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Abstract: We study the circuit complexity of Boolean functions in an in�nite basis consisting of all character-
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function and the majority function of n variables for all integers n ⩾ 1 in this basis are ⌊ n+12 ⌋ and ⌊ n2⌋ + 1 re-
spectively. For themaximum circuit complexity of n-variable Boolean functions in this basis, we show that its
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1 Introduction
A Boolean function is called symmetric if any permutation of its variables does not change the value of the
function. Any n-variable symmetric function f is determined by a binary tuple (a0, a1, . . . , an), where ai = 1
i� the functionf equals 1 on inputs with i ones. For a functionf let us denote by k(f) the number of indices
i such that ai is equal to 1. From now on by symmetric functions we mean symmetric Boolean functions.

The Boolean function pn(x1, . . . , xn) = x1 + . . . + xn (mod 2) is called the parity function. The Boolean
functionmn(x1, . . . , xn) such that it equals to 1 i� the number of ones in an input is at least n/2 is called the
majority function.

Consider the Boolean cube {0, 1}n as a partially ordered set of tuples with the natural order of the Carte-
sian product (0 ⩽ 1). An antichain is a subset of the Boolean cube such that no two of its tuples are compara-
ble. An antichain function is a function that takes value 1 only on a certain antichain over the Boolean cube.
We denote by AC the set of all antichain functions [1]. This set is closed under two operations: substitution
of constants and identi�cation of variables, and any Boolean function may be expressed via functions from
the setAC and the operation of superposition.

Let two real functionsa(n) and b(n) of naturaln take positive values for all su�ciently largen.Wesay that
the order of growth of function a(n) is less than b(n) and denote this by a(n) = O(b(n)) if there exists a con-
stant c > 0 such that a(n) ⩽ cb(n) for all su�ciently large n. At the same time we say that the order of growth
of function b(n) is at least a(n) and denote this by b(n) = Ø(a(n)). If simultaneously a(n) = Ø(b(n)) and
a(n) = O(b(n)), then we say that the order of growth of a(n) equals b(n) and denote this by a(n) = È(b(n)).

For the in�nite AC basis we study circuits computing symmetric functions. The de�nition of the circuit
and other notations used in the paper may be found, e.g., in [4].

Let circuit complexity denote the number of gates in the circuit. Let complexity of a function denote the
minimum number of gates in the circuit computing this function. Let L(S) denote the complexity of a cir-
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cuit S and L(f) denote the complexity of a function f. Let the Shannon function denote the function L(n) =
max L(f), where maximum is taken over all n-variable Boolean functions f.

Lower bounds on circuit complexity in the AC basis have been studied in [1], [2], [5]. In [1] O. M. Kasim-
Zade had proved the bound Ø(n1/3) for the complexity of the n-variable parity function. This result leads to
the lower bound for the Shannon function: L(n) = Ø(n1/3). Later in [2] O. M. Kasim-Zade proved the lower
boundØ((n/ ln n)1/2) for the parity function and the Shannon function. By the extension of themethod used
in [1], the latter result was improved in [5] where the lower boundØ(√n)was obtained for the parity function,
themajority function and almost all Boolean functions of n variables. That is, the lower boundL(n) = Ø(√n)
for the Shannon function was established in theAC basis.

In Section 3 for any symmetric function we obtain the exact value of the circuit complexity in the AC
basis.

Theorem 1. For all natural n and for any symmetric function f(x1 . . . , xn)
L(f) = min (k(f), n − k(f) + 2).

By means of Theorem 1 it is easy to obtain the exact value of the circuit complexity in the AC basis for the
n-variable parity function and majority function.

Theorem 2. For all natural n
L(pn) = ⌊n + 12

⌋ , L(mn) = ⌊n2⌋ + 1.
This theorem is proved in Section 4.

As to the upper bounds, the estimate L(n) ⩽ n + 1 for the Shannon function was proved in [1] for all nat-
ural n. In [6] the stronger upper bound L(n) ⩽ nwas stated and the main ideas of the proof were shown. The
latter bound along with the lower bound following from Theorem 2 give the order of growth of the Shannon
function in theAC basis.

