 1.13-11.49     | 0.03                   | [82]       |
|                          | SJS/TEN          | Malawian           | -C*04:01            | 23/36     | 17.52  | 3.31-92.8      | NS                     | [83]       |
| Nevirapine and Efavirenz | Hypersensitivity | French             | -DRB1*01            | 5/6       | ND     | ND             | 0.04                   | [84]       |

ADR, adverse drug reaction; AHS, abacavir hypersensitivity; cADR, cutaneous adverse drug reaction; CI, confidence interval; HLA, human leukocyte antigen; MPE, maculopapular exanthema; ND, not determined; NS, not specified; n + /tot, number of subjects positive for the HLA allele associated/total of subjects included in the association study; OR, odds ratio; SCAR, severe cutaneous adverse drug reactions; SJS, Stevens-Johnson syndrome; TEN, toxic epidermal necrolysis.

of worldwide populations. This resource only includes case-control studies with statistical evidence provided for the association and in which high-resolution HLA genotyping was performed. From each report, information about ethnicity, the drug of interest and the proportion of cases and controls carrying the HLA allele implicated in ADRs is extracted and summarized in the database [115].

The second of these is denominated the HLADR database (http://pgx.fudan.edu.cn/hladr/). This is an in-house database that manually collected the information of 1786 records after an extensive search and review of the literature and curation of reports of HLA alleles associated with ADRs. The information compiled from each report contains the following: drugs, ADRs, HLA alleles, the ethnic and

geographic origins of the study subjects, a 2×2 contingency table reflecting the association strengths (p-value, odds ratio [OR], sensitivity, specificity, positive-predictive values and negative-predictive values) and FDA drug-labeling changes resulting from the drug-HLA associations. The association strengths across different studies were incomparable because different statistical methods were applied in the original reports; consequently, the designers of this database performed the Fisher's exact test and the Haldane's modification to recalculate the p-value and the OR for each association study, respectively. In addition, this resource standardized the names of ADRs and HLA alleles based on reference databases such as PharmGKB and international ImMunoGeneTics (IMGT) project/HLA [116].

 Table 4: HLA alleles associated with different adverse reactions induced by several drugs.

| Drug                        | ADR                                                               | Population                                         | HLA allele                                                         | n +/tot                         | OR                            | 95% CI                                                | p-Value                                              | References           |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|---------------------------------|-------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------|
| Amoxicillin-clavulanate     | 7110<br>7110<br>7110<br>7110                                      | Spaniard<br>European<br>European                   | -4*30:02<br>-DQB1*06:02<br>-DRB1*15                                | 11/75<br>NS<br>32/61            | 6.7<br>4.2<br>2.59            | 2.8–15.9<br>2.7–6.6<br>1.44–4.68                      | 5×10 <sup>-5</sup><br>4.6×10 <sup>-10</sup><br>0.002 | [85]                 |
| Antituberculosis            | ATLI                                                              | Chinese                                            | -DRB5*01:01/-DQB1*06:02<br>-DQB1*05/*05                            | 10/88                           | 4.56                          | 0.98-21.22                                            | 0.053                                                | [88]                 |
| treatment                   | DIH                                                               | Indian                                             | -DQB1*02:01                                                        | 25/47                           | 2.2                           | 1.19-4.15                                             | <0.01                                                | [89]                 |
| Asparaginase<br>Aspirin     | Allergy Aspirin desensitization                                   | European descent<br>Iranian                        | -C 04:01<br>-DRB1*07:01<br>-DQB1*03:02                             | 66/143<br>7/14                  | 1.92<br>0.12                  | 5 1.29–2.87<br>0.02–0.76                              | 0.023                                                | [91]<br>[92]         |
|                             | AERD AERD AERD AERD AERD AERD AERD                                | Iranian<br>Iranian                                 | -DQB1*03:02<br>-DQA1*03:01                                         | 16/66 (2n)<br>20/66 (2n)        | 5.49                          | 2.40–12.59<br>1.49–5.67                               | <0.01                                                | [93]                 |
| Benznidazole<br>Bucillamine | Moderate and severe cADRs<br>Proteinuria                          | Spaniard<br>Japanese                               | -B*3505<br>-DRB1*08:02                                             | 5/11<br>7/25                    | NS<br>25.17                   | NS<br>7.98–79.38                                      | $0.033$ $1.96 \times 10^{-5}$                        | [94]<br>[95]         |
| Clozapine                   | Proteinuria<br>Agranulocytosis                                    | Japanese<br>Non-Jewish                             | -DQB1*04:02<br>-DRB5*0201                                          | 8/25<br>5/84 (2n)               | 10.35<br>22.15                | 3.99–26.83<br>1.74– ∞                                 | $2.69 \times 10^{-4}$ 0.005                          | [96]<br>[96]         |
|                             | Agranulocytosis                                                   | Caucasian<br>Jewish Caucasian                      | -DRB1*04:02,<br>-DRB4*01:01, DQB1*03:02,<br>DOA1*03:01, DPB1*04:01 | 11/24 (2n)                      | 8.9                           | QN                                                    | 0.02                                                 | [6]                  |
| Cold medications            | CM-SJS/TEN with SOC<br>CM-SJS/TEN with SOC<br>CM-SJS/TEN with SOC | Indian<br>Brazilian<br>Korean                      | -B*44:03<br>-B*44:03<br>-A*02:06                                   | 12/20<br>10/39<br>11/31         | 12.25<br>2.74<br>3            | 3.57-42.01<br>1.12-6.71<br>1.18-7.57                  | 2.14.E-05<br>0.0478<br>0.0362                        | [98]                 |
| Co-trimaxole                | SJS/TEN<br>SJS/TEN<br>SJS/TEN<br>SJS/TEN                          | Thai<br>Thai<br>Thai                               | -8*15:02<br>-C*06:02<br>-C*08:01<br>-8*15:02/-C*08:01              | 14/43<br>5/43<br>12/43<br>11/43 | 3.91<br>11.84<br>3.53<br>4.87 | 1.42–10.92<br>1.24–566.04<br>1.21–10.40<br>1.48–17.22 | 0.02<br>0.013<br>0.011<br>0.004                      | [66]<br>[66]<br>[66] |
| Dapsone                     | HSS<br>DIHR                                                       | Chinese descent<br>Southern Chinese                | -B*13:01<br>-B*13:01                                               | 65/76<br>18/20                  | 20.53                         | 11.55–36.48 23.5–636.2                                | $6.84 \times 10^{-25}$ $6.038 \times 10^{-12}$       | [100]                |
| rucioxaciun<br>Lapatinib    | Diti<br>Liver injury                                              | European<br>Majority White, not<br>Hispanic/Latino | -B'5/:01<br>-DRB1*07:01                                            | 43/51<br>29/37                  | 14.12                         | 22.8–284.9<br>6.36–31.32                              | $6.97 \times 10^{-13}$<br>$2.4 \times 10^{-13}$      | [8]<br>[102]         |
| Methazolamide               | SJS/TEN<br>SJS/TEN                                                | Han Chinese<br>Korean                              | -8*59:01<br>-8*59:01                                               | 5/5                             | 305 249.8                     | 11.3–8259.9                                           | $6.3 \times 10^{-7}$ < 0.001                         | [103]                |
| Multiple drugs<br>NSAIDs    | SJS/ IEN with ocular<br>complications<br>Anaphylactoid reaction   | Japanese<br>Spaniard                               | -A*02:06<br>-DR11                                                  | 19/40<br>25/42 (2n)             | 5.1                           | NS<br>2.8-19.0                                        | <0.0005<br>0.02                                      | [105]                |

