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Abstract: The paper is concerned with n-place Boolean functions not admitting implicents of k variables,
1 ≤ k < n. Estimates for the minimal possible weight w (n, k) of such functions are obtained. It is shown
thatw (n, 1) = 2, n = 2, 3, ..., andw (n, 2) ∼ log2n as n → ∞, and moreover, for k > 2 there exists n0 such
thatw (n, k) > 2k−2 ⋅ log2n for all n > n0.
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Inroduction and an account of the results
We introduce some de�nitions and notation.
− Vn is the set of binary vectors of length n;
− Ef is the set of executive vectors of an n-place Boolean function f(x1, ..., xn); that is,

Ef = {(á1, ..., án) ∈ Vn : f (á1, ..., án) = 1};
− """"f

"""" =
!!!!!Ef

!!!!! is the weight of a function f;
− ‖á‖ is the weight of a vector á ∈ Vn;
− f ≡ g indicates the equality of Boolean functions f and g;
− ̄f = f ⊕ 1 is the inversion of a function f;
− given a Boolean variable x and á ∈ {0, 1}, we set

xá = {
̄x, á = 0;

x, á = 1.

An implicent of a Boolean functionf(x1, ..., xn) is a nonconstant Boolean function g such thatf ⋅g ≡ f; this
is equivalent to the inclusionEf ⊆ Eg (see [1]). A number of de�nitions similar to that of an implicent appear
in the literature. For example, in [2]–[5] there is the de�nition of an annihilator of a Boolean function f: an
annihilator of a functionf is a functionℎ such thatf⋅ℎ ≡ 0. It is clear thatℎ is an annihilator of a functionf if
and only if the function ℎ̄ = ℎ⊕1 is an implicent of a functionf. Sometimes (see [7]) an implicent of a Boolean
functionf is called theupper analogueof a functionf (see [4]). Thewell-knownproblemofminimizing aDNF
(see [9]) involves the de�nition of an implicant of a Boolean function (a function g is called an implicant of
a function f if f ∨ g = g), which is dual to the concept of the implicent (see, for example, [3]). There is
a straightforward relation between the concepts of the implicent and the implicant of a Boolean function f:
g is an implicent of a function f if and only if ̄g is an implicant of ̄f. Correspondingly, one may reformulate,
with clear modi�cations, the main results of the paper in these terms.

The present paper is concerned with estimates of the minimal possible value of the weight of a Boolean
function not admitting an implicent of at most k variables. Similar problems were addressed, for example, in
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the paper [5], which gives some conditions for the existence of annihilators with constraints on the number of
essential variables. For example, Corollary 3 of the present papermay be derived easily from the results of [5].
On the other hand, in the study of annihilators of Boolean functions themain attention was paid to the study
of the algebraic immunity of functions, which is de�ned as the smallest possible degree of an annihilator of
a function f or f ⊕ 1. A number of variables in the annihilator implies a constraint on its degree. However,
the absence of annihilators of a function f depending on at most k variables does not in general impose any
constraints on the value of the algebraic immunity of a function f.

By the length of a Boolean function we shall understand the number of its essential variables; the length
of a constant function (0 or 1) will be assumed to be 0.

Let n and k, n > k ≥ 1, be �xed natural numbers.We consider the classG(k)
n of n-place Boolean functions

not admitting implicents of length not exceeding k. Note that for n = k any n-place nonconstant function
always has an implicent of length n (the function itself). Hence, this case is excluded from consideration. For
n > k ≥ 1 the classG(k)

n is nonempty—for example, it contains any function of n variables with weight 2n −1.
Indeed, if Ef = Vn\ {(á1, ..., án)} for a function f, then f (x1, ..., xn) = xá1⊕1

1 ∨ ... ∨ xán⊕1
n . If g is an

implicent of a function f, then by de�nition Ef ⊆ Eg and Eg ̸= Vn, and hence Ef = Eg; that is, f ≡ g.
Clearly, all the variables of the function f are essential, and hence the length of the function g is n and is
not k for k < n. Hence, the function f admits no implicents of length k. So, the class G(k)

n is nonempty for
k < n.

Considering the above, we may correctly write w(n, k) for the minimal weight of a function from the
classG(k)

n .
If a Boolean function of n variables has weight 0, then its implicents are all nonconstant Boolean func-

tions of n variables. Hence, for any n and k, n > k, the identically zero function does not belong to the
classG(k)

n , and hence,w(n, k) > 0.
The purpose of the present paper is to �nd lower estimates of w (n, k) for various n and k, n > k. For

k = 1 the problem is very easily solved.