Theorem 3. In theAC basis L(n) = È(n).

2 Preliminaries
Denote by [n] the set of natural numbers {1, 2, . . . , n}.

Denote by x the tuple of arbitrary values of variables (x1, . . . , xn).The maximal Boolean n-tuple 1 =
(1, 1, . . . , 1) is called the top tuple of the Boolean cube, and the minimal Boolean n-tuple 0 = (0, 0, . . . , 0)
is called the bottom one. Similarly, for any subcube of a lower dimension its maximal andminimal tuples are
called the top and the bottom ones respectively.

For any P ⊆ [n], denote by xP a binary tuple x = (x1, . . . , xn) such that xp = 1 for p ∈ [n] i� p ∈ P.
The layer of the Boolean cube with the index t, where t = 0, 1, . . . , n, we de�ne as the set of all n-tuples

containing exactly t ones. Clearly, any such layer is the antichain in the Boolean cube. In these terms, the
support of a symmetric function f that equals 1 only on inputs with i1, . . . , ik(f) ones is a union of the layers
with the indices i1, . . . , ik(f) respectively.

We call a circuit reduced if the di�erent inputs of any gate are connected with di�erent gates of the circuit
and each gate computes a function other than the constant (see [2]). Note that for any circuit in theAC basis
of complexity s computing a function other than the constant there exists a reduced circuit of complexity at
most s in theAC basis computing the same function.

We call a numeration on circuit gates regular if each input of each circuit gate is connected to an output
of a gate with the smaller index or to a circuit input. It is known that a regular numerationmay be introduced
on any circuit (possibly, by several ways) [3].

From now on in the proofs of lower bounds we consider reduced circuits in theAC basis with �xed arbi-
trary regular numerations on their gates.
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Denote by el the gate with the index l, by gl the antichain function corresponding to this gate and by
ℎl the function computed on the output of the gate el. For a given input x denote by ℎk(x) the value of the
function ℎk.By input variables of a circuit we call the symbols of variablesx1, x2, . . . , xn assigned respectively
to n inputs of the circuit.

3 Proof of Theorem 1
Let us prove two lemmas.

Lemma 1. For all natural n for any symmetric function f(x1 . . . , xn) the inequality
L(f) ⩾ min (k(f), n − k(f) + 2) is true.

Lemma 2. For all natural n for any symmetric function f(x1 . . . , xn) the inequality
L(f) ⩽ min (k(f), n − k(f) + 2) is true.

First, in Section 3.1 we shortly describe the idea of the proof of Lemma 1. Then in Sections 3.2 – 3.3 we give a
detailed proof. Further, using the ideas from [6], we prove Lemma 2. The proofs of Lemmas 1 and 2 together
lead to the proof of Theorem 1.

3.1 Lemma 1: the idea of proof

In this section we explain the idea of the proof of the lower bound from Lemma 1 of a special case. For any
symmetric function f consider all circuits computing this function and having the following property: all
circuit inputs are connected to inputs of all gates of the circuit. (In Section 3.4 we show that any symmetric
function may be computed by a circuit of such type.) For any circuit Sf with the property described we prove
that the lower bound on its complexity is L(Sf) ⩾ k(f). This special case is a good example to demonstrate
roughly the idea of the proof of Lemma 1. Proving the lemma in Sections 3.2 – 3.3 in general case, we do not
suppose circuits to have the above property.

For the special case under study we determine the notion of a �rst non-zero gate on a given input. On a
given tuple á ∈ {0, 1}n let the gates ei1 , . . . , eik be all gates of the circuit Sf such that ℎij(á) = 1 for all j ∈ [k].
Then the gate em is called a �rst non-zero gate on the tuple á if it has the minimal index among the gates
ei1 , . . . , eik . Note that this de�nition is quite intuitive.

Take any chain C̃ consisting of n + 1 di�erent tuples of the cube {0, 1}n.The chain C̃ has the following
property: no gate of the circuit Sf occurs to be twice a �rst non-zero gate on two di�erent tuples of this chain.
Indeed, suppose the opposite: there is a �rst non-zero gate et on tuples â and ã of the chain C̃.Without loss
of generality suppose that the tuple â is less than the tuple ã. By the de�nition of a �rst non-zero gate, all
gates with the indices less than t output 0 on the tuples â and ã. That is, the antichain function gt which
corresponds to the gate et outputs 1 on a pair of two comparable tuples. This contradicts the fact that gt is an
antichain function.

