Review

Ryan Varghese, Gargi Digholkar, Jainam Karsiya, Sahil Salvi, Jeenam Shah, Dileep Kumar* and Rohit Sharma*

PDE5 inhibitors: breaking new grounds in the treatment of COVID-19

https://doi.org/10.1515/dmdi-2023-0011 Received March 29, 2023; accepted July 30, 2023; published online August 24, 2023

Abstract

Introduction: Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment.

Content: Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management

of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16.

Summary: Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential offlabel benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings.

Outlook: These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.

Keywords: COVID-19; delta; omicron; phosphodiesterase 5 inhibitors; SARS-CoV-2; sildenafil; tadalafil

*Corresponding authors: Dileep Kumar, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India; Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA, Phone: +1 530 220 8496, E-mail: dileep.0@gmail.com. https://orcid.org/0000-0002-3418-4325; Rohit Sharma, Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India, Phone: +91 9816724054, E-mail: rohitsharma@bhu.ac.in,

dhanvantari86@gmail.com. https://orcid.org/0000-0002-3682-3573 **Ryan Varghese**, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India; and Homi Bhabha National Institute, Mumbai, Maharashtra, India, E-mail: ryanvarghese14@gmail.com. https://orcid.org/0000-0001-6817-

Gargi Digholkar and Sahil Salvi, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India Jainam Karsiya, River Route Creative Group LLP, Mumbai, Maharashtra, India

Jeenam Shah, Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India

Introduction

A new coronavirus strain was reported in December 2019 by the Chinese Centre for Disease Control and Prevention (CDC) that demonstrated a high transmission potential in humans [1, 2]. This etiological agent was determined to be the causal agent of the COVID-19 pandemic and was later flagged as severe acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This strain is a subset of the Coronaviridae family and bears similarities to the zoonotic SARS-CoV [1, 3, 4]. As of January 2022, global COVID-19 statistics have estimated 310 million cases with approximately 5.5 million deaths. Thus, the high mortality rate poses a threat to the mental and physical health of individuals, substantially affecting the quality of life (QoL) [1, 2]. The detailed morphology, transmission, and pathogenesis of SARS-CoV-2 infection have been elucidated in numerous reviews and are beyond the scope of this review. Several modalities have been proposed for the treatment of SARS-CoV-2 infections. These interventions

include antimalarial [5-8], antiviral [9-11], dietary supplements [12–15], corticosteroids [16–21], and convalescent plasma [22-27], to name a few. However, due to the lack of supporting evidence, no treatment intervention is curative for the clinical manifestations linked to SARS-CoV-2 infection [28–30]. Although progress toward the development of a novel drug and/or vaccine is promising, the time factor is of paramount importance. Thus, the repurposing of the pre-existing approved molecule(s) could be a respite in the already overburdened healthcare and pharmaceutical system [30]. Additionally, several novel techniques have been used for the early detection of SARS-CoV-2 at lower viral loads, including real-time quantitative reverse transcriptionpolymerase chain reaction (RT-PCR), and carbon nanotubebased detection for point-of-care detection [31]. However, at present there is no gold standard for the detection and/or treatment of SARS-CoV-2 infections. This article aims to paint a clinical landscape of various phosphodiesterase-5 (PDE5) inhibitors, as well as to explore their potential in the management of symptoms associated with SARS-CoV-2 infections. Additionally, the article would summarize the mechanistic pathways that have been intercepted following the administration of these drugs.

Transmission and pathophysiology of SARS-CoV-2 infection

SARS-CoV-2 is transmitted primarily through respiratory droplets, often through contact with the patient. However, evidence also supports its potential transmission via contaminated and unsanitized surfaces. Although SARS-CoV-2 can spread through aerosols, its mechanism needs to be elucidated further [32]. Recent studies have reported that approximately 48-62% of transmission occurs through pre-symptomatic carriers [33]. Additionally, hospital-based studies have reported that the most prevalent signs and symptoms of SARS-CoV-2 infection are ageusia, anosmia, diarrhea, dyspnoea, fatigue, fever, headache, myalgia, nausea, non-productive cough, rhinorrhoea, and vomiting [32, 34]. Upon laboratory analysis, the significant anomalies noted in the hospitalized patients included elevated levels of inflammatory markers such as C-reactive protein, erythrocyte sedimentation rate (ESR), ferritin, interleukin-1, interleukin-6, and tumor necrosis factor-α. Additionally, abnormal coagulation parameters include elevated D-dimer levels, extended prothrombin time, low fibrinogen levels, lymphopenia, and thrombocytopenia [35]. A growing body of evidence from radiographic analysis of SARS-CoV-2 infected individuals has demonstrated bilateral infiltrates predominantly in the

lower lobe. Furthermore, chest computed tomography (CT) often highlights peripheral, bilateral, and lower lobe ground-glass opacities (GGO) and/or consolidation [32]. Furthermore, acute liver injury, characterized by elevated levels of alanine transaminase, aspartate transaminase, and bilirubin; cardiac injury; increased troponin levels; acute heart failure; myocarditis; and dysrhythmias were the most frequent adverse effects of SARS-CoV-2. In addition, prothrombic coagulopathy further culminating in venous and arterial thromboembolism has been observed in admitted patients [32, 34, 36–40]. Furthermore, cytokine storm and macrophage activation syndrome are rare clinical manifestations of SARS-CoV-2 in critically affected individuals [32]. These pathways could potentially reflect the etiopathology of SARS-CoV-2 infection, while elucidating avenues for the development and/or repurposing of novel drugs.

Introduction to PDE-5 inhibitors

Phosphodiesterase-5 is an intrinsic part of the Nitric Oxide/ soluble Guanylyl Cyclase/cyclic Guanylate Monophosphate pathway. The phosphodiesterase-5 enzyme has been associated with the hydrolysis of cGMP into 5'GMP [41, 42]. Phosphodiesterase-5 (PDE-5) inhibitors are a class of drugs that inhibit phosphodiesterase-5, which is present in the smooth muscle cells of the vessels. These medications intercept the PDE-5 enzyme and subsequently prevent cGMP degradation. Interception of the NO/sGC/cGMP pathway and prevention of cGMP hydrolysis enhance the effect of cGMP in the body. These effects include lower intracellular calcium levels, vasodilation, increased penile blood flow, and [30, 43]. Currently, the United States Food and Drug Administration has approved four oral PDE-5 inhibitors: avanafil (Stendra), sildenafil (Viagra), tadalafil (Cialis), and vardenafil (Levitra), owing to their good therapeutic efficacy and manageable side effects [44, 45]. Other PDE-5 drugs that are commercially available without FDA approval include Lodenafil, Mirodenafil, and Udenafil [46]. From the biopharmaceutical perspective, sildenafil citrate was first introduced in 1998. It demonstrated its maximum plasma concentration time (Tmax) at 60 min on an empty stomach, followed by an action lasting 4–6 h. Subsequently, vardenafil and tadalafil hydrochloride were approved by the US FDA in 2003. Vardenafil hydrochloride exhibited a Tmax of 60 min on an empty stomach, followed by an effect lasting up to 7 h. However, Tadalafil experimentally showed a Tmax of 120 min regardless of an empty stomach, and a sustained effect of approximately 36 h post-administration. Furthermore, avanafil was approved in 2012, with a Tmax of approximately 30-45 min after administration on an empty stomach [30, 47]. Currently, the well-demonstrated indications of PDE-5 inhibitors include treatment of Erectile Dysfunction (ED) [48, 49], premature ejaculation associated with ED [50, 51], and penile rehabilitation after radical prostatectomy [52], idiopathic pulmonary hypertension [53, 54], angina [55, 56], high altitude illness [57, 58], and lower urinary tract infections [59, 60]. However, its therapeutic utility has also been extrapolated to investigate its utility in stroke [61–63], heart failure [64, 65], peripheral arterial disease (PAD) [53, 66, 67], and diabetic nephropathy [68–70].