Assertion 1. Let n ≥ 2 be a natural number. Thenw (n, 1) = 2.

Proof. There are no functions of weight 1 without implicents of length 1, because if a functionf assumes the
value 1 on a unique tuple (á1, ..., án) ∈ Vn, then f (x1, ..., xn) = xá1

1 ⋅ ... ⋅ xán
n , and hence the function

g = xái
i is an implicent of f. As a result,w(n, 1) ≥ 1. Besides, one may directly indicate an n-place function

of weight 2 not admitting implicents of length 1: this is the function f (x1, ..., xn) = x1 ⋅ ... ⋅ xn ∨ ̄x1 ⋅ ... ⋅ ̄xn.
Indeed,xá

i ⋅f = xá
1 ⋅ ... ⋅x

á
n ̸= x1 ⋅ ... ⋅xn∨ ̄x1 ⋅ ... ⋅ ̄xn = f for any i ∈ 1, n andá ∈ {0, 1}. Hence,w(n, 1) = 2.

In addition to the case k = 1 already considered, we succeeded in �nding the exact value ofw(n, k) only for
k = 2: below it will be shown thatw(n, k) ∼ log2n as n → ∞. For k ≥ 3, we shall prove that there exists n0
such thatw(n, k) > 2k−2 ⋅ log2n for all n ≥ n0. Moreover, it will be shown thatmin

n>k
w(n, k) = 2k, and besides,

ifw(n, k) = 2k, then n = k + 1.

1 Relation between functions without short implicents and
combinatorially complete matrices

An implicent is called elementary if it may be written as an elementary disjunction. The following straightfor-
ward assertion allows one to reduce the study of functions without short implicents to the study of functions
not admitting short elementary implicents.

Assertion 2. A nonconstant Boolean function f has an implicent of length k if and only if it has an elementary
implicent of length k.
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Proof. Let g (xi1 , ..., xik) be an implicent of a function f (x1, ..., xn). We represent the function g as the
principal conjunctive normal form (CNF):

g = ∏
(a1, ..., ak)∈Vn\Eg (x

a1⊕1
i1 ∨ ... ∨ xak⊕1

ik ).

Consider any elementary disjunctionK = xa1⊕1
i1 ∨ ... ∨ xak⊕1

ik , (a1, ..., ak) ∈ Vn\Eg, of this principal CNF. It
has k essential variables. Next, we have

f ⋅ K ≡ (f ⋅ g) ⋅ K ≡ f ⋅ (g ⋅ K) ≡ f ⋅ g ≡ f,

that is,K is an implicent of the function f.
The converse is obvious.

The absence of elementary implicents in a Boolean function has an obvious combinatorial meaning.We need
the following de�nition.

De�nition 1. Let k, 1 ≤ k < n, be a natural number. A (0, 1)-matrixA of sizem × nwill be called combina-
torially complete of order k if in any submatrix ofA of sizem× k, for any Boolean vector Ú→v of length k, there
exists a row coinciding with Ú→v .

In other words, the submatrix formed by any k columns of the matrixAmust contain each of the 2k possible
rows (not necessarily only once).

We indicate several straightforward properties of combinatorially complete matrices. It is clear thatm ≥
2k ≥ 2 and that any matrix which is combinatorially complete of order k, k ≥ 2, is combinatorially complete
of order s for all s < k. It is also easy to show that the inversion of any column of a combinatorially complete
matrix (that is, the inversion of all its entries) also gives a combinatorially complete matrix of the same order.
In particular, the inversion of the matrix also produces a combinatorially complete matrix and augmenting
a combinatorially complete matrix with any number of arbitrary rows also gives a combinatorially complete
matrix of the same order.

Wegive anexample. Letnandkbe�xed,n ≥ k. Consider thematrixA,whose rowsare all possible vectors
of length n and of weight k. The matrix A has (nk) rows. We choose arbitrary k columns of A. In each row of
the matrix A, in the coordinates corresponding to the n − k columns that were not chosen, one may place
at most (n − k) units; the remaining 1’s will be in the chosen k columns. Hence, the so-obtained submatrix
will contain all possible rows of length k and of weight at least t = max{0, 2k − n}. Hence, for n ≥ 2k, this
submatrix will contain all rows of length k, which implies that thematrixA itself is combinatorially complete
of order k.