From theproperty proved it follows that the complexity of the circuit Sf is less thenor equal to thenumber
of tuples of the chain C̃ such that �rst non-zero gates occur on these tuples. Note that if the functionf equals
1 on a given tuple, then there exists a �rst non-zero gate in the circuit Sf on this tuple. This leads to the lower
bound L(Sf) ⩾ k(f) on the circuit complexity.

Whenwe prove the above property we use the fact that the circuit Sf is of a special type: all circuit inputs
are connected with the inputs of the gate et corresponding to the function gt. In the general case a circuit
does not have such a property and the statement similar to above cannot be proved for an arbitrary chain.
Furthermore, in general case the notion of a �rst non-zero gate has to be de�ned in a more sophisticated
manner. These technical peculiarities allow to prove Lemma 1 in the general case basing on the main ideas
introduced above.
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3.2 General construction.

Proof of Lemma 1. Consider an arbitrary symmetric functionf(x1, . . . , xn) such that it equals 1 on the tuples
from k(f) di�erent layers of the cube {0, 1}n. Consider an arbitrary circuit S in the AC basis computing the
function f. Let L(S) = s and let e1, . . . , es be all the circuit gates. Antichain functions g1, . . . , gs are assigned
correspondingly to these gates. Let us prove the bound s ⩾ min (k(f), n − k(f) + 2).

To prove the lemma, we construct a chain C consisting of n + 1 di�erent tuples of the cube {0, 1}n. We
take the top and the bottom tuples of the cube as boundary tuples of the chainC, i.e. the tuples 1, 0 ∈ {0, 1}n.
In what follows we construct internal tuples of the chain.

Informally, we obtain internal tuples by moving in the cube in two directions: descending from the top
tuple or ascending from the bottom one. We descend as follows. In a current tuple of the chain, by a certain
algorithm,we choose its component equal to 1 and�ip its value. The tuple obtainedwe add to the chain. From
now on the value of an input variable that corresponds to the chosen component we put be equal to 0 and
further it will not be changed. Similarly, we ascend from the bottom tuple: we choose a certain component
equal to 0 in a current tuple and �ip its value. Thus, we obtain a new tuple of the chain C. We put be the
corresponding input variable equal to 1. Each time when we �x an input variable by some value we proceed
to a subcube of a smaller dimension and further we consider the top and the bottom tuples of this subcube.

Let us continue to describe the construction process in detail. To construct the chain, we consider the
gates of the circuit S in the order of a given regular numeration starting from the gate e1. The following pa-
rameters characterize the construction process.
– The number of the step i ∈ [s]; it is determined by a circuit gate which initiates the step.
– Constructing the chain, we simultaneously obtain two sets:Fi, Ti ⊆ [n]. These are the sets of the indices

of the inputs variables whose values after the i-th step we have put equal to 0 (Fi) and 1 (Ti) respectively.
We call an input variable of the circuit free with respect to a setA, whereA ⊆ [n], if its index belongs to
the set [n] \ A. During the chain construction we will consider free variables with respect to sets Fi ∪ Ti.
Informally, these are variables such that up to a certain moment we have not yet de�ne their values to by
0 or 1. We call circuit inputs free with respect to a setA, whereA ⊆ [n], if the variables assigned to these
inputs are free with respect to the setA.
On the i-th step we consider a subcube with the top tuple x[n]\Fi−1 and the bottom one xTi−1 and we con-
struct a new subcube with the top and bottom tuples x[n]\Fi and xTi respectively.

– Ei is a set of gates from the set {e1, . . . , ei} whose inputs may be connected only to outputs of gates with
smaller indices and to circuit inputs corresponding to input variables with the indices from the setFi∪ Ti.
For any iwe have Ei ⊆ {e1, . . . , ei}. On the i-th step we add a circuit gate to the set Ei if none of its inputs
are connected to circuit inputs free with respect to the set Fi ∪ Ti.