Fable 4 (continued)

| Drug                  | ADR                        | Population  | <i>HLA</i> allele | n +/tot | OR    | 95% CI      | p-Value               | References |
|-----------------------|----------------------------|-------------|-------------------|---------|-------|-------------|-----------------------|------------|
| Penicillins           | Immediate hypersensitive   | Han Chinese | -DRB9             | 9/37    | ND    | ND          | 0.019                 | [107]      |
|                       | Urticaria                  |             | -DRB9             | 10/37   | ND    | ND          | 0.005                 | [107]      |
| Salazosulfapyridine   | DRESS                      | Han Chinese | -B*13:01          | 9/4     | 13    | ND          | 0.004                 | [108]      |
| Sodium aurothiomalate | Mucocutaneous side effects | NS          | -DR1              | 11/16   | QN    | ND          | 0.004                 | [109]      |
| Sulphasalazine        | SLE-like symptoms          | Caucasian   | -DRB1*03:01       | 3/4     | ND    | ND          | 0.012                 | [110]      |
| Ticlopidine           | Hepatotoxicity             | Japanese    | -4*33:03          | 15/22   | 13.04 | 4.40-38.59  | $1.24\times10^{-5}$   | [111]      |
|                       | Cholestatic hepatotoxicity | Japanese    | -4*33:03          | 12/14   | 36.5  | 7.25-183.82 | $7.32 \times 10^{-7}$ | [111]      |

numan leukocyte antigen; DILI, drug-induced liver injury; DRESS, drug reactions with eosinophilia and systemic symptoms; HSS, hypersensitivity syndrome; MPE, maculopapular exanthema; ADR, adverse drug reaction; AERD, aspirin-exacerbated respiratory disease; ATLI, antitubercular drug-induced liver injuries; cADR, cutaneous adverse drug reaction; CI, confidence interval; CM-SJS/TEN with SOC, cold medicine-related SJS/TEN with severe ocular-surface complications; DIH, drug-induced hepatotoxicity; DIHR, dapsone-induced hypersensitivity reactions; HLA, ND, not determined; NS, not specified; n + /tot, number of subjects positive for the HLA allele associated/total of subjects included in the association study; OR, odds ratio; SJS, Stevensohnson syndrome; SLE, systemic lupus erythematosus; TEN, toxic epidermal necrolysis

# International medicine agencies recommendations on *HLA* alleles and drug prescriptions

International medicine agencies as the FDA in the U.S. and the European medicine agency (EMA) have made recommendations based on evidence published about HLA alleles associated with ADRs in drugs such as CBZ, allopurinol, abacavir and phenytoin, among others. These data have been added to the specific drug-label information in order to improve the safety of the drug and to inform physicians about the usefulness of performing HLA genotyping prior to prescribing the drug [112, 119]. In addition, the clinical pharmacogenetics implementation consortium (CPIC) has published guidelines for the dosing of abacavir, allopurinol, CBZ and phenytoin considering the patient's HLA genotype [120–127]. Recommendations from the three previously mentioned international medicine agencies are summarized in Table 5. For abacavir, the international medicine agencies and the CPIC highly recommend HLA genotyping in all patients with HIV of any ethnicity prior the prescription of this drug and avoiding the administration of abacavir in patients who are carriers of the HLA-B\*57:01 allele. In contrast, for all opurinol there is no well-established recommendation for routine *HLA* testing, although EMA and CPIC consider that the prescription of allopurinol should be evaluated carefully if it is known that the patient is an HLA-B\*58:01 carrier. In the case of CBZ, genetic testing for HLA is recommended in patients with Asian ancestry or, specifically, for Han Chinese and Thai population, but the use of this antiepileptic is contraindicated in any patient positive for the HLA-B\*15:02 allele regardless of the patient's ancestry. In addition, the agencies recommend that the use of CBZ in patients carrying HLA-A\*31:01, especially of Caucasian or Japanese origin, should be considered if the benefits are thought to exceed the risks. Additionally, the recommendation for antiepileptic drug prescription is to avoid phenytoin and, in some cases, oxcarbazepine, eslicarbazepine acetate and lamotrigine in patients positive for *HLA-B\*15:02*.

## Pharmacoeconomic perspective of *HLA* genotyping prior to drug prescription

Among the benefits of the use of pharmacogenomics in clinical practice are those of guiding the initial drug

 Table 5:
 International medicine agencies' recommendations on HLA genotyping and drug hypersensitivity.

