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Inroduction and an account of the results

We introduce some definitions and notation.

— 'V, is the set of binary vectors of length #;

— E; is the set of executive vectors of an n-place Boolean function f(x;,..,x,); that is,
Er={(a) oo &) €V, flay, oo @) = 15

- |fll = |E f| is the weight of a function f;

— || is the weight of a vector @ € V;

— f = gindicates the equality of Boolean functions f and g;

- f = f @ 1is the inversion of a function f;

— given a Boolean variable x and « € {0, 1}, we set

o X, «a=0;
X =
x, a=1.

An implicent of a Boolean function f(x;, ..., x,,) is a nonconstant Boolean function g such that f - g = f; this
is equivalent to the inclusion E rCE, (see [1]). A number of definitions similar to that of an implicent appear
in the literature. For example, in [2]-[5] there is the definition of an annihilator of a Boolean function f: an
annihilator of a function f is a function hsuch that f-h = 0.1tis clear that h is an annihilator of a function f if
and only if the function i = h®1 is an implicent of a function f.Sometimes (see [7]) an implicent of a Boolean
function f is called the upper analogue of a function f (see [4]). The well-known problem of minimizing a DNF
(see [9]) involves the definition of an implicant of a Boolean function (a function g is called an implicant of
a function f if f V g = g), which is dual to the concept of the implicent (see, for example, [3]). There is
a straightforward relation between the concepts of the implicent and the implicant of a Boolean function f:
g is an implicent of a function f if and only if § is an implicant of f. Correspondingly, one may reformulate,
with clear modifications, the main results of the paper in these terms.

The present paper is concerned with estimates of the minimal possible value of the weight of a Boolean
function not admitting an implicent of at most k variables. Similar problems were addressed, for example, in
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the paper [5], which gives some conditions for the existence of annihilators with constraints on the number of
essential variables. For example, Corollary 3 of the present paper may be derived easily from the results of [5].
On the other hand, in the study of annihilators of Boolean functions the main attention was paid to the study
of the algebraic immunity of functions, which is defined as the smallest possible degree of an annihilator of
a function f or f @ 1. A number of variables in the annihilator implies a constraint on its degree. However,
the absence of annihilators of a function f depending on at most k variables does not in general impose any
constraints on the value of the algebraic immunity of a function f.

By the length of a Boolean function we shall understand the number of its essential variables; the length
of a constant function (0 or 1) will be assumed to be 0.

Letnandk,n > k > 1, be fixed natural numbers. We consider the class Gg“) of n-place Boolean functions
not admitting implicents of length not exceeding k. Note that for n = k any n-place nonconstant function
always has an implicent of length 7 (the function itself). Hence, this case is excluded from consideration. For
n > k > 1theclass quk) is nonempty—for example, it contains any function of » variables with weight 2" — 1.
Indeed, if E; = V,\{(a, .., @,)} for a function £, then f (x, .., x,) = x'* V..V x® If g is an
implicent of a function f , then by definition E < E g and E g # V,, and hence E ;= E 9 that is, f = g.
Clearly, all the variables of the function f are essential, and hence the length of the function g is n and is
not k for k < n. Hence, the function f admits no implicents of length k. So, the class Gf,k> is nonempty for
k < n.

Considering the above, we may correctly write w(n, k) for the minimal weight of a function from the
class G®.

If a Boolean function of # variables has weight 0, then its implicents are all nonconstant Boolean func-
tions of n variables. Hence, for any n and k, n > k, the identically zero function does not belong to the
class Gflk), and hence, w(n, k) > 0.

The purpose of the present paper is to find lower estimates of w (n, k) for various n and k, n > k. For
k = 1 the problem is very easily solved.

Assertion 1. Letn > 2 be a natural number. Then w (n, 1) = 2.