In this example, the number m of rows in the matrix A with small �xed k and increasing n behaves as
O (nk). However, it is possible to construct combinatorially complete matrices with substantially smaller
number of rows. As a matter of fact, the present paper is concerned with �nding the smallest number of rows
of a combinatorially complete matrix. The underlying consideration here is that there is a straightforward
relation between the combinatorially complete matrices and the Boolean functions not admitting elemen-
tary implicents. We denote by ̃Ef the matrix, whose rows are executive vectors of a Boolean function f of n
variables; that is,

̃Ef = (

(á(1)
1 , ..., á(1)

n )
...

(á(‖f‖)1 , ..., á(‖f‖)n )
) ,

where (á(i)
1 , ..., á(i)

n ) ∈ Ef, i = 1, """"f
"""".

The following assertion is a natural generalization of the analogous fact for k = 2, which was proved
in [8]. This fact is easily shown to be equivalent to Theorem 1.1 of [5].

Assertion 3. A nonconstant function f has an elementary implicent of length k if and only if the matrix ̃Ef is
not combinatorially complete of order k.
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Proof. Consider an elementary disjunction of length k : g = xa1
i1 ∨ ... ∨ xak

ik . This disjunction is an implicent
of the function f if and only if f ⋅ g ≡ f ⋅ (xa1

i1 ∨ ... ∨ xak
ik ) ≡ f. The last equality is equivalent to saying

that the equality f (x1, ..., xn) = 0 should be satis�ed on all vectors (á1, ..., án) such that áij = aj ⊕ 1,
j = 1, k. In other words, among the executive vectors of the function f there are no such ones for which the
values a1 ⊕ 1, ..., ak ⊕ 1 are, respectively, on the places i1, ...., ik. By de�nition, this happens if and only
if the columns i1, ...., ik of the matrix ̃Ef does not contain rows of the form (a1 ⊕ 1, ..., ak ⊕ 1); that is, the
matrix ̃Ef is not combinatorially complete of order k.

Letm(k)
min (n) be the smallest number of rows in a combinatorially complete matrix of order kwith n columns,

n > k.

Corollary 1. Let n, k be natural numbers, n > k ≥ 1. Then

w (n, k) = m(k)
min (n) .

Proof. FromAssertion 3 it follows that if a Boolean functionf of n variables has no implicents of length k and
if its weight isw (n, k), then the matrix ̃Ef withw (n, k) rows and n columns is combinatorially complete of
order k. Hence,w (n, k) ≥ m(k)

min (n). On the other hand, we consider a combinatorially complete matrixA of
order kwithm(k)

min (n) rows and n columns. In this matrix there are no equal rows—otherwise, when deleting
the repeated rows, we get a combinatorially complete matrix of order k with n columns and with smaller
than m(k)

min (n) rows, but this is impossible by the de�nition of m(k)
min (n). In particular, the absence of equal

rows means that m(k)
min (n) ≤ 2n. But in this case the matrix A may be looked upon as the matrix ̃Ef for the

function f de�ned as follows: Ef = {A⃗1, A⃗2, ..., A⃗m(k)min(n)}, where A⃗ i are the rows of the matrix A. The
n-place function f of weightm(k)

min (n) has no implicents by Assertion 3, and so we get the reverse inequality
w (n, k) ≤ m(k)

min (n), which proves the corollary.

Since the number of rows in a combinatorially complete matrices of order k is not smaller than 2k, we get the
�rst estimate forw (n, k).

Corollary 2. Let n, k be natural numbers, n > k ≥ 1. Then

w (n, k) ≥ 2k.

The dual problem to the problem of evaluating m(k)
min (n) is the problem of �nding, given a �xed number of

rowsm, the maximum possible value n(k)max (m) of the number of columns for which there a exists combinato-
rially complete matrix of order k and sizem × n(k)max (m) . In the language of Boolean functions, this problem
is reduced to searching, for �xedm and k, a function of weightm depending on the largest possible number
of variables, but which has no implicents of length k.

We note that m(k)
min (n) is de�ned for all k ≥ 1; on the other hand, n(k)max (m) is de�ned only for k > 1,

because for k = 1 onemay take as a combinatorially complete matrix of order 1 the matrix( 0
1

0
1 ...