| Drug          | HLA allele | Publisher | Recommendation <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | References |
|---------------|------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Abacavir      | -B*57:01   | FDA       | All patients should be screened for the <i>HLA-B*57:01</i> allele prior to initiating therapy with abacavir or reinitiation of therapy with abacavir, unless patients have a previously documented <i>HLA-B*57:01</i> allele assessment. Abacavir is contraindicated in patients with a prior hypersensitivity reaction to abacavir and in <i>HLA-B*57:01</i> -positive patients                                                                                                                                                             | [128]      |
|               | -B*57:01   | EMA       | Before initiating treatment with abacavir, screening for carriage of the HLA-B*57:01 allele should be performed in any HIV-infected patient, irrespective of racial origin. Abacavir should not be used in patients known to carry the HLA-B*57:01 allele                                                                                                                                                                                                                                                                                    | [129]      |
|               | -8*57:01   | CPIC      | HLA-B*57:01 screening should be performed in all abacavir-naive individuals before initiation of abacavir-containing therapy. In abacavir-naive individuals who are HLA-B*57:01-positive, abacavir is not recommended and should be considered only under exceptional circumstances when the potential benefit, based on resistance patterns and treatment history, outweighs the risk                                                                                                                                                       | [122, 123] |
| Allopurinol   | -B*58:01   | EMA       | The use of genotyping as a screening tool to make decisions about treatment with allopurinol has not been established. Routine testing for HLA-B*5801 is not recommended in any patient. If the patient is a known carrier of HLA-B*58.01, the use of allopurinol may be considered if the benefits are thought to exceed risks. Extra vigilance for signs of hypersensitivity syndrome or SJS/TEN is required, and the patient should be informed of the need to stop treatment immediately at the first appearance of symptoms             | [130]      |
|               | -B*58:01   | CPIC      | Allopurinol is contraindicated in patients who are carriers of HLA-B*5801 (HLA-B*5801/*X, HLA-B*5801/HLA-B*5801)                                                                                                                                                                                                                                                                                                                                                                                                                             | [124, 125] |
| Carbamazepine | -B*15:02   | FDA       | Prior to initiating carbamazepine therapy, testing for <i>HLA-B*15:02</i> should be performed in patients with ancestry in populations in which <i>HLA-B*1502</i> may be present. Carbamazepine should not be used in patients positive for <i>HLA-B*15:02</i> unless the benefits clearly outweigh the risks                                                                                                                                                                                                                                | [128]      |
|               | -A*31:01   | FDA       | The risks and benefits of Tegretol therapy should be weighed before considering administering Tegretol in patients known to be positive for $HLA+31:01$                                                                                                                                                                                                                                                                                                                                                                                      | [128]      |
|               | -B*15:02   | EMA       | Individuals of Han Chinese and Thai origin should, whenever possible, be tested for the $HLA$ - $B^*15:02$ allele prior to treatment with carbamazepine. Testing for the $HLA$ - $B^*15:02$ allele in other Asian populations at genetic risk may be considered                                                                                                                                                                                                                                                                              | [130]      |
|               | -A*31:01   | EMA       | Routine testing for the <i>HLA-A*31:01</i> allele is not recommended. If European Caucasians or patients of Japanese descent are known to be positive for the <i>HLA-A*31:01</i> allele, the use of carbamazepine may be considered if the benefits are thought to exceed the risks                                                                                                                                                                                                                                                          | [130]      |
|               | -B*15:02   | CPIC      | Regardless of the individual's ancestry or age, if the genetic testing results are "positive" for the presence of at least one copy of the $HLA-B*15:02$ allele, it is recommended that a different agent be employed depending on the underlying disease, unless the benefits clearly outweigh the risk                                                                                                                                                                                                                                     | [127]      |
| Phenytoin     | -B*15:02   | FDA       | Consideration should be given to avoid phenytoin as an alternative for carbamazepine in patients positive for HLA- $B^*15:02$                                                                                                                                                                                                                                                                                                                                                                                                                | [128]      |
|               | -8*15:02   | CPIC      | Regardless of the CYP2C9 genotype and individual's ancestry or age, if the HLA-B*15:02 test result is "positive", the recommendation is to consider administering an anticonvulsant other than carbamazepine and phenytoin unless the benefits of treating the underlying disease clearly outweigh the risks. Alternative medications such as oxcarbazepine, eslicarbazepine acetate and lamotrigine have some evidence linking SJS/TEN with the HLA-B*15:02 allele; thus, caution should be exercised in choosing alternatives to phenytoin | [126]      |

CPIC, clinical pharmacogenetics implementation consortium; FDA, food and drug administration; EMA, European medicine agency; HLA, human leukocyte antigen. <sup>a</sup>This information is part of the text included as a recommendation in published articles and labeling information of each drug regimen, individualizing the regimen, increasing efficacy and avoiding ADRs [131]; thus, the implementation of pharmacogenomics in routine practice can improve different drug treatments [132].

Pharmacogenetic testing is also of relevance for the economic resources of the patient or the public health system. Several studies have demonstrated that HLA testing prior to various drug prescriptions is costeffective but that this also depends on the population to which it will be applied. For instance, HLA-B\*15:02 genotyping prior to CBZ prescription is cost-effective for Singaporean Chinese, Malays and Thai patients [133, 134] but not for Singaporean Indians [133]. For Europeans, a study reports that testing for HLA-A\*31:01 represents a cost-effective use prior to initiation of CBZ therapy [135]. Contrariwise, testing for HLA-B\*58:01 did not represent a benefit in allopurinol therapy in Singaporean patients, in contrast with the profit observed in Thai and Korean populations [71, 136]. HLA-B\*57:01 screening prior to abacavir was found to be cost-effective for patients from Spain and Germany [137, 138]. However, a systematic review found that there is cost-effectiveness in the use of pharmacogenetic biomarkers to avoid ADRs in common drug therapies [139].

On the other hand, several investigations have been performed in order to develop assays that reduce the cost of HLA screening, i.e. nested allele-specific PCR and PCR-RFLP for *HLA-A\*31:01* detection [140, 141], flow cytometry pre-screening [142], real-time PCR [143] for HLA-B\*57:01 and the flow cytometry test for HLA-B\*58:01 [144]. Furthermore, the search for single-nucleotide polymorphisms in linkage disequilibrium with specific HLA alleles could diminish the cost of HLA genotyping and make it more available for different populations [145, 146].

However, there are some limitations for HLA genotyping in cases of rare ADRs that should be taken into account. In general, the incidence of ADRs associated with HLA alleles is low; for instance, allopurinol hypersensitivity has been reported in 0.1% [147], and it represents a problem in association studies. This explains the small sample size observed in the majority of studies, which limits the study power for detecting significant associations [148]; however, meta-analyses can help solve this problem, especially in populations that are widely studied. In addition, investigations employing a scarce number of patients could lead to many associated HLA alleles, in which further studies are required in order to confirm their use as pharmacogenetic biomarkers. This situation could impact the cost-effectiveness of HLA typing prior to drug prescription in uncommon ADRs [149].