Proof. There are no functions of weight 1 without implicents of length 1, because if a function f assumes the

value 1 on a unique tuple (e, ..., «,) € V,, then f (x;, .., x,) = x}' - ... - x>, and hence the function
g = x;" is an implicent of f. As a result, w(n, 1) > 1. Besides, one may directly indicate an n-place function
of weight 2 not admitting implicents of length 1: this is the function f (x;, ..., x,) = X; = oot X, V.X} * o0 " X,

Indeed, x{'- f = x{-...-x), # Xy ...:X, VX, ... X, = fforanyi € 1, nand« € {0, 1}.Hence,w(n,1) =2. O

In addition to the case k = 1 already considered, we succeeded in finding the exact value of w(#n, k) only for

k = 2: below it will be shown that w(n, k) ~ log,nasn — oo. For k > 3, we shall prove that there exists #,

such that w(n, k) > 2k-2. log,n forall n > n,. Moreover, it will be shown that mi}{l w(n, k) = 2k and besides,
n>

ifw(n, k) = 2%, thenn = k + 1.

1 Relation between functions without short implicents and
combinatorially complete matrices
An implicent is called elementary if it may be written as an elementary disjunction. The following straightfor-

ward assertion allows one to reduce the study of functions without short implicents to the study of functions
not admitting short elementary implicents.

Assertion 2. A nonconstant Boolean function f has an implicent of length k if and only if it has an elementary
implicent of length k.
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Proof. Let g (x,-l, . x,-k) be an implicent of a function f (x,, ..., x,,). We represent the function g as the
principal conjunctive normal form (CNF):

a; 91 o1
g= l_[ (xil1 V..V xl.kk )
(al, . ak)eVn\Eg

a,®1
i

01
ik

Consider any elementary disjunction K = x.'7 V...V x

has k essential variables. Next, we have

f-K=(f-9)-K=f-(g-K)=f-g=f

that is, K is an implicent of the function f.
The converse is obvious. O

, (ay, o @) € V,\E,, of this principal CNF. It

The absence of elementary implicents in a Boolean function has an obvious combinatorial meaning. We need
the following definition.

Definition 1. Letk, 1 < k < n, be anatural number. A (0, 1)-matrix A of size m x n will be called combina-
torially complete of order k if in any submatrix of A of size m x k, for any Boolean vector U of length k, there
exists a row coinciding with .

In other words, the submatrix formed by any k columns of the matrix A must contain each of the 2k possible
rows (not necessarily only once).

We indicate several straightforward properties of combinatorially complete matrices. It is clear that m >
2F > 2 and that any matrix which is combinatorially complete of order k, k > 2, is combinatorially complete
of order s for all s < k. It is also easy to show that the inversion of any column of a combinatorially complete
matrix (that is, the inversion of all its entries) also gives a combinatorially complete matrix of the same order.
In particular, the inversion of the matrix also produces a combinatorially complete matrix and augmenting
a combinatorially complete matrix with any number of arbitrary rows also gives a combinatorially complete
matrix of the same order.

We give an example. Let nand k be fixed, n > k. Consider the matrix A, whose rows are all possible vectors
of length n and of weight k. The matrix A has (Z) rows. We choose arbitrary k columns of A. In each row of
the matrix A, in the coordinates corresponding to the n — k columns that were not chosen, one may place
at most (1 — k) units; the remaining 1’s will be in the chosen k columns. Hence, the so-obtained submatrix
will contain all possible rows of length k and of weight at least t = max{0, 2k — n}. Hence, for n > 2k, this
submatrix will contain all rows of length k, which implies that the matrix A itself is combinatorially complete
of order k.

In this example, the number 1 of rows in the matrix A with small fixed k and increasing »n behaves as
@) (nk ) However, it is possible to construct combinatorially complete matrices with substantially smaller
number of rows. As a matter of fact, the present paper is concerned with finding the smallest number of rows
of a combinatorially complete matrix. The underlying consideration here is that there is a straightforward
relation between the combinatorially complete matrices and the Boolean functions not admitting elemen-
tary implicents. We denote by E I the matrix, whose rows are executive vectors of a Boolean function f of n
variables; that is,

- (a0, D)

where (o, .., o) € E,i =1, [f].
The following assertion is a natural generalization of the analogous fact for k = 2, which was proved
in [8]. This fact is easily shown to be equivalent to Theorem 1.1 of [5].