Note that the sets Fi, Ti and Ei are not decreasing in i. At the beginning of the construction we put i = 0,
F0 = T0 = ⌀, E0 = ⌀ and C = {0, 1} as mentioned above.

Now we de�ne the key notion of the proof.

De�nition 1. Consider the set of gatesE ⊆ {e1, . . . , es}. Consider an arbitrary inputá ∈ {0, 1}n of the circuit S.
Let er1 , . . . , erl be all circuit gates such that for any j ∈ [l]
1) ℎrj(á) = 1;
2) erj ∈ {e1, . . . , es} \ E.

We call the gate em �rst non-zero gate on the tuple áwith respect to the setE if it has theminimal index among
the gates er1 . . . , erl .
Sometimes when we discuss a �rst non-zero gate on a given input we will not specify with respect to what set
it is considered as far as it will be clear from the context.

We construct the chain in such away that for any i after the i-th step the followingproperties are ful�lled.

1. For all t, p ⩽ i: Ft ∩ Tp = ⌀ (i.e. we can not put a variable to be equal to 1 and later change it to 0; it was
mentioned earlier informally).
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2. For any gate ej ∈ {e1, . . . , ei}\Ei and for a function ℎj computed on the output of the gate ej the following
equality takes place:

ℎj(x[n]\Fi) = ℎj(xTi) = 0.
Property 2 plays a crucial role in the construction process. Informally, this property means that if we input
the top and the bottom tuples of a current subcube after the i-th step to the circuit inputs then all circuit gates
except the gates from the set Ei output 0 on these two tuples.

There are two stages in the construction of the chain.
Stage 1. The stage consists of s steps, by the number of circuit gates. Suppose i steps are done,we describe

the (i + 1)-th step.
At the end of the i-th step the �rst i circuit gates e1, e2, . . . , ei are considered. We have constructed a

certain set Fi which includes the indices of the input variables that we have put be equal to 0. Similarly,
we have constructed a set Ti consisting of the indices of the input variables that we have put be equal to 1.
The chainC contains the tuples 0, 1 ∈ {0, 1}n aswell as the tuples that we have obtained simultaneouslywith
constructing Fi and Ti. We have also constructed a set Ei. Now we consider the (n − |Fi| − |Ti|)-dimensional
subcube with the top and the bottom tuples x[n]\Fi and xTi respectively.

Starting the (i +1)-th step, we proceed to the gate ei+1.All possible cases are considered below. Note they
can not occur simultaneously.

1. The inputs of the gate ei+1 are connected directly to none of the free circuit inputs with respect to the set
Fi ∪ Ti. Let Ei+1 = Ei ∪ {ei+1}, Fi+1 = Fi, Ti+1 = Ti. The (i + 1)-th step is �nished.

2. An input of the gate ei+1 is connected directly to a free circuit input with respect to the set Fi ∪ Ti. Let a
variable xm, wherem ∈ [n] \ (Fi ∪ Ti), be assigned to this circuit input. Let us verify whether Property 2
is true for the gate ei+1, i.e. the equation ℎi+1(x[n]\Fi) = ℎi+1(xTi) = 0 takes place.
2.1. If Property 2 is true, then we put Ei+1 = Ei, Fi+1 = Fi, Ti+1 = Ti. The (i + 1)-th step is �nished.
2.2. Assume Property 2 for the gate ei+1 is not true for the top tuple of the current subcube (the bottom

tuple case will be described later). That is, ℎi+1(x[n]\Fi) = 1. For convenience let us divide this case
into two substeps.

2.2.1. At �rst we start with the gate ei+1. By the condition of the case 2.2, the gate ei+1 is a �rst non-zero
one on the tuple x[n]\Fi with respect to the set Ei. Let the above-mentioned variable xm be equal
to 0.
We will use some auxiliary notations: Fri+1, Eri+1 and later Tri+1, where r is a natural parameter.
For r = 1 let F1i+1 = Fi ∪ {m}. Let also Ti+1 = Ti. That is, we proceed to a subcube of a smaller
dimension n − |F1i+1| − |Ti+1|. We add the top tuple x[n]\F1i+1 of this subcube to the chain C. Then
we put E1i+1 be equal to the union of the set Ei and the set of gates ej, where j ⩽ i + 1, such that
whenwe put the value of the variablexm to be equal to some value, their inputs will be no longer
connected to any free circuit inputs with respect to the set F1i+1 ∪ Ti+1.

