Startseite Alphabetic points in compositions and words
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Alphabetic points in compositions and words

  • Margaret Archibald EMAIL logo , Aubrey Blecher und Arnold Knopfmacher
Veröffentlicht/Copyright: 27. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We use generating functions to account for alphabetic points (or the lack thereof) in compositions and words. An alphabetic point is a value j such that all the values to its left are not larger than j and all the values to its right are not smaller than j. We also provide the asymptotics for compositions and words which have no alphabetic points, as the size tends to infinity. This is achieved by the construction of upper and lower bounds which converge to each other, and in the latter case by probabilistic arguments.


Originally published in Diskretnaya Matematika (2021) 33,№2, 20–30 (in Russian).



Supported by the National Research Foundation under grant number 89147

Supported by the National Research Foundation under grant numbers BLEC 018 and 81021 respectively


Funding statement: This material is based uponwork supported by the National Research Foundation under grant numbers 89147, BLEC 018 and 81021 respectively

Acknowledgment

The authors would like to thank the reviewer for a careful reading of the manuscript and a simplification of the improved upper bound in Subsection 2.4.

References

[1] M. Archibald, A. Blecher, A. Knopfmacher, “Fixed points in compositions, words”, J. Integer Seq., 23 (2020), article 20.11.1.Suche in Google Scholar

[2] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2008, http://algo.inria.fr/flajolet/Publications/books.html10.1017/CBO9780511801655Suche in Google Scholar

[3] N. Glick, “Breaking records, breaking boards”, Amer. Math. Monthly, 85 (1978), 2–26.10.1080/00029890.1978.11994501Suche in Google Scholar

[4] X. Gourdon, H. Prodinger, “A generating function approach to random subgraphs of the n-cycle”, Discr.Math., 1997,№169, 227–232.10.1016/0012-365X(95)00164-RSuche in Google Scholar

[5] S. Heubach, T. Mansour, Combinatorics of compositions and words, CRC press, Taylor Francis Group, 2010.10.1201/9781420072686Suche in Google Scholar

[6] D. E. Knuth, “The average time for carry propagation”, Indag. Math., 40 (1978), 238–242.10.1016/1385-7258(78)90041-0Suche in Google Scholar

[7] I. Kortchemski, “Asymptotic behavior of permutation records”, J. Comb. Theory A., 116:6 (2009), 1154–1166.10.1016/j.jcta.2009.03.003Suche in Google Scholar

[8] A.N. Myers, H.S. Wilf, “Left-to-right maxima in words, multiset permutations”, Isr. J. Math., 166 (2008), 167–183, https://doi.org/10.1007/s11856-008-1026-x.10.1007/s11856-008-1026-xSuche in Google Scholar

[9] H. Prodinger, “Combinatorics of geometrically distributed random variables: Left-to-right maxima”, Discr.Math., 153 (1996), 253–270.10.1016/0012-365X(95)00141-ISuche in Google Scholar

[10] H. Prodinger, “Records in geometrically distributed words: sum of positions”, Appl. Anal. Discr. Math., 2 (2008), 234–240.10.2298/AADM0802234PSuche in Google Scholar

[11] A. Rényi, “Théorie des éléments saillants d’une suite d’observations”, Ann. Fac. Sci. Univ. Clermont-Ferrand, 8 (1962), 7–13.Suche in Google Scholar

[12] N. Sloane, The On-line Encyclopedia of Integer Sequences, https://oeis.org/Suche in Google Scholar

[13] Stanley, R. P., Enumerative Combinatorics, Volume 1, Cambridge University Press, 1999.10.1017/CBO9780511609589Suche in Google Scholar

Received: 2020-06-04
Published Online: 2021-08-27
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2021-0021/html?lang=de
Button zum nach oben scrollen