Assertion 3. A nonconstant function f has an elementary implicent of length k if and only if the matrix E ris
not combinatorially complete of order k.
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Proof. Consider an elementary disjunction of length k : g = xf}‘ V..V xi". This disjunction is an implicent
of the function f ifand onlyif f- g = f - (xfl‘ V..V xfz‘ ) = f. The last equality is equivalent to saying
that t_he equality f (x,, ..., x,) = 0 should be satisfied on all vectors (&, ..., &,) such that o =a;el,
j = 1, k. In other words, among the executive vectors of the function f there are no such ones for which the

values g, & 1, .., a; @ 1 are, respectively, on the places i, ...., i;.. By definition, this happens if and only
if the columns i, ...., i, of the matrix E f does not contain rows of the form (a1 el ., & 1); that is, the

matrix E £ is not combinatorially complete of order k. O
Let mmm (n) be the smallest number of rows in a combinatorially complete matrix of order k with n columns,
n> k.

Corollary 1. Let n, k be natural numbers, n > k > 1. Then

(k) (1’1)

l’nll’l

w(n, k) =

Proof. From Assertion 3 it follows that if a Boolean function f of n variables has no implicents of length k and
if its weight is w (1, k), then the matrix E ¢ withw (n, k) rows and n columns is combinatorially complete of

order k. Hence w (n, k) > mmm (n). On the other hand, we consider a combinatorially complete matrix A of
order k with mmm (n) rows and # columns. In this matrix there are no equal rows—otherwise, when deleting
the repeated rows, we get a combinatorially complete matrix of order k with n columns and with smaller
than mmm (n) rows, but this is impossible by the definition of mmm (n). In particular, the absence of equal

rows means that m(k) (n) < 2". But in this case the matrix A may be looked upon as the matrix E ¢ for the

function f defined as follows: E, = {A b Ay A m® (n )} where A, are the rows of the matrix A. The

(k) . o . . .
min (1) has no implicents by Assertion 3, and so we get the reverse inequality

(n), which proves the corollary. O

n-place function f of weight m

w(n, k) < mfnm

Since the number of rows in a combinatorially complete matrices of order k is not smaller than 2K we get the
first estimate for w (n, k).

Corollary 2. Let n, k be natural numbers,n > k > 1. Then
w(n, k) > 2",

The dual problem to the problem of evaluating mﬁm)n (n) is the problem of finding, given a fixed number of
rows 1, the maximum possible value nfﬁx (m) of the number of columns for which there a exists combinato-
rially complete matrix of order k and size m X nmax (m) . In the language of Boolean functions, this problem
is reduced to searching, for fixed m and k, a function of weight 11 depending on the largest possible number
of variables, but which has no implicents of length k.

We note that m i ) (n) is defined for all k > 1; on the other hand, n (m) is defined only for k > 1,

0 0 0

because for k = 1 one may take as a combinatorially complete matrix of order 1 the matrix < 111 ),
which has only two rows and arbitrary number of columns. Hence, we shall be concerned only with k > 1.

Given a fixed k > 1, n® (m) is defined for all m > > 2. The function n® (m) is nondecreasing; that

max max
is, n(k)X (m) < ngzx (m + 1), because according to the above a combinatorially complete matrix may be aug-
mented with any number of rows. However, it is not yet proved that for any fixed k the function n(k) (m) is
strictly increasing (this fact was proved only for k = 2; see [8]). Similarly, since from a combinatorially com-
plete matrix of order k With at most k columns one may delete any column to keep the matrix combinatorially
complete, the function mmln (n),n > k > 1, is nondecreasing.

In some cases it is more easy to write explicitly the function nfﬁx (m) than the function mmm (n) (the
case k = 2 treated in [8] may serve as an example). The following question arises: how one may pass from
the function ngﬂlx (m) to the function m min (n) and employ Corollary 1 to Assertion 3 to evaluate w (n, k)?

The following result gives a relation between m® (n) and n(k (m).