0
1 ),

which has only two rows and arbitrary number of columns. Hence, we shall be concerned only with k > 1.
Given a �xed k > 1, n(k)max (m) is de�ned for all m ≥ 2k. The function n(k)max (m) is nondecreasing; that

is, n(k)max (m) ≤ n(k)max (m + 1), because according to the above a combinatorially complete matrix may be aug-
mented with any number of rows. However, it is not yet proved that for any �xed k the function n(k)max (m) is
strictly increasing (this fact was proved only for k = 2; see [8]). Similarly, since from a combinatorially com-
plete matrix of order kwith at most k columns onemay delete any column to keep thematrix combinatorially
complete, the functionm(k)

min (n), n > k > 1, is nondecreasing.
In some cases it is more easy to write explicitly the function n(k)max (m) than the function m(k)

min (n) (the
case k = 2 treated in [8] may serve as an example). The following question arises: how one may pass from
the function n(k)max (m) to the functionm(k)

min (n) and employ Corollary 1 to Assertion 3 to evaluatew (n, k)?
The following result gives a relation betweenm(k)

min (n) and n(k)max (m).
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Assertion 4. Let n0, k be natural numbers, n0 > k > 1. Then one of the following two cases is possible:
1) for some natural numberm0 ≥ 2k + 1 the inequalities

n(k)max (m0 − 1) < n0 ≤ n(k)max (m0)

hold, hence,m(k)
min (n0) = m0,w (n0, k) = m0;

2) the inequality
n0 ≤ n(k)max (2

k)

hold and thereforem(k)
min (n0) = 2k,w (n0, k) = 2k.

Proof. According to the above, the range of the function n(k)max (m), m ≥ 4, k > 1, is bounded from below
by n(k)max (2

k) and is unbounded from above, and hence for n0 only one of the cases from the statement of the
assertion is possible. Consider the �rst case: assume that there existsm0 ≥ 2k + 1 such that n(k)max (m0 − 1) <
n0 ≤ n(k)max (m0). The inequality n0 ≤ n(k)max (m0)means that there exists a combinatorially complete matrix of
orderk andof sizem0×n0. It follows thatm(k)

min (n0) ≤ m0.We claim thatm(k)
min (n0) = m0.We argueby reductio

ad absurdum: suppose that m(k)
min (n0) = m�

0 and m�
0 < m0. Then there exists a combinatorially complete

matrix of sizem�
0 × n0. Augmenting this matrix withm0 −m�

0 − 1 arbitrary rows, we obtain a combinatorially
complete matrix of order k and of size (m0 − 1) × n0. In other words, n0 ≤ n(k)max (m0 − 1), which contradicts
the hypothesis. The second case is straightforward.

The following assertion, enabling one to consider upper estimates of n(k)max (m) as lower estimates ofm(k)
min (n),

and vice versa, has a simpler form.

Assertion 5. Let n0, m0, k be natural numbers, n0 > k > 1, m0 ≥ 2k. Then n(k)max (m0) < n0 if and only if
m(k)
min (n0) > m0.

Proof. Both inequalities are clearly equivalent to the fact that there does not exist a combinatorially complete
matrix of order k and sizem0 × n0.

In what follows we give lower estimates for w (n, k): we estimate n(k)max (m) from above, and next, using As-
sertions 4 or 5, we obtain lower estimates of m(k)

min (n), which in view of Corollary 1 to Assertion 3 are lower
estimates forw(n, k).

2 Upper estimates of n(k)max (m)
We start with the consideration of combinatorially completematrices of order kwith smallest number of rows
m = 2k.

Assertion 6. Let k > 1. Then n(k)max (2
k) = k + 1.

Proof. Consider amatrixA of size 2k×(k + 1)which is combinatorially complete of orderk. Its �rstk columns
contain 2k distinct rows. Hence, the set of all rows of the matrixA is the set of all bit strings of length k + 1 of
the form {(á1, ..., ák, â(á1, ..., ák)) : (á1, ..., ák) ∈ Vk}.

We claim that the matrixA is combinatorially complete of order k if and only if, for any i ∈ 1, k,

â(á1, ..., ái−1, 0, ái+1, ..., ák) ⊕ â(á1, ..., ái−1, 1, ái+1, ..., ák) = 1. (1)

Indeed, the �rstk columns ofA contain all possible 2k rows.We take any otherk columns of thematrixA;
this is equivalent to choosing i ∈ 1, k and considering the columns with numbers 1, 2, ..., i − 1, i +
1, ..., k, k + 1. In the so-chosen submatrixA i we consider the �rst k − 1 columns. We denote this submatrix
(of size 2k × (k − 1)) byA�

i. The matrixA�
i contains as rows all possible vectors of length k − 1, each vectors

appears exactly two times. Correspondingly, in order to thematrixA i contains as rows all vectors of length k,
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it is necessary and su�cient that equal rows of the matrix A�
i are continued in the matrix A i by distinct

elements, but this means that (1) is satis�ed.
We now consider the graph of the Boolean cube Gk, whose vertex set is the set Vk of binary vectors of

length k, two vertices of the cube are adjacent if the corresponding vectors are neighbouring, that is, if they
di�er by exactly one component. It is known that the graph Gk is connected and bipartite: one colour class
ofGk is formed by the vertices (á1, ..., ák) of even weights, and the other colour class by the vertices of odd
weight.