Repurposing PDE-5 inhibitors in COVID-19

Owing to their high tolerance, safety profile, and ease of drug administration, oral PDE-5 drugs have become an appealing area for identifying new potential avenues for treatment other than their currently known indications [30, 71-74]. However, the high rates of attrition, associated costs, and regulatory rigmarole impede the discovery and development of novel therapeutic molecules that can be developed by modifying the chemical structures of the parent molecule. Thus, the reuse of old established and pre-approved drugs as a treatment modality for diseases has become an appealing proposition, primarily owing to its safety profile. This process of drug repositioning or drug repurposing could result in both the low cost of drug and formulation development, as well as a shorter timeframe for development [75], which is of paramount importance amid the COVID-19 pandemic. Various data-driven, in silico, and experimental approaches have been proposed for repurposing preapproved and/or commercially marketed drugs. Repurposing various drugs in the phosphodiesterase-5 inhibitor superclass could be a game-changer for alleviating symptoms and managing SARS-CoV-2 infections [76]. Multiple mechanisms have been studied to modulate the Angiotensin II (Ang II) and NO signaling pathways. Angiotensin II regulates the expression and synthesis of NO through its effect on NO synthase [30]. Subsequently, NO follows a negative feedback mechanism, thereby downregulating Ang II type I (AT1) receptor. Furthermore, there is an intertwined mechanism of Ang II and NO signaling [30, 77]. Thus, through the NO/sGC/cGMP pathway, PDE5 inhibitors are indicated for the alleviation of intrapulmonary vasoconstriction, which is the result of the downregulation of the AT1 receptor, caused by the binding of SARS-CoV-2-ACE2 to the bronchial epithelium, alveoli, and vascular endothelium [78, 79]. The clinical approval of nasal nitric oxide (NO) by the US FDA as an

intervention in treating interstitial pulmonary fibrosis linked to COVID-19, along with the profound expression of PDE5 in lung tissue, corroborated the speculation of the role of PDE5 in COVID-19 [80, 81]. Generally, it has been found that SARS-CoV-2 infected patients develop life-threatening illnesses that necessitate inpatient management, and in more severe cases, admission to critical care facilities. Frequent adverse reactions of SARS-CoV-2 infection include thromboembolism, which is mainly caused by excessive platelet aggregation after activation of the NO/cGMP/PDE5 pathway [82, 83]. A study by Mario et al. exhibited an exceedingly high amount of nitric oxide, after COVID-19 diagnosis, which ultimately induced the NO/cGMP pathway [84]. Thus, acute lung failure in most cases may not be driven by the onset of acute respiratory distress syndrome but instead by microvascular thrombotic events in the pulmonary vasculature, which appear to be in a vicious cycle. While the NO/cGMP pathway could ensure NO-associated tissue protection, its dysregulation via both the iNOS and eNOS pathways could result in a well-documented pro-inflammatory cascade, often as a consequence of oxidative stress [65]. Physiological activity of eNOS is driven in part by AMPK, a three-subunit serine-threonine protein kinase [85]. Although the inhibitory effect of AMPK on iNOS potentially reduces inflammation, the former plays a role in the generation of a lengthy antiinflammatory axis, AMPK/eNOS/NO/cGMP [80]. A recent study underscores the role of PDE-5 inhibitors, especially sildenafil, in downregulating inactive AMPK and iNOS in individuals diagnosed with cerebellar demyelination [86]. Furthermore, previous studies have shown that most coronaviruses produce polyproteins, and SARS-CoV-2 is no exception. These polyproteins are then processed by viral proteases to produce functional proteins, mainly 3CL^{pro}, which further aids viral replication [80]. This hypothesis was corroborated by a study in which patients diagnosed with SARS were treated with protease inhibitors in 2004. This study demonstrated that the use of protease inhibitors resulted in a much lower mortality rate (2.4 % compared to 28.8 %) [87]. This was further strengthened in a study conducted by Jin et al., who underscored the crystal structure of SARS-CoV-2 3CL^{pro} [88]. Another recent study reported the calculation of inhibitors for SARS-CoV-2 3CL^{pro} and spike protein as prospective therapies against COVID-19 infection. These calculations have been corroborated by the high docking scores (less than -8.5 kcal/mol) of various PDE5 inhibitors such as sildenafil, tadalafil, and vardenafil, which are potent inhibitors of the SARS-CoV-2 3CL pro protease [89, 90]. Several studies have underscored the various aspects of PDE5 inhibitors as potential treatment modalities in the fight against COVID-19. These studies were conducted as follows:

Pulmonary and systemic indications of PDE5 inhibitors

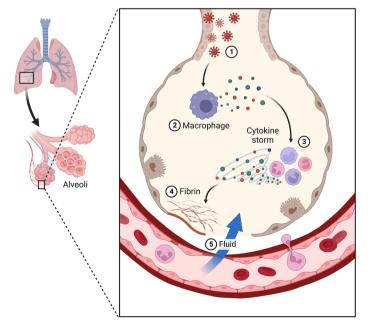
- (1) PDE5 inhibitors bring about the selective degradation of cGMP, which has anti-inflammatory activity [91]. It does so by increasing the expression of the anti-inflammatory cytokine, IL-10. This has led researchers to believe that PDE4 inhibitors can be used to regulate the pro-inflammatory and anti-inflammatory balance in the early stages of COVID-19 pneumonia patients [92]. PDE4 also has antiviral and bronchodilator effects, making it an effective choice for the treatment of inflammatory symptoms of COVID-19 [93].
- (2) Inhibition of PDE5 was also found to inhibit COVID-19 in the expression of angiotensin-converting enzyme-2 (ACE2). A decrease in ACE2 surface expression is observed in patients, which ultimately leads to vasoconstriction [94]. Therefore, oral drug therapy that improves NO activity in the intrapulmonary vasculature is a preferable treatment option for COVID-19 [95].
- (3) PDE5 inhibition aids in increasing cGMP, which prolongs its vasodilating effects in the pulmonary vasculature and significantly decreases the mean pulmonary vascular resistance [96, 97]. Since evidence has been found that COVID-19 infection may lead to pulmonary hypertension or right ventricular dysfunction, PDE5 inhibitors would be of most benefit to these patients, as modulation of NO availability has the potential to counteract the adverse effects of pulmonary microangiopathy [98].
- (4) In the lungs, PDE5 is predominantly expressed in vascular smooth muscles and airways, where it acts as a pulmonary vasodilator and inhibitor of vascular hypertrophy [99–101]. In addition to airway relaxation, it alleviates oxidative stress [102–104]. Several studies have concluded that PDE5 inhibitors can modulate alterations associated with ARDS in procoagulant and thrombotic events in the pulmonary arteries [105]. Reduction in acute hypoxic pulmonary vasoconstriction and hypertrophy of the right ventricle are observed as therapeutic benefits of sildenafil [106].
- (5) Sildenafil citrate is a PDE5 inhibitor that has recently been used in the treatment of pulmonary arterial hypertension and idiopathic pulmonary fibrosis, primarily to prevent or block the progression of fibrosis [107]. Tadalafil is a selective PDE5 inhibitor, with an IC50 of 5 nM [108]. Researchers have suggested that it may be useful in the fight against fibrosis and improve tissue fibrosis, and can be prescribed as a once-daily drug treatment for discharged patients with COVID-19 [109].