2.2.2. Further, we proceed to the gates ej, where j ⩽ i + 1. At �rst, we still consider the value of r to be
equal to 1.
Consider the gates ej, where j ⩽ i + 1 and ej ∉ Eri+1. Let us verify whether Property 2 is true for
them on the tuple x[n]\Fri+1 . Suppose we found gates such that Property 2 does not take place on
them. Let el be a gate with the minimal index among these gates.

Lemma 3. At least one input of the above-mentioned gate el is connected directly to a free circuit
input with respect to the set Fri+1 ∪ Ti+1.
Proof. For the function ℎl computed on the output of the gate el we have ℎl(x[n]\Fri+1) = 1,
ℎl(xTi+1) = 0. The value of the antichain function gl corresponding to the gate el is determined
by values on some circuit inputs as well as by values on the gates of two types:

1) gates eu such that eu ∉ Eri+1, where u < l,
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2) gates eu such that eu ∈ Eri+1, where u < l.

Values on the outputs of the 2-type gates are determined by values on the outputs of the 1-type
gates. Since l is minimal, all 1-type gates ej output 0 on the top and the bottom tuples of the
subcube. Therefore,2-typegates output the samevalues on these two tuples. That is, the function
gl outputs two di�erent values on a pair of tuples with the following property: in these tuples the
components corresponding to the values of gateswith indices smaller than l are equal. Therefore,
the values of some other components in these tuples should be di�erent. That is, there exists a
free circuit input with respect to the set Fri+1 ∪ Ti+1 and it is connected directly to an input of the
gate el. Lemma 3 is proved.

Let us proceed with an argument. By Lemma 3, the gate el is a �rst non-zero one on the tuple
x[n]\Fri+1 with respect to the setEri+1. Consider any free circuit inputwith respect to the setFri+1∪Ti+1
such that it is connected directly with some input of the gate el. Put a variable assigned to this
input to be equal to 0. That is, we add the index of this variable to the set Fri+1. The set obtained
we denote by Fr+1i+1 . That is, we proceed to the subcube of a smaller dimension. We add to the
chain C the top tuple of this subcube x[n]\Fr+1i+1 .
Let Er+1i+1 be equal to the union of the set Eri+1 and the set of all gates ej, where j ⩽ i + 1, such
that their inputs are no longer connected directly to any circuit inputs free with respect to the set
Fr+1i+1 ∪ Ti+1.

Further, we start a cycle: we perform the process described in 2.2.2 for all r = 2, . . . , q, where q is a
value of the parameter r such that Property 2 is true for all gates ej, where j ∈ [i + 1] and ej ∉ Eqi+1.
Note an important property that will be used further.

Lemma 4. Any gate ep, where p ∈ [i + 1], such that during the process described in 2.2 it was added
to the set Eri+1, where r ⩽ q, outputs 0 on all tuples of the (n − |Fri+1| − |Ti+1|)-dimensional subcube on
which gates ea, where a < p, ea ∉ Eri+1, output 0.
Proof. No inputs of the gate ep are connected to circuit inputs free with respect to the set Fri+1 ∪ Ti+1.
That is, this gate outputs the same value on all above-mentioned tuples. SinceTi+1 = Ti, it outputs 0
on the bottom tuple of the subcube. Hence, this gate also outputs 0 on all tuples described. Lemma 4
is proved.

After all above actions are performed we put Fi+1 = Fqi+1, Ei+1 = Eqi+1. The (i + 1)-th step is �nished.
Now we consider the last possible case.

2.3. Let Property 2 for the gate ei+1 be not true on the bottom tuple of the subcube: ℎi+1(xTi) = 1.
Lemma 5. Cases 2.2 and 2.3 cannot occur simultaneously.