‘min
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Assertion 4. Let n,, k be natural numbers, n, > k > 1. Then one of the following two cases is possible:
1) for some natural number m,, > 2K + 1 the inequalities

n (my—1) <n, < ”ﬁx (my)

max

hold, hence, m%) (ny) = mqy, w (ny, k) = my;

2) the inequality

hold and therefore m®) (n,) = 25, w (ny, k) = 2",

Proof. According to the above, the range of the function nfff;x (m), m > 4, k > 1, is bounded from below
by “ﬁx (2") and is unbounded from above, and hence for #, only one of the cases from the statement of the

assertion is possible. Consider the first case: assume that there exists 11, > 2* + 1 such that ngf;x (my—1) <
ny < n® (m,). The inequality nn, < n*) (m,) means that there exists a combinatorially complete matrix of

% (ny) = my,. We argue by reductio
ad absurdum: suppose that mffl‘i)n (ny) = myg and m) < m,. Then there exists a combinatorially complete
matrix of size m('] X 1,. Augmenting this matrix with m, — m(') — 1 arbitrary rows, we obtain a combinatorially
complete matrix of order k and of size (m, — 1) x n,. In other words, 1, < n*) (m, — 1), which contradicts

the hypothesis. The second case is straightforward. O

order k and of size 1, x . It follows that m*) (n,) < m,. We claim that m

The following assertion, enabling one to consider upper estimates of ngzx (m) as lower estimates of mf:fi)n (n),
and vice versa, has a simpler form.

(k)

Assertion 5. Let n,, m, k be natural numbers, n, > k > 1, m, > 2. Then (NS (my) < ny if and only if

(k)
M (119) > .
Proof. Bothinequalities are clearly equivalent to the fact that there does not exist a combinatorially complete
matrix of order k and size m, X n,,. a

In what follows we give lower estimates for w (1, k): we estimate n®_ (m) from above, and next, using As-

max
sertions 4 or 5, we obtain lower estimates of mgfl)n (n), which in view of Corollary 1 to Assertion 3 are lower
estimates for w(n, k).

2 Upper estimates of nfﬁx (m)

We start with the consideration of combinatorially complete matrices of order k with smallest number of rows
k
m=2"

Assertion 6. Letk > 1. Then n® (2") =k+1.

max

Proof. Consider a matrix A of size 2¥x (k + 1) which is combinatorially complete of order k. Its first k columns
contain 2* distinct rows. Hence, the set of all rows of the matrix A is the set of all bit strings of length k + 1 of

the form {(ocl, s @ Pa, ak)) (o, e o) € Vk}.
We claim that the matrix A is combinatorially complete of order k if and only if, forany i € 1, k,

ﬁ(le, v @iops 0, g5 s "‘k) ® ﬁ(“l» e 01> L Gy e "‘k) =1 (1)

Indeed, the first k columns of A contain all possible 2 rows. We take any other k columns of the matrix A;
this is equivalent to choosing i € 1, k and considering the columns with numbers 1, 2, .., i —1, i+
1, ..., k, k+ 1.In the so-chosen submatrix A; we consider the first k — 1 columns. We denote this submatrix

(of size 2% x (k — 1)) by A',.. The matrix A',. contains as rows all possible vectors of length k — 1, each vectors
appears exactly two times. Correspondingly, in order to the matrix A; contains as rows all vectors of length k,
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it is necessary and sufficient that equal rows of the matrix A’ are continued in the matrix A; by distinct
elements, but this means that (1) is satisfied.

We now consider the graph of the Boolean cube G,, whose vertex set is the set V, of binary vectors of
length k, two vertices of the cube are adjacent if the corresponding vectors are neighbouring, that is, if they
differ by exactly one component. It is known that the graph G, is connected and bipartite: one colour class
of Gy is formed by the vertices («;, ..., o) of even weights, and the other colour class by the vertices of odd
weight.

