Home On the relationship between local affinities of a Boolean function and some types of its degeneracy
Article
Licensed
Unlicensed Requires Authentication

On the relationship between local affinities of a Boolean function and some types of its degeneracy

  • Aleksandra A. Babueva EMAIL logo , Oleg A. Logachev and Valerii V. Yashchenko
Published/Copyright: January 10, 2024

Abstract

The paper studies the relationships between local affinities of a Boolean function and some notions of its degeneracy (differential degeneracy, algebraic degeneracy, affine splittability). New relations connecting the parameters of local affinities and degeneracies are obtained. Relationships between some types of degeneracy of Boolean functions are found.


Originally published in Diskretnaya Matematika (2022) 34, №2, 7–25 (in Russian).


References

[1] Alekseev E.K., “On some measures of nonlinearity for Boolean functions”, Prikl. Diskr.Matem., 2:12 (2011), 5-16 (in Russian).10.17223/20710410/12/1Search in Google Scholar

[2] Alekseev E.K., Kuschinskaya L.A., “Generalization of one method of a filter generator key recovery”, Discrete Math. Appl., 29:2 (2019), 69-87.10.1515/dma-2019-0008Search in Google Scholar

[3] Alferov A.P., Zubov A.Yu., Kuzmin A.S., Cheremushkin A.V., Fundamentals of Cryptography, M.: Gelios, 2001 (in Russian), 480 pp.Search in Google Scholar

[4] Gorshkov S.P., Tarasov A.V., “Maximal groups of invariant transformations of multiaffine, bijunctive, weakly positive, and weakly negative Boolean functions”, Discrete Math. Appl., 19:3 (2009), 283-291.10.1515/DMA.2009.017Search in Google Scholar

[5] Kolomeets N.A., “An upper bound for the number of bent functions at the distance 2k from an arbitrary bent function in 2k variables”, Prikladnaya Diskretnaya Matematika, 2014, №3, 28-39 (in Russian).10.17223/20710410/25/3Search in Google Scholar

[6] Logachev O.A., Salnikov A.A., Smyshlyaev S.V., Yashchenko V.V., Boolean functions in coding theory and cryptology, M.: LENAND, 2015 (in Russian), 573 pp.Search in Google Scholar

[7] Logachev O.A., Salnikov A.A., Yashchenko V.V., “Nondegenerate normal forms of Boolean functions”, Doklady Mathematics, 62:1 (2000), 35-38.Search in Google Scholar

[8] Logachev O.A., Salnikov A.A., Yashchenko V.V., “Some characteristics of “nonlinearity” of group mappings”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001), 40-54.Search in Google Scholar

[9] Logachev O.A., Fedorov S.N., Yashchenko V.V., “On some invariants under the action of an extension of GA(n, 2) on the set of Boolean functions”, Discrete Math. Appl., 32:3 (2022), 177-192.10.1515/dma-2022-0016Search in Google Scholar

[10] Bernasconi A., Codenotti B., “Spectral analysis of Boolean functions as a graph eigenvalue problem”, IEEE Trans. Comput., 48 3 (1999), 345-351.10.1109/12.755000Search in Google Scholar

[11] Boyar J., Find M.G., “Constructive relationships between algebraic thickness and normality”, Int. Symp. Fundam. Comput. Theory, Lect. Notes Comput. Sci., 9210,2015,106-117.10.1007/978-3-319-22177-9_9Search in Google Scholar

[12] Boyar J., FindM.G., Peralta R., “On various nonlinearity measures for Boolean functions”, Cryptogr. and Commun., 8:3 (2016), 313-330.10.1007/s12095-015-0150-9Search in Google Scholar PubMed PubMed Central

[13] Canteaut A., Daum M., Dobbertin H., Leandr G., “Finding normal bent-functions”, Discr. Appl. Math., 154 (2006), 202-218.10.1016/j.dam.2005.03.027Search in Google Scholar

[14] Carlet C., “On the degree, nonlinearity, algebraic thickness, and nonnormality of Boolean functions, with developments on symmetric functions”, IEEE Trans. Inf. Theory, 50 9 (2004), 2178-2185.10.1109/TIT.2004.833361Search in Google Scholar

[15] Carlet C., Charpin P., “Cubic Boolean functions with highest resiliency”, IEEE Trans. Inf. Theory, 512 (2005), 562-571.10.1109/TIT.2004.840902Search in Google Scholar

[16] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, 2020, 574 pp.10.1017/9781108606806Search in Google Scholar

[17] Dawson E., Wu C. K., “Construction of correlation immune Boolean functions”, Australasian J. Combinatorics, 21 (1997), 170-180.10.1007/BFb0028473Search in Google Scholar

[18] Dickson L. E., Linear groups, Leipzig: B. G. Teubner, 1901.Search in Google Scholar

[19] Lechner R. J., “Harmonic analysis of switching functions”, Developments in switching theory, Academic Press, 1971,121-228.10.1016/B978-0-12-509850-2.50010-5Search in Google Scholar

[20] Matsui M., “Linear cryptanalysis method for DES cipher”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765,1993,386-397.10.1007/3-540-48285-7_33Search in Google Scholar

[21] Rothaus O. S., “On bent functions”, J. Comb. Theory, Ser. A., 20 3 (1976), 300-305.10.1016/0097-3165(76)90024-8Search in Google Scholar

[22] Sanyal S., “Sub-linear upper bounds on Fourier dimension of Boolean functions in terms of Fourier sparsity”, arXiv:14073500, 2014.10.1007/978-3-662-47672-7_84Search in Google Scholar

[23] Shannon C. E., “The synthesis of two-terminal switching circuits”, The Bell System Technical J., 281 (1949), 59-98.10.1002/j.1538-7305.1949.tb03624.xSearch in Google Scholar

[24] Siegenthaler T., “Decrypting a class of stream ciphers using ciphertext only”, IEEE Trans. on Computers, 34:1 (1985), 81-85.10.1109/TC.1985.1676518Search in Google Scholar

Received: 2022-04-01
Published Online: 2024-01-10
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dma-2023-0031/html?lang=en
Scroll to top button