- (6) Sildenafil citrate is a well-known FDA-approved vaso-dilator [sildenafil citrate (Viagra)] and was shown to be useful in treating pulmonary arterial hypertension in 2005 at an oral dose of 5 or 20 mg three times a day, or 2.5 mg or 10 mg as an intravenous bolus [Sildenafil citrate (Revatio)]. It inhibits the breakdown of cGMP by binding to phosphodiesterase-binding sites and therefore influences platelet activation, T cell proliferation, and proinflammatory cytokine production. This enables it to exhibit anti-inflammatory, antioxidant, vasodilatory, and other abilities [110].
- (7) Sildenafil administration results in a significant reduction in fibrinogen, TNF-α, hsCRP, and hsIL-6, independent of their baseline values, and has been shown to have a favorable effect on the inflammatory activation of erectile dysfunction [111].
- (8) Inhibition of PDE5 with sildenafil significantly reduces cardiac dysfunction, ERS-induced apoptosis, and endoplasmic reticulum stress (ERS) in cardiomyocytes after ischemia or reperfusion injury by decreasing the expression of phosphoprotein kinases such as ER kinase [112].
- (9) Gudmundsdóttir et al. stated in their study that the use of sildenafil citrate aids NO-mediated inhibition of platelet aggregation by the cGMP pathway and that PDE5 inhibitors potentially possess antiplatelet activity [113].
- (10) Sildenafil was found to have an inhibitory effect on xanthine oxidase (XO), resulting in a decrease in the production of free oxygen radicals, which play an important role in vascular injuries [114]. The decrease in free radical formation was found to be the result of PDE5 inhibitors acting as antioxidants [115].
- (11) Several studies have suggested a role for cGMP pathogenesis in cell apoptosis and survival [116]. Puzzo et al. demonstrated the use of sildenafil citrate to inhibit the expression of apoptotic molecules [117]. Choi et al. demonstrated the anti-apoptotic effects of sildenafil by inducing iNOS and eNOS [118]. Therefore, the modulation of the expression of these factors leads to cell death or survival.
- (12) A recent study by Sarkar et al. suggests that sildenafil, which acts by inhibiting cyclic guanosine monophosphate (cGMP) breakdown by binding to the phosphodiesterase binding site, can aid vasodilation, an effect of nitric oxide that induces smooth muscle relaxation [119, 120]. A pilot study was to evaluate the effectiveness and acceptability of sildenafil tablets in their citric form at a dose of 0.1 g/day for 14 days to combat COVID-19 [121].
- (13) Sepsis-induced kidney and lung damage can be prevented or treated with PDE5 inhibitors because of their

ability to maintain an oxidant-antioxidant balance [122]. Sildenafil was also found to decrease markers of systemic inflammation and increase TNFR1 levels in septic mice [123].

DE GRUYTER

- (14) Experimental studies in animal models have also been reported to be successful in cases of direct and indirect lung injuries. Sildenafil has numerous therapeutic implications, such as suppression of pro-inflammatory mediator release, decreased cell leakage in the lungs [124], and improved cardiac output without compromising oxygenation status [125], etc. Sildenafil has also been proven to be an effective treatment for ALI caused due to scald burns in murine models, where it significantly reduced lung inflammation and oxidative stress and increased antioxidant capacity [126]. Using dual PDE inhibitors has been shown to be beneficial. The dual use of the PDE4/PDE5 inhibitor LASSBio596 maintained lung mechanics, TNF-α release, and increased collagen fiber content induced by intratracheal LPS [127].
- (15) The researchers opined that the thromboembolic complications observed in COVID-19 patients can be traced back to dysregulation of iNOS. The consequent inflammatory cascade can be eliminated by activation of eNOS aided by the prescription of PDE5 inhibitors, which enhance the AMPK/eNOS/NO/cGMP pathway, which helps thwart thromboembolism in patients [65, 128].
- (16) Recent studies have suggested that PDE5 inhibitors, especially vardenafil, help decrease the activation of transforming growth factor- β1 (TGF- β1) and aggregation of the extracellular matrix (ECM), thus inhibiting the progression into pulmonary fibrosis [129]. An in vivo study conducted by Bourne et al. on a bleomycin mouse model concluded that vardenafil substantially decreased ECM production. However, a significant synergistic therapeutic outcome was observed upon co-administration of nintedanib [130].
- (17) COVID-19 has been observed to activate the host inflammatory response, and this progressive endothelial thrombotic inflammatory syndrome ultimately leads to fatal complications such as pulmonary failure. PDE5 Inhibitors, such as tadalafil, are used as vasodilators and are administered once daily to improve tissue angiogenesis and prevent vascular endothelial sclerosis in patients [109]. Complications vary depending on the severity of infection, and given the pharmacology of PDE5I, these drugs are used as early complementary drugs in the treatment of COVID-19 [131]. The use of PDE5 Inhibitors has also been proposed to relieve acute respiratory distress syndrome and to reduce pulmonary hypertension as a synergistic treatment for COVID-19 [20].


- (18) Another study by Mokry et al. evaluated the effect of administering the PDE5 inhibitor tadalafil (1 mg/kg body weight) on experimentally induced allergic inflammation in guinea pig models. The study reported that tadalafil administration reduced specific airway resistance after histamine nebulization. The latter study also demonstrated a marked decrease in the in vitro airway reactivity to cumulative doses of acetylcholine and histamine in both tracheal and lung tissue strips [103]. This could prevent allergy and inflammation resulting from eosinophil infiltration, potentially leading to ARDS.
- (19) The selectivity of tadalafil to PDE5 or PDE6 [108] substantially improves vascularization in lung tissues. Furthermore, owing to the long-acting nature of the drug, the administration of tadalafil once a day could be a potential method for combating lung fibrosis [109].
- (20) Clinical trials are being conducted to test the efficacy of oral sildenafil in treating perfusion abnormalities in COVID-19 patients, as SARS-CoV-2 has been observed to cause hypoperfusion in the lung parenchyma, resulting in ventilation-perfusion mismatch. No statistical differences were found in oxygenation parameters in patients after being subjected to sildenafil treatment; however, patients were observed to have a reduced hospitalization duration and initiation of invasive mechanical ventilation (IMV). Therefore, sildenafil could potentially play major therapeutic roles in patients with specific perfusion patterns on sCTA [132].
- (21) Recent research suggests that selective and nonselective PDE inhibitors could prove to be a potential intervention in the treatment of acute respiratory distress syndrome (ARDS) [133], which primarily causes COVID-19 fatalities as illustrated in Figure 1. These PDE5 inhibitors facilitate contraction and remodeling of smooth muscles of the airways and vasculature. They also participate in platelet function, neuronal conduction, and inflammatory and oxidative stress [133].
- (22) Various PDE5 Inhibitors, such as sildenafil, tadalafil, and the nonselective inhibitor dipyridamole, can potentially be used as treatment options for chronic obstructive pulmonary disease and asthma [134]. The anti-inflammatory effect of PDE5 is mediated by inhibition of neutrophils and macrophages [135].
- (23)Dipyridamole, a non-specific PDE5 inhibitor, can assist in managing SARS-CoV-2 infection due to its antiplatelet action, which aids in the mitigation of ALI and expresses antiviral and anti-inflammatory abilities [136]. The relationship between the effect of PDE5 Inhibitors on platelets and that of PDE4I on lymphocytes helps prevent COVID-19-induced coagulopathy. DIP attenuates hypercoagulopathy-induced complications [137].