We note that the presence of the last column in the matrix Amay be interpreted as labeling each vertex
(á1, ..., ák) of the graphGk by a mark â(á1, ..., ák), which is 0 or 1. Equality (1) means that adjacent vertices of
the graph are labeled di�erently, in other words, (1) is equivalent to saying that for each vertex (á1, ..., ák)
with the even number of 1’s (in the �rst colour class of the graph Gk) the label â(á1, ..., ák) is equal to some
í ∈ {0, 1}, while for each vertex (á1, ..., ák) with odd number of 1’s (in the second colour class of Gk) the
label â(á1, ..., ák) is ̄í. We write this as follows: for any vector (á1, ..., ák) ∈ Vk

á1 ⊕ ... ⊕ ák ⊕ í = â(á1, ..., ák). (2)

In other words, the entire last column of the matrix A is determined by the value of í. Hence, there are only
two possible values of this column, one of these values being the inversion of the other one.

We next assume that there exists a combinatorially complete matrix B of order k of size 2k × (k + 2).
Considering submatrices (B↓1 , ..., B

↓
k, B
↓
k+1) and (B↓1 , ..., B

↓
k, B
↓
k+2), we obtain two matrices of size 2k ×

(k + 1) which are combinatorially complete of order k. Next, by the above the columns B↓k+1 and B↓k+2 either
coincide or one column is the negation of the other one. In both cases we arrive at a contradiction, because
the consideration of the last two columns shows that the matrix B is not combinatorially complete of order 2.

Hence, the largest number of columns in a combinatorially complete matrix of order k is k + 1, which
shows that nmax (2

k) = k + 1.

Let us now examine the casem > 2k. In [8] the exact value n(2)max (m) for k = 2 was found:

n(2)max (m) =
{{
{{
{

1
2
⋅ (

2r
r
), m = 2r,

(
2r

r − 1
), m = 2r + 1,

m ≥ 4.

We next consider the case k ≥ 3.

Assertion 7. Let k ≥ 3 andm ≥ 2k. Then

n(k)max (m) ≤ n(k−1)max ([
m
2
]) + 1.

Proof. Let A be a combinatorially complete matrix of order k and size m × n, n = n(k)max (m). The property
of being combinatorially complete is invariant under rearrangement of rows and columns of a matrix, and
hence we may assume that in the �rst column the �rst t entries are 0, and the last m − t ones are 1, where
2k−1 ≤ t ≤ m − 2k−1.

LetA0 andA1 be the submatrices formed, respectively, by the �rst t and the lastm−t rows and the n−1
last columns of the matrixA (Fig. 1).

n−1⏞⏞⏞⏞⏞⏞⏞

A =

t
{
{
{

m − t
{
{
{

((((

(

0
...
0

A0

1
...
1

A1

))))

)

.
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Fig. 1

Since A is a combinatorially complete matrix of order k, it follows in particular that for any set of k
columns of the form A↓1, A↓i1 , ..., A↓ik−1 , 1 < i1 < i2 < ... < ik−1 ≤ n, these columns contain any com-
bination (a1, ..., ak) ∈ Vk. Besides, the combinations of the form (0, a2, ..., ak) are contained in the one
of the �rst t rows, while the combinations of the form (1, a2, ..., ak) are contained in one of the rows with
numbers t + 1, . . . , m.

This means that, for any set of k − 1 columns of the form A↓i1 , ..., A↓ik−1 , 1 < i1 < i2 < ... < ik−1 ≤ n, in
these columns any combination (a2, ..., ak) ∈ Vk−1 occurs at least two times: in one of the �rst t rows and in
one of the lastm − t rows. Hence, both the matricesA0 andA1 are combinatorially complete of order k − 1.