Proof. Suppose the opposite. For all gates ej ∉ Ei, where j < i + 1, functions ℎj output 0 on the
tuples x[n]\Fi and xTi . For all gates ej ∈ Ei with j < i+1 functions ℎj output the same on both tuples.
The tuplesx[n]\Fi andxTi are comparable. By the conditions of the case 2, there is an input of the gate
ei+1 which is connected to a circuit input such that it has di�erent values in these two tuples. Hence,
the function gi+1 outputs 1 on a pair of comparable tuples that di�er at least in one component. This
contradicts the fact that gi+1 is an antichain function. Lemma 5 is proved.

Now we return to the Case 2.3. It is symmetrical to the Case 2.2. So, we proceed similarly with the
only di�erence that we let free variables be equal to ones instead of zeros. First, put a variable xk be
equal to 1 and T1i+1 = Ti ∪ {k} (using the notation introduced in the Case 2.2). Put Fi+1 = Fi. That
is, we proceed to a subcube of a dimension n − |Fi+1| − |Ti+1|. We add the tuple xTi+1 to the chain
C. Then, similarly to the Case 2.2, we perform the cycle described in 2.2.2 to construct respectively
the sets T2i+1, T3i+1 and so on, until for some v we obtain that Property 2 is true for all gates ej, with
j ⩽ i + 1 such that ej ∉ Evi+1. Then we put Ti+1 = Tvi+1, Ei+1 = Evi+1. The (i + 1)-th step is �nished.
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If as a result of Stage 1 the values of all input variables became �xed, then the chain C consisting of n + 1
tuples will be constructed and we �nish the process.

Suppose we have performed s steps described in the Cases 1 and 2 of Stage 1. That is, we have considered
all s gates of the circuit S but the chain is still not constructed. After the s-th step we has obtained the sets Fs,
Ts and Es. For simplicity, from now on we omit indices and write F, T and E respectively. Now we proceed to
Stage 2.

Stage 2. The original n-dimensional cube is restricted to a subcube of a dimension n− |F| − |T| such that
all the circuit gates e1, . . . , es, except those from the set E, output 0 on the top tuple x[n]\F and on the bottom
one xT of this subcube. LetT0 = T. Then we add toT0 the indices of variables from the set [n] \ (F ∪ T). That
is, we obtain the sets T1, T2 and so on as follows:

1) if i ⩾ 0 and there is no �rst non-zero gate on the tuple xTi with respect to the set E, then we add to the set
Ti the index of any variable from the set [n] \ (F ∪ Ti). We obtain a setTi+1 and a tuple xTi+1 which we add
to the chain;

2) if i ⩾ 0 and there exists a �rst non-zero gate on the tuple xTi with respect to the set E, then, similarly to
the proof of Lemma 3, it is easy to show that there exists an input of this gate connected to a circuit input
free with respect to the set [n] \ (F ∪ Ti). We put the free input variable corresponding to that circuit input
to be equal to 1. Thus we obtain a set Ti+1 and a new tuple xTi+1 which we add to the chain.

If during the above process when we add a variable to the set Ti and obtain a gate ed such that its inputs are
no longer connected to circuit inputs free with respect to the set F ∪ Ti, then we put E = E ∪ {ed}. Clearly,
all such gates have a property similar to one from Lemma 4. Note that each time we consider a �rst non-zero
gate with respect to a current set E.

We repeat the above process until all free input variables became �xed to some values, i.e. until we con-
struct the chain required. Note that in Stage 2 we choose the set T to �x the idea, we could also choose the
set F and put variables to be equal to zeros respectively.

When constructing the chainCwe feed to the circuit inputs only tuples of typesxT and x[n]\F(for brevity,
indices are omitted). These tuples are comparable, since on each step T ⊆ [n] \ F. Thus, the set C is indeed
a chain.

3.3 Lemma 1: completion of the proof.

The chain C has the following property.

Lemma 6. None of the gates of the circuit S occur to be �rst non-zero (with respect to the corresponding sets)
twice on the tuples of the chain C.