We note that the presence of the last column in the matrix A may be interpreted as labeling each vertex
(e, -, ) of the graph G, by a mark [3(% )’ which is 0 or 1. Equality (1) means that adjacent vertices of

vy

the graph are labeled differently, in other words, (1) is equivalent to saying that for each vertex («;, ..., o)
with the even number of 1’s (in the first colour class of the graph G,) the label [3(“1) o) is equal to some

Jees

v € {0, 1}, while for each vertex (cxl, s cxk) with odd number of 1’s (in the second colour class of G,) the
label ﬁ(% o ) is V. We write this as follows: for any vector («;, ..., o) € Vi

0 G.On V= [5(“1, )" (2)

In other words, the entire last column of the matrix A is determined by the value of v. Hence, there are only
two possible values of this column, one of these values being the inversion of the other one.
We next assume that there exists a combinatorially complete matrix B of order k of size 2k x (k +2).

Considering submatrices (B{, s Bi, B,l( +1) and (B%, s Bt, Bi +2), we obtain two matrices of size 2% x
(k + 1) which are combinatorially complete of order k. Next, by the above the columns Bi ,; and B,{ ., either

coincide or one column is the negation of the other one. In both cases we arrive at a contradiction, because
the consideration of the last two columns shows that the matrix B is not combinatorially complete of order 2.

Hence, the largest number of columns in a combinatorially complete matrix of order k is k + 1, which
shows thatn,,, (2") =k+ 1. O

()

max

1 /2
—-< r)’ m = 2r,
2 r

2
( r ), m=2r+1,
r—1

Let us now examine the case m > 2. In [8] the exact value n (m) for k = 2 was found:

m > 4.

We next consider the case k > 3.

Assertion 7. Letk > 3 andm > 2*. Then
ngzx (m) < ng:;xl) ([%]) + 1.
(k)

Proof. Let A be a combinatorially complete matrix of order k and size m xn, n = n_;, (m). The property
of being combinatorially complete is invariant under rearrangement of rows and columns of a matrix, and
hence we may assume that in the first column the first ¢ entries are 0, and the last m — t ones are 1, where
<t <m-2F1

Let A, and A, be the submatrices formed, respectively, by the first f and the last 71 — t rows and then -1
last columns of the matrix A (Fig. 1).

n—-1

0

t A
0

A= —
1

m-t DA
1
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Fig. 1
Since A is a combinatorially complete matrix of order k, it follows in particular that for any set of k

columns of the form All, At, ey Afk_l, 1 <i <i, <..<i_; < mn,thesecolumns contain any com-
bination (a;, ..., a;) € V. Besides, the combinations of the form (0, a,, ..., ;) are contained in the one
of the first t rows, while the combinations of the form (1, ays e ak) are contained in one of the rows with
numberst + 1,...,m.

This means that, for any set of k — 1 columns of the form Afl, - Atﬂ’l <i; <y <..<iy <nin
these columns any combination (a,, ..., a;) € V,_, occurs at least two times: in one of the first f rows and in
one of the last m — t rows. Hence, both the matrices A, and A, are combinatorially complete of order k — 1.

Each of these matrices has n1 — 1 columns, and hence, n — 1 < n* D () and n - 1 < 7D (m - t); that
is,

n< mln{ (k1) 1), n(k Y (m - t)} + 1.

It was noted above that the function #)_ (m) is nondecreasing and since either t < [m] orm—t < [ﬂ ],

max 2

it follows that mln{ (ke 1) ®, nkD (m — )} < nkD ([ ]) We thus arrive at the required inequality:

max max

o < ([2]) o1

As a corollary of this inequality we have the following estimate involving the function nfﬁix (m).

Assertion 8. Letk > 3 and m > 2*. Then
(k) (m) (2)

max max<|:2:/lz])+k 2.

Proof. We have [ [m/2) ] = [%], and hence Assertion 7 implies that

. om <2 ([ 2]) +2

We iteratively find that, foranyr = 1, 2, ..., k-2,

(k) (k=r) (| T
no (m)<n " ([?D +7r.
As aresult, for r = k — 2 we have

m
0 om < n®, ([55]) + k-2
O

) (m)weuse the asymptotic formula for n?_ (m).