In sum, several HLA alleles have been associated with ADRs to common drugs; however, the strongest associations remain for HLA-B\*58:01, HLA-B\*57:01, HLA-B\*15:02 and *HLA-A\*31:01*, but only in certain populations. In addition, the majority of the studies have been performed in Asians and Caucasians, and there is a lack of reports on other populations. This situation renders it difficult for international medicine agencies to offer global recommendations on *HLA* genotyping prior to drug prescription or for their including more populations in their warnings. Moreover, it might be possible that more *HLA* alleles are associated with ADRs in other, not vet studied ethnic groups; therefore, pharmacogenomic investigations on this issue should not be pushed aside. The existence of HLA allele databases that facilitate these studies and the reports that assure the cost-effectiveness of HLA screening could ease pharmacogenomic research of ADRs focused on HLA alleles.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

**Research funding:** This research was supported by a grant from Consejo Nacional de Ciencia y Tecnología de México (CONACyT) (#167261). IFG was supported by a grant (doctoral degree) from CONACyT (#369708).

**Employment or leadership:** None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

#### References

- 1. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet (London, England) 2000:356:1255-9.
- 2. Molokhia M, McKeigue P. EUDRAGENE: European collaboration to establish a case-control DNA collection for studying the genetic basis of adverse drug reactions. Pharmacogenomics 2006;7:633-8.
- 3. Giacomini KM, Krauss RM, Roden DM, Eichelbaum M, Hayden MR, Nakamura Y. When good drugs go bad. Nature 2007;446:975-7.
- 4. Illing PT, Mifsud NA, Purcell AW. Allotype specific interactions of drugs and HLA molecules in hypersensitivity reactions. Curr Opin Immunol 2016;42:31-40.
- 5. Yun J, Cai F, Lee FJ, Pichler WJ. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy 2016;6:77-89.
- 6. Chung WH, Wang CW, Dao RL. Severe cutaneous adverse drug reactions. J Dermatol 2016;43:758-66.

- 7. Schöpf E, Stühmer A, Rzany B, Victor N, Zentgraf R, Kapp JF. Toxic epidermal necrolysis and Stevens-Johnson syndrome. An epidemiologic study from West Germany. Arch Dermatol 1991;127:839-42.
- 8. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I, Floratos A, et al. HLA-B\*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009;41:816-9.
- 9. Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 2008;8:186-95.
- 10. Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 2011;141:338-47.
- 11. Parham LR, Briley LP, Li L, Shen J, Newcombe PJ, King KS, et al. Comprehensive genome-wide evaluation of lapatinib-induced liver injury yields a single genetic signal centered on known risk allele HLA-DRB1\*07:01. Pharmacogenomics J 2016;16:180-5.
- 12. Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 2010;42:711-4.
- 13. Ueda S, Wakashin M, Wakashin Y, Yoshida H, Iesato K, Mori T, et al. Experimental gold nephropathy in guinea pigs: detection of autoantibodies to renal tubular antigens. Kidney Int 1986;29:539-48.
- 14. Hodinka L, Géher P, Merétey K, Gyódi EK, Petrányi GG, Bozsóky S. Levamisole-induced neutropenia and agranulocytosis: association with HLA B27 leukocyte agglutinating and lymphocytotoxic antibodies. Int Arch Allergy Appl Immunol 1981;65:460-4.
- 15. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 2004;428:486.
- 16. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, et al. HLA-B\*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 2005;102:4134-9.
- 17. Saag M, Balu R, Phillips E, Brachman P, Martorell C, Burman W, et al. High sensitivity of human leukocyte antigen-b\*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis 2008;46:1111-8.
- 18. Aihara M. Pharmacogenetics of cutaneous adverse drug reactions. J Dermatol 2011;38:246-54.
- 19. Niihara H, Kakamu T, Fujita Y, Kaneko S, Morita E. HLA-A31 strongly associates with carbamazepine-induced adverse drug reactions but not with carbamazepine-induced lymphocyte proliferation in a Japanese population. J Dermatol 2012;39:594-601.
- 20. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, et al. Genome-wide association study identifies HLA-A\*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2011;20:1034-41.
- 21. Genin E, Chen DP, Hung SI, Sekula P, Schumacher M, Chang PY, et al. HLA-A\*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J 2014;14:281-8.
- 22. Amstutz U, Ross CJ, Castro-Pastrana LI, Rieder MJ, Shear NH, Hayden MR, et al. HLA-A 31:01 and HLA-B 15:02 as genetic

- markers for carbamazepine hypersensitivity in children. Clin Pharmacol Ther 2013;94:142-9.
- 23. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, et al. HLA-A\*3101 and carbamazepineinduced hypersensitivity reactions in Europeans. N Engl J Med 2011;364:1134-43.
- 24. Fricke-Galindo I, Martínez-Juárez IE, Monroy-Jaramillo N, Jung-Cook H, Falfán-Valencia R, Ortega-Vázquez A, et al. HLA-A\*02:01:01/-B\*35:01:01/-C\*04:01:01 haplotype associated with lamotrigine-induced maculopapular exanthema in Mexican mestizo patients. Pharmacogenomics 2014;15:1881-91.
- 25. Li LJ, Hu FY, Wu XT, An DM, Yan B, Zhou D. Predictive markers for carbamazepine and lamotrigine-induced maculopapular exanthema in Han Chinese. Epilepsy Res 2013;106:296-300.
- 26. Hsiao Y, Hui R, Wu T, Chang W, Hsih M, Yang C, et al. Genotypephenotype association between HLA and carbamazepineinduced hypersensitivity reactions: strength and clinical correlations. J Dermatol Sci 2014;73:101-9.
- 27. Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006;16:297-306.
- 28. Kashiwagi M, Aihara M, Takahashi Y, Yamazaki E, Yamane Y, Song Y, et al. Human leukocyte antigen genotypes in carbamazepine-induced severe cutaneous adverse drug response in Japanese patients. J Dermatol 2008;35:683-5.
- 29. Then SM, Rani ZZ, Raymond AA, Ratnaningrum S, Jamal R. Frequency of the HLA-B\*1502 allele contributing to carbamazepine-induced hypersensitivity reactions in a cohort of Malaysian epilepsy patients. Asian Pac J Allergy Immunol 2011;29:290-3.
- 30. Kim SH, Lee KW, Song WJ, Kim SH, Jee YK, Lee SM, et al. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res 2011;97:190-7.
- 31. Mehta TY, Prajapati LM, Mittal B, Joshi CG, Sheth JJ, Patel DB, et al. Association of HLA-B\*1502 allele and carbamazepineinduced Stevens-Johnson syndrome among Indians. Indian J Dermatol Venereol Leprol 2009;75:579-82.
- 32. Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T, Tongkobpetch S, et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B\*1502 allele in Thai population. Epilepsia 2008;49:2087-91.
- 33. Nguyen DV, Chu HC, Nguyen DV, Phan MH, Craig T, Baumgart K, et al. HLA-B\*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in Vietnamese. Asia Pac Allergy 2015;5:68-77.
- 34. Kwan PK, Ng MH, Lo SV. Association between HLA-B\*15:02 allele and antiepileptic drug-induced severe cutaneous reactions in Hong Kong Chinese: a population-based study. Hongkong Med J 2014;20:16-8.
- 35. Aggarwal R, Sharma M, Modi M, Garg VK, Salaria M. HLA-B\*1502 is associated with carbamazepine induced Stevens-Johnson syndrome in North Indian population. Hum Immunol 2014;75:1120-2.
- 36. He XJ, Jian LY, He XL, Wu Y, Xu YY, Sun XJ, et al. Association between the HLA-B 15:02 allele and carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Han individuals of northeastern China. Pharmacol Rep 2013;65:1256-62.
- 37. Toh DS, Tan LL, Aw DC, Pang SM, Lim SH, Thirumoorthy T, et al. Building pharmacogenetics into a pharmacovigilance program