Each of these matrices has n − 1 columns, and hence, n − 1 ≤ n(k−1)max (t) and n − 1 ≤ n(k−1)max (m − t); that
is,

n ≤ min {n(k−1)max (t) , n(k−1)max (m − t)} + 1.

It was noted above that the function n(k)max (m) is nondecreasing and since either t ≤ [m2 ] orm− t ≤ [m2 ],
it follows thatmin {n(k−1)max (t) , n(k−1)max (m − t)} ≤ n(k−1)max ([m2 ]). We thus arrive at the required inequality:

n(k)max (m) ≤ n(k−1)max ([
m
2
]) + 1.

As a corollary of this inequality we have the following estimate involving the function n(2)max (m).

Assertion 8. Let k ≥ 3 andm ≥ 2k. Then

n(k)max (m) ≤ n(2)max ([
m
2k−2

]) + k − 2.

Proof. We have [ [m/2]
2 ] = [m4 ], and hence Assertion 7 implies that

n(k)max (m) ≤ n(k−2)max ([
m
4
]) + 2.

We iteratively �nd that, for any r = 1, 2, ..., k − 2,

n(k)max (m) ≤ n(k−r)max ([
m
2r
]) + r.

As a result, for r = k − 2 we have

n(k)max (m) ≤ n(2)max ([
m
2k−2

]) + k − 2.

In order to obtain an asymptotic estimate of the functionn(k)max (m)weuse the asymptotic formula forn(2)max (m).

Assertion 9. Let k ≥ 3 be a �xed number. Then, asm → ∞,

n(k)max (m) ≤ 2
m2k−2 ⋅ √

2k−3

ðm
⋅ (1 + o (1)) .

Proof. From Corollary 4 to Theorem 1 of [8] if follows that asm → ∞

n(2)max (m) =
2m

√2ðm
(1 + õ(m)) , lim

m→∞
õ(m) = 0. (3)

Substituting this relation in the estimate from Assertion 8, we �nd that

n(k)max (m) ≤
2[

m2k−2 ]
√2ð [ m

2k−2 ]
⋅ (1 + õ(m)) + k − 2.
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Taking into account that m
2k−2 − 1 ≤ [ m

2k−2 ] ≤ m
2k−2 for k > 0, we obtain

n(k)max (m) ≤
2

m2k−2
√2ð ( m

2k−2 − 1)
⋅ (1 + õ(m)) + k − 2 ≤

≤ √2k−3

ð
⋅
2

m2k−2
√m

⋅ ((1 −
2k−2

m
)
−1/2

⋅ (1 + õ(m)) + (k − 2) ⋅ √
ð

2k−3
⋅
√m

2
m2k−2 ) . (4)

Since k ≥ 3, we have 2k−2√2 > 1, and hence, √m

( 2k−2√2)m →
m→∞

0. Besides, 2k−2
m

→
m→∞

0. Consequently, the

right-hand side of inequality (4) is 2
m2k−2 ⋅ √ 2k−3

ðm (1 + õ(m)) = 2
m2k−2 ⋅ √ 2k−3

ðm (1 + o(1)) asm → ∞.

3 Lower estimates ofm(k)min (n)

In this section we give lower estimates of m(k)
min (n), which follow from the upper estimates of n(k)max (m) ob-

tained in the previous section.
We start with the equality n(k)max (2

k) = k + 1, k > 1 (see Assertion 6). This result can be formulated as the
following re�nement of Corollary 2 to Assertion 3: ifw (n, k) = 2k, then n = k + 1. In other words, among all
Boolean functions not admitting implicents of length not exceeding k, the functions with the smallest weight
(which is 2k) depend on atmost k+1 variables, this estimate being attainable. This estimate is attained at the
functions f, for which, by (2), the equality á1 ⊕ ... ⊕ ák ⊕ í = ák+1 with some �xed í ∈ {0, 1} holds for any
vector (á1, ..., ák+1) ∈ Ef. It is clear that there are only two such functions:f (x1, ..., xk+1) = x1 ⊕ ... ⊕xk+1
and f (x1, ..., xk+1) = x1 ⊕ ... ⊕ xk+1 ⊕ 1. Hence, we have the following result.

Assertion 10. The smallest weight of a Boolean functions without implicents of k > 1 variables is 2k, this es-
timate is attained at the following two functions: f (x1, ..., xk+1) = x1 ⊕ ... ⊕ xk+1, f (x1, ..., xk+1) =
x1 ⊕ ... ⊕ xk+1 ⊕ 1.