- The administration of antiplatelet agents such as DIP or aspirin in the early onset of COVID-19 may help reduce the severity of ARDS [138], and sildenafil possesses significant antiplatelet activity [82].
- (24) The enzyme hemeoxygenase-1 (HO-1) and its reaction products are anti-apoptotic molecules that protect against inflammation and apoptosis and possess anti-viral properties that aid in inhibiting viral growth in cells. HO-1 enzyme expression is induced by PDE5 inhibitors via the sGC-cGMP pathway [30].
- (25) According to a study conducted by Horn et al., patients suffering from PHT are at an increased risk of COVID complications such as cardiovascular and acute respiratory distress syndrome [ARDS] [139]. Another recent study suggested that renin-angiotensin system (RAS) functionality is reduced by PDE5 Inhibitors by restricting renal renin secretion [140]. It is involved in acute kidney injury (AKI) and acute liver injury (ALI) in COVID-induced ARDS due to high levels of angiotensin-2. NO suppresses ALI by reducing fibrin deposition and lung inflammation [141]. Therefore, PDE5 Inhibitors can be used as a preventive option for common AngII-induced COVID complications [142, 143].
- (26) According to multiple studies conducted in animal models, PDE5 Inhibitors can improve immunity in mice. These results further suggested that sildenafil has sexspecific immunoregulatory properties [144]. In a multiple sclerosis model of experimental autoimmune

- encephalomyelitis, it was found that the administration of sildenafil reduced the infiltration of cells in the white matter of the spinal cord of mice [145]. Another study concluded that sildenafil prolonged the survival of tumor-bearing mice by improving antitumor immunity [146, 147].
- (27) Recently, patients with COVID-19 have been reported to exhibit perfusion anomalies. A study initiated by Andre's Bello National University sought to test the effect of sildenafil on two relevant prognostic parameters: alveolo-arterial gradient and arterial oxygenation [Clinical Trial identifier: NCT04489446]. Another ongoing clinical trial funded by Tongji Hospital, China, intends to test the entry rate into the critical stage and the remission of the disease and to measure the time of entry into the critical stage by evaluating the therapeutic effects of sildenafil at a dose of 100 mg/day for 14 days [Clinical Trials Identifier: NCT04304313].

Clinical investigation on PDE5 inhibitors

Evidence and proposals for the repurposing of PDE5 inhibitors have driven researchers and institutions worldwide to invest in clinical trials to substantiate the utility of PDE5 inhibitors in combating the symptoms affiliated with

Cytokine Storm

- (1) SARS-CoV-2 infects the alveolar cells
- 2 Production of cytokines following virus recognition by immune cells, especially by macrophages
- (3) These cytokines start a vicious cycle of attracting immune cells, including white blood cells, ultimately triggering a cytokine storm
- The formation of fibrin precedes cellular damage of lung cells
- (5) The surrounding vessels rupture and extravasate blood and fluids that fill the lung cavities, ultimately leading to respiratory failure

Figure 1: The mechanism of progression of Acute Respiratory Distress Syndrome (ARDS) following SARS-CoV-2 infection.

COVID-19. Therapeutic effects of PDE5 inhibitors in patients suffering from underlying conditions such as diabetes were first observed in a wide scope study, DEDALO, which is the abbreviation of "silDEnafil administration in DiAbetic and dysmetaboLic patients with COVID-19". This study systematically reviews the role of the NO/cGMP/PDE5 pathway in COVID-19 and concludes that sildenafil may be useful in counteracting vascular damage in lung tissue and preventing thromboembolism [79]. The DEDALO project is being conducted as a phase-3 randomized controlled trial, in which diabetic and dysmetabolic men infected with mild to severe COVID-19 will be subjected to sildenafil citrate 60 mg for 8 weeks. This trial aimed to test the effects of oral sildenafil on the disease remission rate. Strong evidence has shown that PDE5 inhibitors can help ease the harmful after-effects of over-stimulating the immune system. Given the positive results of various ongoing clinical trials, PDE5 inhibitors can be a valuable resource for combating COVID-19, given their easy availability and low cost [79]. The study reported that sildenafil administration impeded AT-1 down-regulation, while simultaneously down-regulating the production of pro-inflammatory chemokines from monocytes. Subsequently, this reduces the chances of pulmonary tissue damage, further inhibiting the transformation of endothelial cells into their mesenchymal counterparts. This ultimately prevents thromboembolism from developing and progressing in COVID-19 patients [79]. A multitude of additional clinical trials are also underway to investigate the effectiveness of PDE5 inhibitors in reducing COVID-19-related symptoms. These clinical trials are summarized in Table 1 (obtained from the data available on clinicaltrials.gov).

Conclusion and outlook

Since its first reports, several medications, vaccines, and therapies have been indicated for the treatment and prevention of SARS-CoV-2 infection. Despite the publication of numerous preclinical studies indicating the efficacy of various drugs in alleviating the symptoms associated with COVID-19 infection, the current clinical armamentarium available to physicians in a real-world setting is sheerly limited to a handful of drugs. This is mainly because the proposed drugs and their respective formulations would require adequate real-world evidence that substantiates their affordability, efficacy, biopharmaceutics, and safety profile [30]. In such cases, the repurposing of drugs that have been pre-approved for other indications could be of paramount importance and would help in easing the burden

inflicted on the already overburdened healthcare system. PDE5 inhibitors such as sildenafil and vardenafil were initially indicated and validated for the treatment of pulmonary hypertension, cardiovascular anomalies, and later in the treatment of erectile dysfunction. However, their offlabel indications include anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, and are achieved by the interception of several metabolic and signaling pathways. Recent reports suggest the utility of PDE5 inhibitors in the suppression of Reactive Oxygen Species [148, 149], vielding a pleiotropic effect of the drug in the clinical manifestations associated with the SARS-CoV-2 infection [150] and beyond. These properties could corroborate their utility in the alleviation of symptoms associated with the SARS-CoV-2 infection. Since there are similarities in the clinical manifestations reported in the mild-to-moderate and moderate-to-severe cases of the SARS-CoV-2 infection as well as with different variants, including, BF.7 [151], BQ.1 [151], BO.1.1 [151], XBB.1.5 [151], and XBB.1.16 [152], these drugs could have a projected potential in these cases. While several in-vitro and in vivo studies corroborate the efficacy and potential of the subsets of this class in the interception of various signaling pathways involved in precipitating the symptoms of COVID-19, rigorous clinical studies must be conducted to validate their potential in such cases. Furthermore, these studies could be extended to include special populations, such as pediatric, geriatric, comorbid, and smokers [153]. Additionally, with the corroboration of these studies, the potential of these drugs could also be tested in other diseases which may present ARDS, including tomato flu or hand-foot and mouth disease [154], and diseases not presenting ARDS, such as Monkeypox or Mpox [155], and in other untoward future viral outbreaks [156]. Further research on the topic could include the optimization of the delivery vehicle and the administered dose. The delivery and loaded dose could be optimized by the development and characterization of nano-formulations [157], and the dose optimisation could be achieved by novel methods such as 3D printing of dosage forms and use of artificial intelligence and machine learning models [158], including pharmacometric modelling. Since several herbal supplements and phytoconstituents have been indicated for immunomodulation and the treatment of SARS-CoV-2 infection, further research could also employ the use of such simulation models and pharmacovigilance studies at the interface of modern with complementary and alternative medicine systems [159]. In conclusion, although there are various pipelines for emergency approval, the authors opine on the need for more studies, including preclinical and clinical trials, to substantiate their utility as well as shortcomings, if any.

 Table 1: Clinical trials investigating the efficacy of PDE5 Inhibitors against COVID-19.