- in Singapore: using serious skin rash as a pilot study. Pharmacogenomics J 2014;14:316-21.
- 38. Chong KW, Chan DW, Cheung YB, Ching LK, Hie SL, Thomas T, et al. Association of carbamazepine-induced severe cutaneous drug reactions and HLA-B\*1502 allele status, and dose and treatment duration in paediatric neurology patients in Singapore. Arch Dis Child 2014;99:581-4.
- 39. Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, Kwan P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia 2013;54:1307-14.
- 40. Ueta M, Tokunaga K, Sotozono C, Sawai H, Tamiya G, Inatomi T, et al. HLA-A\*0206 with TLR3 polymorphisms exerts more than additive effects in Stevens-Johnson syndrome with severe ocular surface complications. PLoS One 2012;7:1-7.
- 41. Shi YW, Min FL, Qin B, Zou X, Liu XR, Gao MM, et al. Association between HLA and Stevens-Johnson syndrome induced by carbamazepine in southern Han Chinese: genetic markers besides B\*1502? Basic Clin Pharmacol Toxicol 2012;111:58-64.
- 42. Kulkantrakorn K, Tassaneevakul W, Tiamkao S, Jantararoungtong T, Prabmechai N, Vannaprasaht S, et al. HLA-B\*1502 strongly predicts carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Thai patients with neuropathic pain. Pain Pract 2012;12:202-8.
- 43. Zhang Y, Wang J, Zhao LM, Peng W, Shen GQ, Xue L, et al. Strong association between HLA-B\*1502 and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in mainland Han Chinese patients. Eur J Clin Pharmacol 2011;67:885-7.
- 44. Wang Q, Zhou JQ, Zhou LM, Chen ZY, Fang ZY, Chen SD, et al. Association between HLA-B\*1502 allele and carbamazepineinduced severe cutaneous adverse reactions in Han people of southern China mainland. Seizure 2011;20:446-8.
- 45. Chang CC, Too CL, Murad S, Hussein SH. Association of HLA-B1502 allele with carbamazepine-induced toxic epidermal necrolysis and Stevens-Johnson syndrome in the multi-ethnic Malaysian population. Int J Dermatol 2011;50:221-4.
- 46. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, et al. HLA-B\*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 2010;51:2461-5.
- 47. Wu XT, Hu FY, An DM, Yan B, Jiang X, Kwan P, et al. Association between carbamazepine-induced cutaneous adverse drug reactions and the HLA-B\*1502 allele among patients in central China. Epilepsy Behav 2010;19:405-8.
- 48. Tassaneeyakul W, Tiamkao S, Jantararoungtong T, Chen P, Lin SY, Chen WH, et al. Association between HLA-B\*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in a Thai population. Epilepsia 2010;51:926-30.
- 49. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, et al. Association between HLA-B\*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 2007;48:1015-8.
- 50. Wang W, Hu FY, Wu XT, An DM, Yan B, Zhou D. Genetic predictors of Stevens-Johnson syndrome and toxic epidermal necrolysis induced by aromatic antiepileptic drugs among the Chinese Han population. Epilepsy Behav 2014;37:16-9.
- 51. Shirzadi M, Thorstensen K, Helde G, Moen T, Brodtkorb E. Do HLA-A markers predict skin-reactions from aromatic antiepileptic drugs in a Norwegian population? A case control study. Epilepsy Res 2015;118:5-9.

- 52. Ito A, Shimada H, Ishikawa K, Takeo N, Hatano Y, Katagiri K, et al. Association between HLA-DRB1\*0405, -DQB1\*0401 and -DQA1\*0303 alleles and lamotrigine-induced cutaneous adverse drug reactions. A pilot case-control study from Japan. J Affect Disord 2015;179:47-50.
- 53. Moon J, Park HK, Chu K, Sunwoo JS, Byun JI, Lim JA, et al. The HLA-A\*2402/Cw\*0102 haplotype is associated with lamotrigineinduced maculopapular eruption in the Korean population. Epilepsia 2015:56:e161-7.
- 54. Kazeem GR, Cox C, Aponte J, Messenheimer J, Brazell C, Nelsen AC, et al. High-resolution HLA genotyping and severe cutaneous adverse reactions in lamotrigine-treated patients. Pharmacogenet Genomics 2009;19:661-5.
- 55. Park HJ, Kim SR, Leem DW, Moon IJ, Koh BS, Park KH, et al. Clinical features of and genetic predisposition to drug-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a single Korean tertiary institution patients - investigating the relation between the HLA-B\*4403 allele and lamotrigine. Eur J Clin Pharmacol 2015;71:35-41.
- 56. Lv YD, Min FL, Liao WP, He N, Zeng T, Ma DH, et al. The association between oxcarbazepine-induced maculopapular eruption and HLA-B alleles in a northern Han Chinese population. BMC Neurol 2013;13:75.
- 57. He N, Min FL, Shi YW, Guo J, Liu XR, Li BM, et al. Cutaneous reactions induced by oxcarbazepine in southern Han Chinese: incidence, features, risk factors and relation to HLA-B alleles. Seizure 2012;21:614-8.
- 58. Hu FY, Wu XT, An DM, Yan B, Stefan H, Zhou D. Pilot association study of oxcarbazepine-induced mild cutaneous adverse reactions with HLA-B\*1502 allele in Chinese Han population. Seizure 2011;20:160-2.
- 59. Hung S, Chung W, Liu Z, Chen C, Hsih M, Hui RC, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 2010;11:349-56.
- 60. Kaniwa N, Sugiyama E, Saito Y, Kurose K, Maekawa K, Hasegawa R, et al. Specific HLA types are associated with antiepileptic druginduced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese subjects. Pharmacogenomics 2013;14:1821-31.
- 61. Chang CC, Ng CC, Too CL, Choon SE, Lee CK, Chung WH, et al. Association of HLA-B\*15:13 and HLA-B\*15:02 with phenytoininduced severe cutaneous adverse reactions in a Malay population. Pharmacogenomics J 2016;1-4. [Epub ahead of print].
- 62. Niihara H, Kaneko S, Ito T, Sugamori T, Takahashi N, Kohno K, et al. HLA-B 58:01 strongly associates with allopurinol-induced adverse drug reactions in a Japanese sample population. J Dermatol Sci 2013;71:150-2.
- 63. Cao Z, Wei Z, Zhu Q, Zhang J, Yang L, Qin S, et al. HLA-B\*58:01 allele is associated with augmented risk for both mild and severe cutaneous adverse reactions induced by allopurinol in Han Chinese. Pharmacogenomics 2012;13:1193-201.
- 64. Ng CY, Yeh YT, Wang CW, Hung SI, Yang CH, Chang YC, et al. Impact of the HLA-B(\*)58:01 allele and renal impairment on allopurinol-induced cutaneous adverse reactions. J Invest Dermatol 2016;136:1373-81.
- 65. Cheng L, Xiong Y, Qin CZ, Zhang W, Chen XP, Li J, et al. HLA-B\*58:01 is strongly associated with allopurinol-induced severe cutaneous adverse reactions in Han Chinese patients: a multicentre retrospective case-control clinical study. Br J Dermatol 2015;173:555-8.