An important particular case of Assertion 10 is the case k = n−1. We claim that if a function has an implicent
of k variables, then it also has an implicent of k� variables for all k�, n > k� > k. Indeed if g is an implicent
of length k of a function f (x1, ..., xn) and if xi is a dummy variable of g, then the function xi ∨ g is also an
implicent of f of length k + 1:

f ⋅ (xi ∨ g) = {
f, xi = 1,
f ⋅ g = f, xi = 0.

As a result, the expression ‘an n-place function does not have an implicent of n − 1 variables’ is equivalent
to the expression ‘an n-place function has no implicents of smaller number of variables’. Hence, using Asser-
tion 10 with k = n − 1 we reach the following result.

Corollary 3. Anyn-place equiprobableBoolean functiondistinct from the functionsf (x1, ..., xn) = x1⊕...⊕xn
and f (x1, ..., xn) = x1 ⊕ ... ⊕ xn ⊕ 1 has an implicent of smaller number of variables.

We note that this result may also be easily obtained from the results of [5].
Our next aim is to obtain an asymptotically exact formula form(2)

min (n).

Assertion 11. The asymptotic equality holds as n → ∞:

m(2)
min (n) ∼ log2n.

Proof. We �rst show that m(2)
min (n) → ∞ as n → ∞. Given any m0 ≥ 2k > 4, we set n0 = n(2)max (m0).

Hence, n(2)max (m0) < n for any n > n0. In view of Assertion 5 the last inequality is equivalent to the inequality
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m(2)
min (n) > m0. In other words, for anym0 > 4 there exists n0 such thatm(2)

min (n) > m0 for all n > n0. But this
means thatm(2)

min (n) → ∞ as n → ∞.
The function n(2)max (m) is nondecreasing, and hence Assertion 6 implies that the minimal value of

n(2)max (m) is 3. Inserting this value in Assertion 4, we have the following result: for any n ≥ 4 there exists
m ≥ 5 such thatm(2)

min (n) satis�es the inequalities

n(2)max (m
(2)
min (n) − 1) < n ≤ n(2)max (m

(2)
min (n)) . (5)

We havem(2)
min (n) → ∞ as n → ∞, and hence it follows from the formula (3) in the proof of Assertion 9

and inequalities (5) that

2m
(2)min(n)−1

√2ð ⋅ (m(2)
min (n) − 1)

(1 + õ (m(2)
min (n) − 1)) < n ≤

2m
(2)min(n)

√2ð ⋅ m(2)
min (n)

(1 + õ (m(2)
min (n))) .

Setting ä(m) = log2 (1 + õ (m)) and taking log2 of both sides, we get

m(2)
min (n) − 1 −

1
2
log22ð −

1
2
log2 (m

(2)
min (n) − 1) + ä (m(2)

min (n) − 1) < log2n ≤

≤ m(2)
min (n) −

1
2
log22ð −

1
2
log2m

(2)
min (n) + ä (m(2)

min (n)) ,

and so,
m(2)
min (n) − 1 − 1

2 log2 (m
(2)
min (n) − 1) + ä (m(2)

min (n) − 1) < log2n ≤

≤ m(2)
min (n) −

1
2 log2m

(2)
min (n) + ä (m(2)

min (n)) .

Hence,
1 − 1

m(2)min(n) − log2(m
(2)min(n)−1)

2⋅m(2)min(n) + ä(m(2)min(n)−1)
m(2)min(n) < log2n

m(2)min(n) ≤
≤ 1 − log2m(2)min(n)

2⋅m(2)min(n) + ä(m(2)min(n))
m(2)min(n) .

(6)

Further, we have lim
m→∞

õ (m) = 0, and so lim
m→∞
log2 (1 + õ (m)) = 0. Next, we recall that m(2)

min (n) → ∞
as n → ∞. Hence, making n → ∞,

ä (m(2)
min (n)) → 0, ä (m(2)

min (n) − 1) → 0,
log2 (m

(2)
min (n) − 1)

2 ⋅ m(2)
min (n)

→ 0 and
log2m

(2)
min (n)

2 ⋅ m(2)
min (n)

→ 0.

As a result, using (6) we get log2n
m(2)min(n) = 1 + o (1), the result required.

Let us now estimatem(k)
min (n) from below for k ≥ 3.

Assertion 12. Let k ≥ 3 be a �xed number. Then there exists n0 such that, for all n ≥ n0,

m(k)
min (n) > 2k−2 ⋅ log2n.