۶. Š	Title	Status	Condition	Intervention	Characteristics	Population	Locations	NCT identifier
-	Sildenafil in COVID-19	Completed	- COVID-19 infection	- Drug: Sildenafil	A. Study type: Interventional - Allocation: Randomized - Intervention model: Parallel assignment - Masking: Quadruple (participant, care provider, investigator, outcomes assessor) - Primary purpose: Treatment B. Outcome measures: - Arterial oxygenation - Alveolo-arterial gradient - Intensive care unit admission - Non-Invasive mechanical ventilation nasal cannula - Invasive mechanical ventilation - Survival	A. Enrolment:	– Hospital naval almirante nef, viña Del Mar, valparaiso, Chile	NCT04489446
~	A pilot study of sildenafil Recruiting in COVID-19	Recruiting	- COVID-19	- Drug: Sildenafil citrate tablets	A. Study type: Interventional - Intervention assignment - Treatment B. Outcome measures: - Remission - Respiratory symptom remission - Recover - Rate of biochemical - Undetectable (continuous) - Time for hosnitalization	A. Enrolment: 10	 Department and institute of infectious disease, Wuhan, Hubei, China 	NCT04304313
м	The use of tadalafil in confirmed COVID-19 pneumonia	Withdrawn	- COVID-19 - SARS-CoV-2 - ARDS, human	– Drug: Tadalafil pills	A. Study type: Interventional	A. Enrolment: 0	N/A	NCT04946162

Research ethics: Not applicable. **Informed consent:** Not applicable.

Author contributions: Conceptualization, Methodology, Investigation, data collection and Writing-original manuscript; Rvan Varghese, Gargi Digholkar, Jainam Karsiya; Editing and proof reading, Jeenam Shah, Sahil Salvi, Dileep Kumar; Supervision: Rohit Sharma. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: The authors state no conflict of interest.

Research funding: None declared.

References

- 1. Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. Carbon nanotubes in COVID-19: a critical review and prospects. Colloid Interface Sci Commun 2022;46:100544.
- 2. Wang C, Wang Z, Wang G, Lau JYN, Zhang K, Li W. COVID-19 in early 2021: current status and looking forward. Signal Transduct Targeted Ther 2021;6:114.
- 3. Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). | Microbiol Biotechnol 2020;30: 313-24.
- 4. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus disease 2019-COVID-19. Clin Microbiol Rev 2020;33:e00028-20.
- 5. de Lamballerie X. Of chloroquine and COVID-19. Antivir Res 2020;177: 104762.
- 6. Elavarasi A, Prasad M, Seth T, Sahoo RK, Madan K, Nischal N, et al. Chloroguine and hydroxychloroguine for the treatment of COVID-19: a systematic review and meta-analysis. I Gen Intern Med 2020:35:1-7.
- 7. Ibáñez S, Martínez O, Valenzuela F, Silva F, Valenzuela O. Hydroxychloroquine and chloroquine in COVID-19: should they be used as standard therapy? Clin Rheumatol 2020;39:2461-5.
- 8. Meo SA, Klonoff DC, Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci 2020;24:4539-47.
- 9. Ghasemnejad-Berenji M, Pashapour S. Favipiravir and COVID-19: a simplified summary. Drug Res 2021;71:166-70.
- 10. Guan W, Lan W, Zhang J, Zhao S, Ou J, Wu X, et al. COVID-19: antiviral agents, antibody development and traditional Chinese medicine. Virol Sin 2020;1-14:685-98.
- 11. Hashemian SMR, Pourhanifeh MH, Hamblin MR, Shahrzad MK, Mirzaei H. RdRp inhibitors and COVID-19: is molnupiravir a good option? Biomed Pharmacother 2022:146:112517.
- 12. Adams KK, Baker WL, Sobieraj DM. <? covid19?> myth busters: dietary supplements and COVID-19. Ann Pharmacother 2020;54:820–6.
- 13. Bae M, Kim H. The role of vitamin C, vitamin D, and selenium in immune system against COVID-19. Molecules 2020;25:5346.
- 14. Mercola J, Grant WB, Wagner CL. Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients 2020;12:3361.
- 15. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 2020;11:570122.

- 16. Halpin DMG, Singh D, Hadfield RM. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur Respir J 2020;55:2001009.
- 17. Lipworth B, Kuo CR, Lipworth S, Chan R. Inhaled corticosteroids and COVID-19. Am J Respir Crit Care Med 2020;202:899-900.
- 18. Matthay MA, Wick KD. Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. | Clin Invest 2020;130:6218-21.
- 19. Prescott HC, Rice TW, Corticosteroids in COVID-19 ARDS: evidence and hope during the pandemic. JAMA 2020;324:1292-5.
- 20. Reinert JP, Reinert NJ. The role of phosphodiesterase-5 inhibitors in COVID-19: an exploration of literature from similar pathologies. J Intensive Care Med 2021;36:3-8.
- 21. Salinas M, Salinas R. Corticosteroids treatment for COVID-19. Rev Med Chile 2020;148:571-2.
- 22. Rojas M. Rodríguez Y. Monsalve DM. Acosta-Ampudia Y. Camacho B. Gallo JE, et al. Convalescent plasma in Covid-19: possible mechanisms of action. Autoimmun Rev 2020;19:102554.
- 23. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020;117:9490-6.
- 24. Altuntas F, Ata N, Yigenoglu TN, Bascı S, Dal MS, Korkmaz S, et al. Convalescent plasma therapy in patients with COVID-19. Transfus Apher Sci 2021;60:102955.
- 25. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398-400.
- 26. Wood EM, Estcourt LJ, McQuilten ZK. How should we use convalescent plasma therapies for the management of COVID-19? Blood. J Am Soc Hematol 2021;137:1573-81.
- 27. Brown BL, McCullough J. Treatment for emerging viruses: convalescent plasma and COVID-19. Transfus Apher Sci 2020;59: 102790.
- 28. Ahsan W, Javed S, Al Bratty M, Alhazmi HA, Najmi A. Treatment of SARS-CoV-2: how far have we reached? Drug Discov Ther 2020;14:
- 29. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 2020;395:497-506.
- 30. Mostafa T. Could oral phosphodiesterase 5 inhibitors have a potential adjuvant role in combating COVID-19 infection? Sex Med Rev 2021;9:
- 31. Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. Carbon nanotubes in COVID-19: a critical review and prospects. Colloids Interface Sci Commun 2022;46:100544.
- 32. Joost W, Rhodes WA, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology transmission diagnosis and treatment of coronavirus disease 2019 (COVID-19). AMA 2020;324:782-93.
- 33. Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill 2020;25: 2000257.
- 34. Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5:667-78.
- 35. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020;7:
- 36. Chen YT, Shao SC, Hsu CK, Wu IW, Hung MJ, Chen YC. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care 2020;24:1-4.

- Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. The Am J Emerg Med 2020;38:1504–7.
- Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683–90.
- Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemostasis 2020;18: 1995–2002.
- Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Trav Med Infect Dis 2020;34:101623.
- 41. Akhvlediani ND, Matyukhov IP. Current role of sildenafil in the management of erectile dysfunction. Urologiia 2018;142–6. https://doi.org/10.18565/urology.2018.2.142-146.
- Hassan A, El-Hadidy M, El-Deeck BS, Mostafa T. Couple satisfaction to different therapeutic modalities for organic erectile dysfunction. J Sex Med 2008;5:2381–91.
- Goldstein I, Burnett AL, Rosen RC, Park PW, Stecher VJ. The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev 2019;7:115–28.
- Goldstein I, Tseng LJ, Creanga D, Stecher V, Kaminetsky JC. Efficacy and safety of sildenafil by age in men with erectile dysfunction. J Sex Med 2016:13:852–9.
- Yafi FA, Sharlip ID, Becher EF. Update on the safety of phosphodiesterase type 5 inhibitors for the treatment of erectile dysfunction. Sex Med Rev 2018;6:242–52.
- Dhaliwal A, Gupta M. PDE5 inhibitors. Treasure Island, FL: StatPearls; 2021.
- 47. Andersson K. PDE5 inhibitors–pharmacology and clinical applications 20 years after sildenafil discovery. Br J Pharmacol 2018;175:2554–65.
- 48. Koon CS, Sidi H, Kumar J, Xi OW, Das S, Hatta MH, et al. The phosphodiasterase 5-inhibitors (PDE-5i) for erectile dysfunction (ED): a therapeutic challenge for psychiatrists. Curr Drug Target 2018;19: 1366–77
- Porst H, Hell-Momeni K, Büttner H. Chronic PDE-5 inhibition in patients with erectile dysfunction—a treatment approach using Tadalafil once-daily. Expet Opin Pharmacother 2012;13:1481–94.
- Bai Y, Pu C, Han P, Li J, Yuan H, Tang Y, et al. Selective serotonin reuptake inhibitors plus phosphodiesterase-5 inhibitors for premature ejaculation: a systematic review and meta-analysis. Urology 2015;86:758–65.
- 51. Burton TD, Liday C. The comparison of combination SSRI and PDE-5 inhibitor therapy to SSRI monotherapy in men with premature ejaculation. Ann Pharmacother 2011;45:1000–4.
- 52. Deng H, Liu D, Mao X, Lan X, Liu H, Li G. Phosphodiesterase-5 inhibitors and vacuum erection device for penile rehabilitation after laparoscopic nerve-preserving radical proctectomy for rectal cancer: a prospective controlled trial. Am J Men's Health 2017;11:641–6.
- 53. Montani D, Chaumais MC, Guignabert C, Günther S, Girerd B, Jaïs X, et al. Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 2014;141:172–91.
- 54. Zimmermann GS, von Wulffen W, Huppmann P, Meis T, Ihle F, Geiseler J, et al. Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE-5 inhibitors. Respirology 2014;19:700–6.
- Ala M, Mohammad Jafari R, Dehpour AR. Sildenafil beyond erectile dysfunction and pulmonary arterial hypertension: thinking about new indications. Fundam Clin Pharmacol 2021;35:235–59.

- Tzoumas N, Farrah TE, Dhaun N, Webb DJ. Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease. Br J Pharmacol 2020;177:5467–88.
- Bates MG, Thompson AA, Baillie JK. Phosphodiesterase type 5 inhibitors in the treatment and prevention of high altitude pulmonary edema. Curr Opin Invest Drugs 2007;8:226–31.
- Xu Y, Liu Y, Liu J, Qian G. Meta-analysis of clinical efficacy of sildenafil, a phosphodiesterase type-5 inhibitor on high altitude hypoxia and its complications. High Alt Med Biol 2014;15:46–51.
- Lin CS, Albersen M, Xin Z, Namiki M, Muller D, Lue TF.
 Phosphodiesterase-5 expression and function in the lower urinary tract: a critical review. Urology 2013;81:480–7.
- Lythgoe C, McVary KT. The use of PDE-5 inhibitors in the treatment of lower urinary tract symptoms due to benign prostatic hyperplasia. Curr Urol Rep 2013;14:585–94.
- Munshi A, Das S. Genetic understanding of stroke treatment: potential role for phosphodiesterase inhibitors. Phosphodiesterases CNS Func Dis 2017:17:445–61.
- Pauls MMH, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH, et al. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: a systematic review. J Cerebr Blood Flow Metabol 2018;38:189–203.
- Zhang RL, Zhang ZG, Chopp M. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expet Opin Invest Drugs 2013;22:843–51.
- Al-Ameri H, Kloner RA. Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors. Int J Impot Res 2009;21: 149–57
- Emdin M, Aimo A, Castiglione V, Vergaro G, Georgiopoulos G, Saccaro LF, et al. Targeting cyclic guanosine monophosphate to treat heart failure: JACC review topic of the week. J Am Coll Cardiol 2020;76: 1795–807.
- Bhogal S, Khraisha O, Al Madani M, Treece J, Baumrucker SJ, Paul TK. Sildenafil for pulmonary arterial hypertension. Am J Therapeut 2019; 26:e520–6.
- Montani D, Chaumais MC, Savale L, Natali D, Price LC, Jaïs X, et al. Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension. Adv Ther 2009;26:813–25.
- 68. Fang L, Radovits T, Szabó G, Mózes MM, Rosivall L, Kökény G. Selective phosphodiesterase-5 (PDE-5) inhibitor vardenafil ameliorates renal damage in type 1 diabetic rats by restoring cyclic 3', 5' guanosine monophosphate (cGMP) level in podocytes. Nephrol Dial Transplant 2013;28:1751–61.
- 69. Lau DH, Mikhailidis DP, Thompson CS. The effect of vardenafil (a PDE type 5 inhibitor) on renal function in the diabetic rabbit: a pilot study. Vivo 2007;21:851–4.
- Thompson CS. Diabetic nephropathy: treatment with phosphodiesterase type 5 inhibitors. World J Diabetes 2013;4:124.
- Hong JH, Kwon YS, Kim IY. Pharmacodynamics, pharmacokinetics and clinical efficacy of phosphodiesterase-5 inhibitors. Expet Opin Drug Metabol Toxicol 2017;13:183–92.
- Mostafa T. Oral phosphodiesterase type 5 inhibitors: nonerectogenic beneficial uses. J Sex Med 2008;5:2502–18.
- Mostafa T. Useful implications of low-dose long-term use of PDE-5 inhibitors. Sex Med Rev 2016;4:270–84.
- 74. Mostafa T. Non-sexual implications of phosphodiesterase type 5 inhibitors. Sex Med Rev 2017;5:170–99.
- Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019;18:41–58.