- 66. Zhang X, Ma H, Hu C, Yu B, Ma W, Wu Z, et al. Detection of HLA-B\*58:01 with TagMan assay and its association with allopurinolinduced sCADR. Clin Chem Lab Med 2015;53:383-90.
- 67. Gonçalo M, Coutinho I, Teixeira V, Gameiro AR, Brites MM, Nunes R, et al. HLA-B\*58:01 is a risk factor for allopurinolinduced DRESS and Stevens-Johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br J Dermatol 2013;169:660-5.
- 68. Chiu ML, Hu M, Ng MH, Yeung CK, Chan JC, Chang MM, et al. Association between HLA-B\*58:01 allele and severe cutaneous adverse reactions with allopurinol in Han Chinese in Hong Kong. Br J Dermatol 2012;167:44-9.
- 69. Kang HR, Jee YK, Kim YS, Lee CH, Jung JW, Kim SH, et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet Genomics 2011:21:303-7.
- 70. Cristallo AF, Schroeder J, Citterio A, Santori G, Ferrioli GM, Rossi U, et al. A study of HLA class I and class II 4-digit allele level in Stevens-Johnson syndrome and toxic epidermal necrolysis. Int J Immunogenet 2011;38:303-9.
- 71. Park DJ, Kang JH, Lee JW, Lee KE, Wen L, Kim TJ, et al. Cost-effectiveness analysis of HLA-B5801 genotyping in the treatment of gout patients with chronic renal insufficiency in Korea. Arthritis Care Res 2015;67:280-7.
- 72. Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLA-B\*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics 2009;19:704-9.
- 73. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 2008;9:1617-22.
- 74. Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008;18:99-107.
- 75. Berka N, Gill JM, Liacini A, O'Bryan T, Khan FM. Human leukocyte antigen (HLA) and pharmacogenetics: screening for HLA-B\*57:01 among human immunodeficiency virus-positive patients from southern Alberta. Hum Immunol 2012;73:164-7.
- 76. Phillips EJ, Wong GA, Kaul R, Shahabi K, Nolan DA, Knowles SR, et al. Clinical and immunogenetic correlates of abacavir hypersensitivity. AIDS 2005;19:979-81.
- 77. Martin AM, Nolan D, Gaudieri S, Almeida CA, Nolan R, James I, et al. Predisposition to abacavir hypersensitivity conferred by HLA-B\*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci U S A 2004;101:4180-5.
- 78. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002;359:1121-2.
- 79. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B\*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002;359:727-32.
- 80. Chantarangsu S, Mushiroda T, Mahasirimongkol S, Kiertiburanakul S, Sungkanuparph S, Manosuthi W, et al. HLA-B\*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet Genomics 2009;19:139-46.

- 81. Phillips E, Bartlett JA, Sanne I, Lederman MM, Hinkle J, Rousseau F, et al. Associations between HLA-DRB1\*0102, HLA-B\*5801, and hepatotoxicity during initiation of nevirapine-containing regimens in South Africa. J Acquir Immune Defic Syndr 2013;62:55-7.
- 82. Gao S, Gui XE, Liang K, Liu Z, Hu J, Dong B. HLA-dependent hypersensitivity reaction to nevirapine in Chinese Han HIVinfected patients. AIDS Res Hum Retroviruses 2012;28:540-3.
- 83. Carr DF, Chaponda M, Jorgensen AL, Castro EC, Van Oosterhout II. Khoo SH, et al. Association of human leukocyte antigen alleles and nevirapine hypersensitivity in a Malawian HIVinfected population. Clin Infect Dis 2013;56:1330-9.
- 84. Vitezica ZG, Milpied B, Lonjou C, Borot N, Ledger TN, Lefebvre A, et al. HLA-DRB1\*01 associated with cutaneous hypersensitivity induced by nevirapine and efavirenz. AIDS 2008;22:540-1.
- 85. Stephens C, López-Nevot MÁ, Ruiz-Cabello F, Ulzurrun E, Soriano G, Romero-Gómez M, et al. HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One 2013:8:e68111.
- 86. Donaldson PT, Daly AK, Henderson J, Graham J, Pirmohamed M, Bernal W, et al. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J Hepatol 2010;53:1049-53.
- 87. Hautekeete ML, Horsmans Y, Van Waeyenberge C, Demanet C, Henrion J, Verbist L, et al. HLA association of amoxicillin-clavulanate-induced hepatitis. Gastroenterology 1999;117:1181-6.
- 88. Chen R, Zhang Y, Tang S, Lv X, Wu S, Sun F, et al. The association between HLA-DQB1 polymorphism and antituberculosis drug-induced liver injury: a case-control study. J Clin Pharm Ther 2015;40:110-5.
- 89. Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med 2002;166:916-9.
- 90. Kim SH, Lee SK, Kim SH, Park HW, Chang YS, Lee KW, et al. Antituberculosis drug-induced hypersensitivity syndrome and its association with human leukocyte antigen. Tuberculosis (Edinb) 2013;93:270-4.
- 91. Fernandez CA, Smith C, Yang W, Dat M, Bashford D, Larsen E, et al. HLA-DRB1\*07: 01 is associated with a higher risk of asparaginase allergies. Blood 2014;124:1266-76.
- 92. Esmaeilzadeh H, Nabavi M, Aryan Z, Akbar A. Pharmacogenetic tests to predict the efficacy of aspirin desensitization in patients with aspirin-exacerbated respiratory diseases; HLA-DQB302. Expert Rev Respir Med 2015;9:511-8.
- 93. Esmaeilzadeh H, Nabavi M, Amirzargar AA, Aryan Z, Arshi S, Bemanian MH, et al. HLA-DRB and HLA-DQ genetic variability in patients with aspirin-exacerbated respiratory disease. Am J Rhinol Allergy 2015;29:63-9.
- 94. Salvador F, Sánchez-Montalvá A, Martínez-Gallo M, Sala-Cunill A, Viñas L, García-Prat M, et al. Evaluation of cytokine profile and HLA association in benznidazole related cutaneous reactions in patients with chagas disease. Clin Infect Dis 2015;61:1688-94.
- 95. Furukawa H, Oka S, Shimada K, Sugii S, Hashimoto A, Komiya A, et al. HLA-DRB1\*08:02 is associated with bucillamine-induced proteinuria in Japanese rheumatoid arthritis patients. Biomark Insights 2014;9:23-8.
- 96. Dettling M, Cascorbi I, Opgen-Rhein C, Schaub R. Clozapineinduced agranulocytosis in schizophrenic Caucasians: confirming clues for associations with human leukocyte class I and II antigens. Pharmacogenomics J 2007;7:325-32.