Proof. The proof is by contradiction. Without loss of generality that assume that the tuple xP is added to the
chain on the step b and the tuple xP� is added on the step c, where b < c. On these steps the sets Eb and Ec
are constructed. Moreover, Eb ⊆ Ec. Assume there is an index t ∈ [s] such that the gate et is a �rst non-zero
gate on the tuples xP and xP� with respect to the corresponding sets. In particular, ℎt(xP) = ℎt(xP�) = 1. For
any gate ej ∉ Ec, where j < t, by the de�nition of �rst non-zero gate (with respect to the set Ec and hence,
the set Eb) the following equality takes place: ℎj(xP) = ℎj(xP�) = 0. Also for any gate ej ∈ Ec \ Eb, where
j < t, by the property from Lemma 4, we obtain: ℎj(xP) = ℎj(xP�) = 0. Values of gates ej ∈ Eb, where j < t,
are determined by values of other gates with smaller indices. Therefore, values of any gates with the indices
less than t are equal on the tuples xP� and xP. By the construction, the tuple xP� di�ers from the tuple xP by
the value of at least one component corresponding to an input variable such that it is connected directly with
an input of the gate et.

That is, the antichain function gt corresponding to the gate et outputs 1 on a pair of comparable tuples.
This contradicts the fact that gt is an antichain function. Lemma 6 is proved.
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Let us �nish the proof of Lemma 1. Recall that the constructed chain C contains n + 1 tuplessssssssss of the
cube {0, 1}n. The circuit outputs the same value on all tuples of C such that there are no �rst non-zero gates
on themwith respect to a corresponding set. Denote this value by a ∈ {0, 1}. There exists a �rst non-zero gate
on any tuple of the chain on which the circuit outputs 1−a. The functionf(x1, . . . , xn) takes value 1 on k(f)
tuples of this chain and value 0 on n + 1 − k(f) tuples. There are two possible cases.

1. If a = 0, then for any tuple on which the circuit outputs 1 there exists a �rst non-zero gate in the circuit.
That is, there are �rst non-zero gates onk(f) tuples of the chainC. By Lemma6, all these gates are di�erent.
Therefore, L(S) ⩾ k(f).

2. If a = 1, then for any tuple on which the circuit outputs 0 there exists a �rst non-zero gate in the circuit.
That is, there are �rst non-zero gates onn+1−k(f) tuples of the chainC. Similarly, by Lemma6,we obtain:
L(S) ⩾ n+ 1 − k(f).Moreover, the last circuit gate es is not the �rst non-zero one, i.e. if there is a �rst non-
zero gate on a tuple, then the circuit outputs 0 on it, and the gate es as well. Therefore, L(S) ⩾ n+2−k(f).

We have shown that L(S) ⩾ min (k(f), n − k(f) + 2). Since the circuit S is arbitrary, we obtain the similar
inequality for L(f). Lemma 1 is completely proved.

3.4 Proof of Lemma 2.

Consider an arbitrary symmetric Boolean functionf(x1, . . . , xn).We split the proof into two parts. In the �rst
one we will prove the bound L(f) ⩽ k(f) and then we will show the bound L(f) ⩽ n − k(f) + 2. These two
bounds together will give us the statement required.

Proof. 1. Let the function f be equal to 1 on layers with indices i1, . . . , ik(f), where i1 < . . . < ik(f).
Recall that byxwedenote a set of values of variables (x1, . . . , xn).For a functionf, for any t ∈ {i1, . . . , ik(f)}
wede�ne a functionℎt(x) as follows:ℎt(x) = 1 i�∑np=1 xp = it.Clearly, all the functionsℎt are antichains
since they are characteristic functions of layers of the cube.
Denote by y a set of values of variables (y1, . . . , yk(f)−1).
Let M1 be a set of tuples (y, x) such that three properties take place simultaneously: 1) there exists j ∈