In order to obtain an asymptotic estimate of the function n'* i

max

Assertion 9. Let k > 3 be a fixed number. Then, as m — 00,

k-3
(k) 7.4
max (m) <22k . %(14'0(1))

Proof. From Corollary 4 to Theorem 1 of [8] if follows that as m — oo

@ _ 2 : _
no (m) = o (1 +¢(m)), n%ljlgo ¢(m) = 0. (3)

Substituting this relation in the estimate from Assertion 8, we find that

(3]

A (my < 2. (1+ ¢p(m)) + k- 2.
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Taking into account that 7% — 1 < [2,%] < 3¢5 for k > 0, we obtain

_m_

2 5k=2

ffl‘;x(m) S——— - (1+¢(m)) +k-2<
n (1)
k3 2FT 22\ m
<A\l—- . 1-— 1+¢(m)) + (k-2 . 4
n%< m) (1 + ¢(m)) + ( M/ = @)
Since k > 3, we have ’ \/_ > 1, and hence, ﬁ e 0. Besides, =— B 0. Consequently, the
2 —
right-hand side of inequality (4) is 277 - \/% (1+¢(m)) = 257 . \/f:—; (1 +o0(1)) as m — oo. O

3 Lower estimates of mf:i)n (n)

(n), which follow from the upper estimates of n® (m) ob-

In this section we give lower estimates of mmm o

tained in the previous section.
We start with the equality n® (Zk) = k+1,k > 1 (see Assertion 6). This result can be formulated as the

max
following refinement of Corollary 2 to Assertion 3: if w (n, k) = 2k, then n = k + 1. In other words, among all
Boolean functions not admitting implicents of length not exceeding k, the functions with the smallest weight
(which s 2k) depend on at most k + 1 variables, this estimate being attainable. This estimate is attained at the
functions f, for which, by (2), the equality &, & ... ® o ® v = «;,; with some fixed v € {0, 1} holds for any
vector (&, ..., &) € E.Itis clear that there are only two such functions: f (x;, .., Xgy1) = X ®...© Xy,
and f (x;, . Xpyp) = X; @ ... ® X, ® 1. Hence, we have the following result.

Assertion 10. The smallest weight of a Boolean functions without implicents of k > 1 variables is 2k, this es-
timate is attained at the following two functions: f (X, ., Xgy1) = X3 ® o ® Xpups [ (%15 wor Xpyy) =
X 0.0x,, 01

An important particular case of Assertion 10 is the case k = n— 1. We claim that if a function has an implicent
of k variables, then it also has an implicent of k" variables for all k', n > k' > k. Indeed if g is an implicent
of length k of a function f (x;, ..., x,)and if x; is a dummy variable of g, then the function x; V g is also an

implicent of f of length k + 1:
f) X; = 1)
fe(xvg)= { l

f-9=1, x=0.
As a result, the expression ‘an n-place function does not have an implicent of n — 1 variables’ is equivalent
to the expression ‘an n-place function has no implicents of smaller number of variables’. Hence, using Asser-
tion 10 with k = n — 1 we reach the following result.

Corollary 3. Any n-place equiprobable Boolean function distinct from the functions f (xl, e xn) = x,0..8x,,
and f (x;, ., X,) =%, ®...® x, ® 1 has an implicent of smaller number of variables.

We note that this result may also be easily obtained from the results of [5].
Our next aim is to obtain an asymptotically exact formula for m? (n).

min

Assertion 11. The asymptotic equality holds as n — 00:

ﬁzn (n) ~ log,n.

Proof. We first show that m®) (n) — ocoasn — oo. Given any m, > 25 > 4, wesetn, = n) (m,).

max

Hence, n(z) (m,) < nforanyn > n,. In view of Assertion 5 the last inequality is equivalent to the inequality
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mC) (1) > my. In other words, for any m,, > 4 there exists #, such that

)
means thatm_; (1) — coasn — co.