- 97. Corzo D, Yunis JJ, Salazar M, Lieberman JA, Howard A, Awdeh Z, et al. The major histocompatibility complex region marked by HSP70-1 and HSP70-2 variants is associated with clozapineinduced agranulocytosis in two different ethnic groups. Blood 1995;86:3835-40.
- 98. Ueta M, Kannabiran C, Wakamatsu TH, Kim MK, Yoon KC, Seo KY, et al. Trans-ethnic study confirmed independent associations of HLA-A\*02:06 and HLA-B\*44:03 with cold medicinerelated Stevens-Johnson syndrome with severe ocular surface complications. Sci Rep 2014;4:5981.
- 99. Kongpan T, Mahasirimongkol S, Konyoung P, Kanjanawart S, Chumworathayi P, Wichukchinda N, et al. Candidate HLA genes for prediction of co-trimoxazole-induced severe cutaneous reactions. Pharmacogenet Genomics 2015;25:402-11.
- 100. Zhang FR, Liu H, Irwanto A, Fu XA, Li Y, Yu GQ, et al. HLA-B\*13:01 and the dapsone hypersensitivity syndrome. N Engl J Med 2013;369:1620-8.
- 101. Wang H, Yan L, Zhang G, Chen X, Yang J, Li M, et al. Association between HLA-B\*1301 and dapsone-induced hypersensitivity reactions among leprosy patients in China. J Invest Dermatol 2013;133:2642-4.
- 102. Schaid DJ, Spraggs CF, McDonnell SK, Parham LR, Cox CJ, Ejlertsen B, et al. Prospective validation of HLA-DRB1\*07:01 allele carriage as a predictive risk factor for lapatinib-induced liver injury. J Clin Oncol 2014;32:2296-303.
- 103. Yang F, Xuan J, Chen J, Zhong H, Luo H, Zhou P, et al. HLA-B\*59:01: a marker for Stevens-Johnson syndrome/toxic epidermal necrolysis caused by methazolamide in Han Chinese. Pharmacogenomics J 2016;16:83-7.
- 104. Kim SH, Kim M, Lee KW, Kim SH, Kang HR, Park HW, et al. HLA-B\*5901 is strongly associated with methazolamide-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenomics 2010;11:879-84.
- 105. Ueta M, Sotozono C, Tokunaga K, Yabe T, Kinoshita S. Strong association between HLA-A\*0206 and Stevens-Johnson syndrome in the Japanese. Am J Ophthalmol 2007;143:367-8.
- 106. Quiralte J, Sánchez-García F, Torres MJ, Blanco C, Castillo R, Ortega N, et al. Association of HLA-DR11 with the anaphylactoid reaction caused by nonsteroidal anti-inflammatory drugs. J Allergy Clin Immunol 1999;103:685-9.
- 107. Yang J, Qiao H, Zhang Y, Jia L, Tian X, Gao N. HLA-DRB genotype and specific IgE responses in patients with allergies to penicillins. Chin Med J (Engl) 2006;119:458-66.
- 108. Yang F, Gu B, Zhang L, Xuan J, Luo H, Zhou P, et al. HLA-B\*13:01 is associated with salazosulfapyridine-induced drug rash with eosinophilia and systemic symptoms in Chinese Han population. Pharmacogenomics 2014;15:1461-9.
- 109. Pickl WF, Fischer GF, Fad I, Kolarz G, Scherak O. HLA-DR1-positive patients suffering from rheumatoid arthritis are at high risk for developing mucocutaneous side effects upon gold therapy. Hum Immunol 1993;38:127-31.
- 110. Gunnarsson I, Nordmark B, Hassan Bakri A, Gröndal G, Larsson P, Forslid J, et al. Development of lupus-related side-effects in patients with early RA during sulphasalazine treatment - the role of IL-10 and HLA. Rheumatology (Oxford) 2000;39:886-93.
- 111. Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 2008;8:29-33.