- 76. Vesga LC, Ruiz-Hernández CA, Alvarez-Jacome JJ, Dugue JE, Rincon-Orozco B, Mendez-Sanchez SC. Repurposing of four drugs as anti-SARS-CoV-2 agents and their interactions with protein targets. Sci Pharm 2022;90:24.
- 77. Yan C, Kim D, Aizawa T, Berk BC. Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol 2003;23:26-36.
- 78. Busse LW, Chow IH, McCurdy MT, Khanna AK, COVID-19 and the RAAS —a potential role for angiotensin II? Crit Care 2020;24:1-4.
- 79. Isidori AM, Giannetta E, Pofi R, Venneri MA, Gianfrilli D, Campolo F, et al. Targeting the NO-cGMP-PDE5 pathway in COVID-19 infection. The DEDALO project. Andrology 2021;9:33-8.
- 80. Shirvaliloo M. Targeting the SARS-CoV-2 3CLpro and NO/cGMP/PDE5 pathway in COVID-19: a commentary on PDE5 inhibitors. Future Cardiol 2021:17:765-8.
- 81. Wu R, Wang L, Kuo HCD, Shannar A, Peter R, Chou PJ, et al. An update on current therapeutic drugs treating COVID-19. Curr Pharmacol Rep 2020:6:56-70.
- 82. Yang HM, Jin S, Jang H, Kim JJY, Lee JE, Kim JJY, et al. Sildenafil reduces neointimal hyperplasia after angioplasty and inhibits platelet aggregation via activation of cGMP-dependent protein kinase. Sci Rep 2019;9:1-12.
- 83. Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022;7:26.
- 84. Mario L, Roberto M, Marta L, Teresa CM, Laura M. Hypothesis of COVID-19 therapy with sildenafil. Int J Prev Med 2020;11:11.
- 85. Gong H, Tai H, Huang N, Xiao P, Mo C, Wang X, et al. Nrf2-SHP cascademediated STAT3 inactivation contributes to AMPK-driven protection against endotoxic inflammation. Front Immunol 2020;11:414.
- 86. Nunes AKS, Raposo C, Rocha SWS, de Sousa Barbosa KP, de Almeida Luna RL, da Cruz-Hoefling MA, et al. Involvement of AMPK, IKβα-NFκB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Res 2015;1627:119-33.
- 87. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004;59:252-6.
- 88. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020;582:289–93.
- 89. Qiao Z, Zhang H, Ji HF, Chen Q. Computational view toward the inhibition of SARS-CoV-2 spike glycoprotein and the 3CL protease. Computation 2020;8:53.
- 90. Alexandrov V, Kirpich A, Kantidze O, Gankin Y. A multi-reference polyconformational method for in silico design, optimization, and repositioning of pharmaceutical compounds illustrated for selected SARS-CoV-2 ligands. PeerJ 2022;10:e14252.
- 91. Rapôso C, de Almeida Luna RL, Nunes AKS, Thomé R, Peixoto CA. Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Res Bull 2014;104:60-73.
- 92. Dalamaga M, Karampela I, Mantzoros CS. Commentary: phosphodiesterase 4 inhibitors as potential adjunct treatment targeting the cytokine storm in COVID-19. Metabolism 2020;109: 154282.
- 93. Seirafianpour F, Mozafarpoor S, Fattahi N, Sadeghzadeh-Bazargan A, Hanifiha M, Goodarzi A. Treatment of COVID-19 with pentoxifylline: could it be a potential adjuvant therapy? Dermatol Ther 2020;33:
- 94. Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, et al. Practical recommendations for the management

- of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020:8:546-50.
- 95. Ghosh A, Joseph B, Anil S. Nitric oxide in the management of respiratory consequences in COVID-19: a scoping review of a different treatment approach. Cureus 2022;14:e23852.
- 96. Barnett CF, Machado RF. Sildenafil in the treatment of pulmonary hypertension. Vasc Health Risk Manag 2006;2:411-22.
- 97. McFadyen C, Garfield B, Mancio J, Ridge CA, Semple T, Keeling A, et al. Use of sildenafil in patients with severe COVID-19 pneumonitis. Br J Anaesth 2022;129:e18-21.
- 98. McGonagle D, O'Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol 2020;2:e437-45.
- 99. Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 2006:5:689-702.
- 100. Sebkhi A, Strange JW, Phillips SC, Wharton J, Wilkins MR. Phosphodiesterase type 5 as a target for the treatment of hypoxiainduced pulmonary hypertension. Circulation 2003;107:3230-5.
- 101. Kukreja RC, Wang R, Koka S, Das A, Samidurai A, Xi L. Treating diabetes with combination of phosphodiesterase 5 inhibitors and hydroxychloroquine—a possible prevention strategy for COVID-19? Mol Cell Biochem 2022;478:679-96.
- 102. Laxmi V, Gupta R, Bhattacharya SK, Ray A, Gulati K. Inhibitory effects of sildenafil and tadalafil on inflammation, oxidative stress and nitrosative stress in animal model of bronchial asthma. Pharmacol Rep 2019;71:517-21.
- 103. Mokry J, Urbanova A, Medvedova I, Kertys M, Mikolka P, Kosutova P, et al. Effects of tadalafil (PDE5 inhibitor) and roflumilast (PDE4 inhibitor) on airway reactivity and markers of inflammation in ovalbumin-induced airway hyperresponsiveness in Guinea pigs. J Physiol Pharmacol 2017;68:721-30.
- 104. Urbanova A, Medvedova I, Kertys M, Mikolka P, Kosutova P, Mokra D, et al. Dose dependent effects of tadalafil and roflumilast on ovalbumin-induced airway hyperresponsiveness in Guinea pigs. Exp Lung Res 2017:43:407-16.
- 105. Blanch L, Albaiceta GM. Sildenafil for pulmonary hypertension in ARDS: a new pleasant effect? Intensive Care Med 2010;36:729-31.
- 106. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 2001;104:424-8.
- 107. Kifle ZD, Ayele AG, Enyew EF. Drug repurposing approach, potential drugs, and novel drug targets for COVID-19 treatment. J Environ Public Health 2021;2021:2021-11.
- 108. Ahmed NS. Tadalafil: 15 years' journey in male erectile dysfunction and beyond. Drug Dev Res 2019;80:683-701.
- 109. Mondaini N. Phosphodiesterase type 5 inhibitors and COVID-19: are they useful in disease management? World J Mens Health 2020;38:
- 110. Kniotek M, Boguska A. Sildenafil can affect innate and adaptive immune system in both experimental animals and patients. J Immunol Res 2017;2017:1-8.
- Vlachopoulos C, Ioakeimidis N, Rokkas K, Angelis A, Terentes-Printzios D, Stefanadis C, et al. Acute effect of sildenafil on inflammatory markers/mediators in patients with vasculogenic erectile dysfunction. Int | Cardiol 2015;182:98-101.
- Gong W, Duan Q, Cai Z, Chen C, Ni L, Yan M, et al. Chronic inhibition of cGMP-specific phosphodiesterase 5 suppresses endoplasmic reticulum stress in heart failure. Br J Pharmacol 2013;170:1396-409.

- 113. Gudmundsdóttir II, McRobbie SI, Robinson SD, Newby DE, Megson IL. Sildenafil potentiates nitric oxide mediated inhibition of human platelet aggregation. Biochem Biophys Res Commun 2005; 337:382-5.
- 114. Taibi G, Carruba G, Miceli V, Cocciadiferro L, Cucchiara A, Nicotra CMA. Sildenafil protects epithelial cell through the inhibition of xanthine oxidase and the impairment of ROS production. Free Radic Res 2010; 44:232-9.
- 115. Perk H, Armagan A, Nazıroğlu M, Soyupek S, Hoscan MB, Sütcü R, et al. Sildenafil citrate as a phosphodiesterase inhibitor has an antioxidant effect in the blood of men. J Clin Pharm Therapeut 2008;33:635-40.
- 116. Wolter S, Dittmar F, Seifert R. cCMP and cUMP in apoptosis: concepts and methods. Non-canonical Cyclic Nucleotides 2017;238:25-47.
- 117. Puzzo D, Loreto C, Giunta S, Musumeci G, Frasca G, Podda MV, et al. Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice. Neurobiol Aging 2014;35:520-31.
- 118. Choi DE, Jeong JY, Lim BJ, Chung S, Chang YK, Lee SJ, et al. Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am J Physiol Ren Physiol 2009;297:F362-70.
- 119. Iordache AM, Docea AO, Buga AM, Zlatian O, Ciurea ME, Rogoveanu OC, et al. Sildenafil and tadalafil reduce the risk of contrast-induced nephropathy by modulating the oxidant/ antioxidant balance in a murine model. Food Chem Toxicol 2020;135: 111038.
- 120. Rogosnitzky M, Berkowitz E, Jadad AR. No time to waste: real-world repurposing of generic drugs as a multifaceted strategy against COVID-19. Jmirx Med 2020;1:e19583.
- 121. Sarkar C, Mondal M, Toregul Islam M, Martorell M, Docea AO, Maroyi A, et al. Potential therapeutic options for COVID-19: current status, challenges, and future perspectives. Front Pharmacol 2020;11: 1428.
- 122. Cadirci E, Halici Z, Odabasoglu F, Albayrak A, Karakus E, Unal D, et al. Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: a biochemical and histopathological study. Clin Exp Immunol 2011;166:
- 123. Deng M, Loughran PA, Zhang L, Scott MJ, Billiar TR. Shedding of the tumor necrosis factor (TNF) receptor from the surface of hepatocytes during sepsis limits inflammation through cGMP signaling. Sci Signal 2015:8:ra11-1.
- 124. Kosutova P, Mikolka P, Balentova S, Kolomaznik M, Adamkov M, Mokry J, et al. Effects of phosphodiesterase 5 inhibitor sildenafil on the respiratory parameters, inflammation and apoptosis in a saline lavage-induced model of acute lung injury. JPP 2018;5:15.
- 125. Shekerdemian LS, Ravn HB, Penny DJ. Intravenous sildenafil lowers pulmonary vascular resistance in a model of neonatal pulmonary hypertension. Am J Respir Crit Care Med 2002;165:1098-102.
- 126. Gokakin AK, Deveci K, Kurt A, Karakus BC, Duger C, Tuzcu M, et al. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: a biochemical and histopathological study. Burns 2013:39:1193-9
- 127. Rocco PRM, Momesso DP, Figueira RC, Ferreira HC, Cadete RA, Légora-Machado A, et al. Therapeutic potential of a new phosphodiesterase inhibitor in acute lung injury. Eur Respir J 2003;22:20-7.
- 128. Sarangi MK, Padhi S, Dheeman S, Karn SK, Patel LD, Yi DK, et al. Diagnosis, prevention, and treatment of coronavirus disease: a review. Expert Rev Anti Infect Ther 2022;20:243-66.
- 129. Barnes H, Brown Z, Burns A, Williams T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst Rev 2019;1:CD012621.