The function nﬁix (m) is nondecreasing, and hence Assertion 6 implies that the minimal value of

n® (m) is 3. Inserting this value in Assertion 4, we have the following result: for any n > 4 there exists

max

m = 5 such that mgi)n (n) satisfies the inequalities

()

min

(n) > m, for all n > n,. But this

P (1

) (n) - 1) <n<n? (m(z) (n)). (5)

min max min

We have mffﬁ)n (n) — oo asn — 00, and hence it follows from the formula (3) in the proof of Assertion 9
and inequalities (5) that

2 @ 27 @
\/271~ (m(z.) (n) - 1) (1 o (mmin " 1)) <t 271-m®_ (n) (1 "o (mmi“ (”)))'
min min

Setting 8(m) = log, (1 + ¢ (m)) and taking log, of both sides, we get

1 1
(2) (2 (2)
m-> (n)—1- ElogZZﬂ - Elog2 (mmin (n) - 1) +4 (m (n) — 1) < log,n <

min min

< m(z) (n) - %logZZTI - %logzm(z) (n) + 96 (m(Z) (1’1)) i

min min min

and so,
@ 1-11 () 1)+ 68 (m® 1) < log,n <
M in (n)-1- 5108, (mmin (n) - ) + (mmin (n) - ) <log,n <
2 1 2 2
< mfni)n (n) - Elogszni)n n)+6 (mini)n (n)) .
Hence,
1o 1 log(mu-1) | 3(mu,-1) _ logn
Mg () 2myg () M () M)

(6)
_ logym@ (m) | 8(m3) )

(2) (2)

<1 .
2:myi () Min (1)

. B . _ @)
Further, we have 731_1)1(}0 ¢ (m) = 0, and so nlll_I)Igo log, (1 + ¢ (m)) = 0. Next, we recall that m (n) — ©o
asn — 00. Hence, making n — oo,

log, (m2) (n) -1 log,m® (n
5 (mfn)n (n)) —0,8 (mff,?n (n) - 1) -0, — ( 3 ) 5 0and —22min U (’2‘;‘“( ) — 0.
2- M in (7’1) 2 Miin (l’l)
As a result, using (6) we get mlg?(r;) =1+ o(1), the result required. O

(k)

Let us now estimate m_; (n) from below for k > 3.

Assertion 12. Let k > 3 be a fixed number. Then there exists n, such that, for alln > n,,

(k)

m: (n) > 2k - log,n.

Proof. From Assertion 9 it follows that, for any constant C > 1, there exists m,, such that, for all m > m,,

m 2k—3
n® (m)<C-2%7 . —. )

We extend the function ”,(:ix (m)toall x > 2k as follows: nfﬁix (x) = n® ([x]). It is clear that the func-

max

tion ngfix (x) is also nondecreasing. Besides, for any real x > 2¥ and any natural n, > k the inequality
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(k)

(x) < n, holds if and only if % ([x]) < n,. By Assertion 5 the last inequality is equivalent to the in-

nmax max
equality mg:i)n (ny) > [x]. The function mgfm (n) assumes only natural values, and consequently, mgfl)n (ny) >
[x] + 1 > x. Hence, if n’*)_(x) < n, then m®) (n,) > x.

Next, let8,, = C - 257 . \/E.Then
mm

PARE log,0,, =m+ 2. <log2C + 1%3 - %logzﬂ - %logzm) .

For sufficiently large m we have

k-3 1 1
log,C + — Elogz” - Elogzm <0,

and hence, 2572 . log,8,, < m.

The function n

(k)

1 (1) is nondecreasing, and now (7) implies that

n (2k72 . logzem) <n® (m) <@,

max

Hence, by the above, m*) (8,,) > 27 -log,6,,..

Setting n, (n) = 2k2. log,n, we have 0

m%

min

min

n- < n for all sufficiently large n. The function

1y(n) =

<

\/27log,n
(n), n > k > 1, is nondecreasing and hence,
(k) (k) k-2

mmin (7’1) = mmin (eno(n)) >2 : lOgZGnO(n) =

k-3

1 2
= 2. [ 1og,C + =log,~—
o () + (ogz + Slog,—

1
- Elogzn0 (n)) =

=252 log,n+2°7. logC+110gﬁ‘l(k_z)_ll"gbg" -
2 2 2% g 2 2 ==

k-3 1

. 1 1, 2 1
=27 . log,n <1 + @ . <log2C + Elog2 (k-2)- 510g2log2n>> .

) T2

It remains to observe that —— - (logZC + %logziﬂ_3 - % (k-2)- %logzlogzn) < Oforalln > n starting

1
log,

with some #,,. O
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