- 112. Ferrell PB, McLeod HL. Carbamazepine, HLA-B\*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 2008;9:1543-6.
- 113. Lim KS, Kwan P, Tan CT. Association of HLA-B \* 1502 allele and carbamazepine-induced severe adverse cutaneous drug reaction among Asians, a review. Neurol Asia 2008;13:15-21.
- 114. Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H, et al. A marker for Stevens-Johnson syndrome ...: ethnicity matters. Pharmacogenomics J 2006;6:265-8.
- 115. González-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, Da Silva AL, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 2015:43:D784-8.
- 116. Du T, Yang L, Luo H, Xuan J, Xing Q, Ning B, et al. HLADR: a database system for enhancing the discovery of biomarkers for predicting human leukocyte antigen-mediated idiosyncratic adverse drug reactions. Biomark Med 2015;9:1079-93.
- 117. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res 2011;39:913-9.
- 118. Middleton D, Menchaca L, Rood H, Komerofsky R. New allele frequency database: http://www.allelefrequencies.net. Tissue Antigens 2003;61:403-7.
- 119. Ehmann F, Caneva L, Prasad K, Paulmichl M, Maliepaard M, Llerena A, et al. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J 2015;15:201-10.
- 120. Caudle KE, Klein TE, Hoffman JM, Muller DJ, Whirl-Carrillo M, Gong L, et al. Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr Drug Metab 2014;15:209-17.
- 121. Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther 2011;89:464-7.
- 122. Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ, Pirmohamed M, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and Abacavir dosing: 2014 update. Clin Pharmacol Ther 2014;95:499-500.
- 123. Martin MA, Klein TE, Dong BJ, Pirmohamed M, Haas DW, Kroetz DL, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clin Pharmacol Ther 2012;91:734-8.
- 124. Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF, Klein TE, et al. Clinical pharmacogenetics implementation consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther 2013;93:153-8.
- 125. Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, Callaghan JT, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther 2016;99:36-7.
- 126. Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MT, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther 2014;96:542-8.

- 127. Leckband SG, Kelsoe JR, Dunnenberger HM, George AL, Tran E, Berger R, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther 2013;94:324-8.
- 128. FDA. Genomics table of pharmacogenomic biomarkers in drug labeling [Internet]. Center for Drug Evaluation and Research. Food and Drug Administration. Available at: http:// www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed: 16 June 2015.
- 129. European Medicines Agency. Ziagen (abacavir) [Internet]. Available at: http://www.ema.europa.eu/ema/index. jsp?curl=pages/medicines/human/medicines/000252/ human\_med\_001179.jsp&mid=WC0b01ac058001d124. Accessed: 21 July 2016.
- 130. European Medicines Agency. PhVWP monthly report on safety concerns, guidelines and general matters. Available at: http://www.ema.europa.eu/docs/en\_GB/document\_library/ Report/2012/04/WC500124972.pdf. Accessed on 1 March,
- 131. Bushyakanist A, Puangpetch A, Sukasem C, Kiertiburanakul S. The use of pharmacogenetics in clinical practice for the treatment of individuals with HIV infection in Thailand. Pharmgenomics Pers Med 2015;8:163-70.
- 132. Powell G, Holmes EA, Plumpton CO, Ring A, Baker GA, Jacoby A, et al. Pharmacogenetic testing prior to carbamazepine treatment of epilepsy: patients' and physicians' preferences for testing and service delivery. Br J Clin Pharmacol 2015;80:1149-59.
- 133. Dong D, Sung C, Finkelstein EA. Cost-effectiveness of HLA-B\*1502 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology 2012;79:1259-67.
- 134. Tiamkao S, Jitpimolmard J, Sawanyawisuth K, Jitpimolmard S. Cost minimization of HLA-B\*1502 screening before prescribing carbamazepine in Thailand. Int J Clin Pharm 2013;35:608-12.
- 135. Plumpton CO, Yip VL, Alfirevic A, Marson AG, Pirmohamed M, Hughes DA. Cost-effectiveness of screening for HLA-A\*31:01 prior to initiation of carbamazepine in epilepsy. Epilepsia 2015;56:556-63.
- 136. Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B\*5801 testing in preventing allopurinol-induced SIS/TEN in Thai population. PLoS One 2014;9:1-9.
- 137. Nieves Calatrava D, Calle-Martín Ode L, Iribarren-Loyarte J, Rivero-Román A, García-Bujalance L, Pérez-Escolano I, et al. Cost-effectiveness analysis of HLA-B\*5701 typing in the preven-

- tion of hypersensitivity to abacavir in HIV + patients in Spain. Enferm Infecc Microbiol Clin 2010;28:590-5.
- 138. Wolf E, Blankenburg M, Bogner JR, Becker W, Gorriahn D, Mueller MC, et al. Cost impact of prospective HLA-B\*5701screening prior to abacavir/lamivudine fixed dose combination use in Germany. Eur J Med Res 2010;15:145-51.
- 139. Plumpton CO, Roberts D, Pirmohamed M, Hughes DA. A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. Pharmacoeconomics 2016;34:771-93.
- 140. Thorstensen K, Kvitland M, Shirzadi M, Helde G, Moen T, Brodtkorb E. Carbamazepine-induced cutaneous reactions: a simple assay to identify patients carrying the HLA-A\*31:01 allele. Scand J Clin Lab Invest 2014;74:644-7.
- 141. Uchiyama K, Kubota F, Ariyoshi N, Matsumoto J, Ishii I, Kitada M. Development of a simple method for detection of the HLA-A\*31:01 allele. Drug Metab Pharmacokinet 2013;28:435-8.
- 142. De Spiegelaere W, Philippé J, Vervisch K, Verhofstede C, Malatinkova E, Kiselinova M, et al. Comparison of methods for in-house screening of HLA-B\*57:01 to prevent abacavir hypersensitivity in HIV-1 care. PLoS One 2015;10:1-10.
- 143. Dello Russo C, Lisi L, Fabbiani M, Gagliardi D, Fanti I, Di Giambenedetto S, et al. Detection of HLA-B\*57:01 by real-time PCR: implementation into routine clinical practice and additional validation data. Pharmacogenomics 2014;15:319-27.
- 144. Scarsi M, Bosio C, Coccoli S, Barucco A, Tavelli G, Airò P. Flow cytometry test to screen for HLA-B\*58:01-associated allopurinol hypersensitivity. Clin Rheumatol 2014;33:873-5.
- 145. Borgiani P, Di Fusco D, Erba F, Marazzi MC, Mancinelli S, Novelli G, et al. HCP5 genetic variant (RS3099844) contributes to nevirapine-induced Stevens Johnsons syndrome/toxic epidermal necrolysis susceptibility in a population from Mozambique. Eur J Clin Pharmacol 2014;70:275-8.
- 146. Vidal C, Li J, Fulton R, Fernando SL. A polymorphism within the psoriasis susceptibility 1 candidate 1 (PSORS1C1) gene is not linked to HLA-B\*58:01 in an Australian cohort. Drug Metab Pharmacokinet 2016;31:252-5.
- 147. Dalbeth N, Stamp L. Allopurinol dosing in renal impairment: walking the tightrope between adequate urate lowering and adverse events. Semin Dial 2007;20:391-5.
- 148. Daly AK. Pharmacogenomics of adverse drug reactions. Genome Med 2013;5:5.
- 149. Karlin E, Phillips E. Genotyping for severe drug hypersensitivity. Curr Allergy Asthma Rep 2014;14:418.