Proof. From Assertion 9 it follows that, for any constant C > 1, there existsm0 such that, for allm > m0,

n(k)max (m) < C ⋅ 2
m2k−2 ⋅ √

2k−3

ðm
. (7)

We extend the function n(k)max (m) to all x ≥ 2k as follows: n(k)max (x) = n(k)max ([x]). It is clear that the func-
tion n(k)max (x) is also nondecreasing. Besides, for any real x ≥ 2k and any natural n0 > k the inequality
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n(k)max (x) < n0 holds if and only if n(k)max ([x]) < n0. By Assertion 5 the last inequality is equivalent to the in-
equalitym(k)

min (n0) > [x]. The functionm(k)
min (n) assumes only natural values, and consequently,m(k)

min (n0) ≥
[x] + 1 > x. Hence, if n(k)max (x) < n0, thenm(k)

min (n0) > x.
Next, let èm = C ⋅ 2

m2k−2 ⋅ √ 2k−3
ðm . Then

2k−2 ⋅ log2èm = m + 2k−2 ⋅ (log2C +
k − 3
2

−
1
2
log2ð −

1
2
log2m) .

For su�ciently largem we have

log2C +
k − 3
2

−
1
2
log2ð −

1
2
log2m < 0,

and hence, 2k−2 ⋅ log2èm < m.
The function n(k)max (m) is nondecreasing, and now (7) implies that

n(k)max (2
k−2 ⋅ log2èm) ≤ n(k)max (m) < èm.

Hence, by the above,m(k)
min (èm) > 2k−2 ⋅ log2èm.

Setting n0 (n) = 2k−2 ⋅ log2n, we have èn0(n) = n ⋅ C

√2ð⋅log2n < n for all su�ciently large n. The function

m(k)
min (n), n > k > 1, is nondecreasing and hence,

m(k)
min (n) ≥ m(k)

min (èn0(n)) > 2k−2 ⋅ log2èn0(n) =
= n0 (n) + 2k−2 ⋅ (log2C +

1
2
log2

2k−3

ð
−
1
2
log2n0 (n)) =

= 2k−2 ⋅ log2n + 2k−2 ⋅ (log2C +
1
2
log2

2k−3

ð
−
1
2
(k − 2) −

1
2
log2log2n) =

= 2k−2 ⋅ log2n(1 +
1
log2n

⋅ (log2C +
1
2
log2

2k−3

ð
−
1
2
(k − 2) −

1
2
log2log2n)) .

It remains to observe that 1
log2n ⋅ (log2C + 1

2 log2
2k−3
ð − 1

2 (k − 2) − 1
2 log2log2n) < 0 for all n ≥ n0 starting

with some n0.

References
[1] Glushkov V. M., Synthesis of digital authomata, M.: GIFML, 1962 (in Russian).
[2] Courtois N., Meier W., “Algebraic attacks on stream ciphers with linear feedback”, EUROCRYPT, Lect. Notes Comput. Sci.,

2656, Springer-Verlag, 2003, 346-359.
[3] Logachev O.A., Sal’nikov A.A., Smyshlyaev S.V., Yashchenko V.V., Boolean function in coding theory and cryptology, M.:

MCCME, 2012, 583 pp.
[4] Dalai D., Maitra S., Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immu-

nity”, Designs, Codes and Cryptography, 40:1 (2006), 41-58.
[5] Jiao L., Wang M., Li Y., Liu M., “On annihilators in fewer variables: basic theory and applications”, Chinese Journal of Elec-

tronics, 22:3 (2013), 489-494.
[6] Glukhov M.M., Shishkov A.B.,Mathematical logic. Discrete function. Theory of algorithms, SPb.: Lan, 2012 (in Russian).
[7] Gorshkov S.P., “Application of the theory of NP-complete task for the estimate of the complexity of solving of Boolean equa-

tion systems”, Obozr. prikl. and prom. matem., 2:3 (1995), 325–399 (in Russian).
[8] Roldugin P.V., Tarasov A.V., “On Boolean functions without upper bijunctive counterparts”, Matematiceskie voprosy krip-

togra�i, 4:1 (2013), 123–140 (in Russian).
[9] Vocabulary of cryptographic terms, eds. B.A. Pogorelova and V.N. Sachkova, M.: MCCME, 2006 (in Russian).


	Functions without short implicents.Part I: lower estimates of weights
	1 Relation between functions without short implicents and combinatorially complete matrices
	2 Upper estimates of nmax( k )( m )
	3 Lower estimates of mmin( k )( n )
	References