[k(f) − 1] such that yj = 1; 2) yq = 0 for all q ̸= j; 3)
n
∑p=1 xp = ij. Let M2 be a set of tuples (y, x) such

that the following properties take place: yq = 0 for all q ∈ [k(f) − 1] and∑np=1 xp = ik(f).
De�ne a function g of k(f) − 1 + n variables y1 . . . , yk(f)−1, x1 . . . , xn as follows: g(y, x) = 1 i� the
tuples (y, x) belong to the setM1 ⊔M2.
It is easy to see that the function g is antichain. Indeed, consider two tuples from the support of g :
(y1, x1) ̸= (y2, x2). If (y1, x1), (y2, x2) ∈ M1 and y1 ̸= y2, then the tuples are incomparable. If
(y1, x1), (y2, x2) ∈ M1 and y1 = y2, then the indices of the components where ij ones appear in the
tuple x1 di�er from those in the tuple x2. That is, the tuples (y1, x1) and (y2, x2) are incomparable. If
(y1, x1), (y2, x2) ∈ M2, then, similarly to the previous case, it is easy to see that the tuples are incompa-
rable. If without loss of generality (y1, x1) ∈ M1, (y2, x2) ∈ M2, then y1 > y2 and there are more ones
in x2 than in x1. Therefore, the tuples (y1, x1), (y2, x2) are incomparable.
Let us compute the function f(x) as follows:

f(x) = g (ℎ1(x), . . . , ℎk(f)−1(x), x) . (1)

That is, if we feed to the function g the characteristic functions of the layers whose union forms the
support of f, except the function ℎk(f), then we obtain a realization of the function f.
Let us verify the equality (1). Consider an arbitrary tuple á = (á1, . . . , án). There are two possibilities.
A. f(á) = 1, then ∑np=1 áp ∈ {i1, . . . , ik(f)}. If ∑np=1 áp ⩽ ik(f)−1, then there exists an index j ∈ [k(f) −

1] such that ℎj(á) = 1 and ℎq(á) = 0, and ∑np=1 áp = ij for all q ̸= j. Thus, the tuple (y, á),
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where (y1, . . . , yk(f)−1, á) = (ℎ1(á), . . . , ℎk(f)−1(á), á) , belongs to the setM1. Hence, g(y, á) = 1. If
∑np=1 áp = ik(f), then yq = ℎq(á) = 0 for all q ∈ [k(f) − 1]. That is, the tuple (y, á) belongs to the set
M2 and therefore g(y, á) = 1.

B. f(á) = 0, then ℎj(á) = 0 for all j ∈ [k(f)]. In particular, ℎk(f)(á) = 0. Thus, ∑np=1 áp ̸= ik(f). It
follows that the tuple (y, á) = (ℎ1(á), . . . , ℎk(f)−1(á), á) belongs neither toM1, nor toM2. Therefore,
g(y, á) = 0.

From the equality (1) it follows that the function f may be computed in the AC basis by a circuit of the
complexity at most k(f).
That is, for any symmetric function f there exists a circuit S of the complexity L(Sf) ⩽ k(f) such that it
computes f and has the following property: for any gate of the circuit its inputs are connected to all the
circuit inputs.

2. From the proof of the Case 1 it follows that for the function f the inequality L(f) ⩽ k(f), where k(f) =
n + 1 − k(f), takes place. That is, the functionfmay be computed by a circuit of the complexity at most
n + 1 − k(f). By a gate computing negation, from any circuit computing fwe can easily obtain a circuit
computing f. That is, L(f) ⩽ n − k(f) + 2.
Hence, for an arbitrary symmetric function f, we have shown that L(f) ⩽ min (k(f), n − k(f) + 2). So,

Lemma 2 is proved.

The proofs of Lemmas 1 and 2 together give the proof of Theorem 1.

4 Proof of Theorem 2
For themajority function k(mn) = ⌊ n2⌋+1. By Theorem 1, we obtain: L(mn) = ⌊ n2⌋+1. For the parity function
k(pn) = ⌊ n+12 ⌋. Correspondingly, by Theorem 1, we obtain: L(pn) = ⌊ n+12 ⌋ . This proves Theorem 2.

Note that the maximum of the upper bound from Lemma 2 is achievable: for odd n it is equal to the
complexities of the functions mn, pn and pn, and for even n, it is equal to the complexities of the functions
mn and pn.
Acknowledgment: The author is grateful to professor O.M. Kasim-Zade for stating the problem and constant
attention. The author is also grateful to A. V. Kochergin for helpful comments.
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