- 130. Bourne MH, Kottom TJ, Hebrink DM, Choudhury M, Leof EB, Limper AH. Vardenafil activity in lung fibrosis and in vitro synergy with nintedanib. Cells 2021;10:3502.
- 131. Dal Moro F, Livi U. Any possible role of phosphodiesterase type 5 inhibitors in the treatment of severe COVID19 infections? A lesson from urology. Clin Immunol 2020;214:108414.
- 132. Santamarina MG, Beddings I, Lomakin FM, Boisier Riscal D, Gutiérrez Claveria M. Vidal Marambio I. et al. Sildenafil for treating patients with COVID-19 and perfusion mismatch: a pilot randomized trial. Crit Care 2022;26:1-12.
- 133. Mokra D, Mokry J. Phosphodiesterase inhibitors in acute lung injury: what are the perspectives? Int | Mol Sci 2021;22:1929.
- 134. Ntontsi P, Detta A, Bakakos P, Loukides S, Hillas G. Experimental and investigational phosphodiesterase inhibitors in development for asthma. Expet Opin Invest Drugs 2019:28:261-6.
- 135. Toward TJ, Smith N, Broadley KJ. Effect of phosphodiesterase-5 inhibitor, sildenafil (Viagra), in animal models of airways disease. Am J Respir Crit Care Med 2004;169:227-34.
- 136. Tetsi L, Charles AL, Paradis S, Lejay A, Talha S, Geny B, et al. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions. Cell Mol Life Sci 2017;74:1883-93.
- 137. Cannegieter SC, Klok FA. COVID-19 associated coagulopathy and thromboembolic disease: commentary on an interim expert guidance. Res Pract Thromb Haemost 2020;4:439-45.
- 138. Luo W-R, Yu H, Gou J-Z, Li X-X, Sun Y, Li J-X, et al. Histopathologic findings in the explant lungs of a patient with COVID-19 treated with bilateral orthotopic lung transplant. Transplantation 2020;104:
- 139. Horn E, Chakinala MM, Oudiz R, Joseloff E, Rosenzweig EB. Author rebuttal to response regarding "Letter to the Editor regarding 'Could pulmonary arterial hypertension patients be at lower risk from severe COVID-19?" Pulm Circ 2020;10:2045894020936663.
- 140. Mergia E, Stegbauer J. Role of phosphodiesterase 5 and cyclic GMP in hypertension. Curr Hypertens Rep 2016;18:39.
- 141. Jankov RP, Daniel KL, Iny S, Kantores C, Ivanovska J, Fadel NB, et al. Sodium nitrite augments lung S-nitrosylation and reverses chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Lung Cell Mol Physiol 2018;315:L742-51.
- 142. Al-Kuraishy HM, Al-Gareeb AI. From SARS-CoV to nCoV-2019: ruction and argument. Arch Clin Infect Dis 2020;15:2345-641.
- 143. Thieme M, Sivritas SH, Mergia E, Potthoff SA, Yang G, Hering L, et al. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction. Am J Physiol Ren Physiol 2017;312:F474-81.
- 144. Karakhanova S, Yang Y, Link J, Soltek S, von Ahn K, Umansky V, et al. Gender-specific immunological effects of the phosphodiesterase 5 inhibitor sildenafil in healthy mice. Mol Immunol 2013;56:649-59.
- 145. Pifarré P, Gutierrez-Mecinas M, Prado J, Usero L, Roura-Mir C, Giralt M, et al. Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions. Exp Neurol 2014;251: 58-71.
- 146. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 2011;108:17111-6.
- 147. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006;203:2691-702.

- 148. Rawat SG, Tiwari RK, Jaiswara PK, Gupta VK, Sonker P, Vishvakarma NK, et al. Phosphodiesterase 5 inhibitor sildenafil potentiates the antitumor activity of cisplatin by ROS-mediated apoptosis: a role of deregulated glucose metabolism. Apoptosis 2022;27:606-18.
- 149. Farrow KN, Wedgwood S, Lee KJ, Czech L, Gugino SF, Lakshminrusimha S, et al. Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir Physiol Neurobiol 2010;174:272-81.
- 150. Oswal M, Varghese R, Zagade T, Dhatrak C, Sharma R, Kumar D. Dietary supplements and medicinal plants in urolithiasis: diet, prevention, and cure. J Pharm Pharmacol 2023;75:719-45.
- 151. Varghese R, Kumar D, Sharma R. Global threat from novel SARS-CoV-2 variants, BF.7, XBB.1.5, BQ.1, and BQ.1.1: variants of concern? Hum Cell 2023;36:1218-21.
- 152. Varghese R, Pai S, Kumar D, Sharma R. SARS-CoV-2 XBB.1.16 variant: India in focus? | Med Virol 2023;95:e28829.
- 153. Varghese R, Karsiya J, Deshpande P. Hookah smoking and COVID-19 in India: fan the flames. MGM J Med Sci 2021;8:459.

- 154. Varghese R, Kumar D, Sharma R. Tomato Flu in India: a confluence of resurgence and mutation? Int J Surg 2022;108:106991.
- 155. Varghese R, Patel P, Kumar D, Sharma R. Monkeypox and drug repurposing: seven potential antivirals to combat the viral disease. Rev Environ Health 2023. https://doi.org/10.1515/reveh-2023-0001.
- 156. Varghese R, Patel P, Kumar D, Sharma R. Climate change and glacier melting: risks for unusual outbreaks? J Trav Med 2023;30:taad015.
- 157. Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: a review. Colloids Interface Sci Commun 2022;46:
- 158. Varghese R, Deshpande A, Digholkar G, Kumar D. Deciphering the role of artificial intelligence in health care, learning and development. In: The adoption and effect of artificial intelligence on human resources management, part B. UK: Emerald Publishing House; 2023.
- 159. Namdeo AG, Varghese R, Kapase Y, Kumbhar P. Integrative medicine in the treatment of COVID-19: an Indian perspective. Curr Tradit Med 2022;9:44-83.