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1 Introduction

A Boolean function is called symmetric if any permutation of its variables does not change the value of the
function. Any n-variable symmetric function f is determined by a binary tuple (a,, a;, . . ., a,), where g; = 1
iff the function f equals 1 on inputs with i ones. For a function f let us denote by k( f) the number of indices
i such that g, is equal to 1. From now on by symmetric functions we mean symmetric Boolean functions.

The Boolean function p,(x;,...,x,) = x; +...+ x,, (mod 2) is called the parity function. The Boolean
function m, (x,, ..., x,;) such that it equals to 1 iff the number of ones in an input is at least n/2 is called the
majority function.

Consider the Boolean cube {0, 1}" as a partially ordered set of tuples with the natural order of the Carte-
sian product (0 < 1). An antichain is a subset of the Boolean cube such that no two of its tuples are compara-
ble. An antichain function is a function that takes value 1 only on a certain antichain over the Boolean cube.
We denote by AC the set of all antichain functions [1]. This set is closed under two operations: substitution
of constants and identification of variables, and any Boolean function may be expressed via functions from
the set AC and the operation of superposition.

Let two real functions a(n) and b(n) of natural n take positive values for all sufficiently large n. We say that
the order of growth of function a(n) is less than b(n) and denote this by a(n) = O(b(n)) if there exists a con-
stant ¢ > 0 such that a(n) < cb(n) for all sufficiently large n. At the same time we say that the order of growth
of function b(n) is at least a(n) and denote this by b(n) = Q(a(n)). If simultaneously a(n) = Q(b(n)) and
a(n) = O(b(n)), then we say that the order of growth of a(n) equals b(n) and denote this by a(n) = ©(b(n)).

For the infinite AC basis we study circuits computing symmetric functions. The definition of the circuit
and other notations used in the paper may be found, e.g., in [4].

Let circuit complexity denote the number of gates in the circuit. Let complexity of a function denote the
minimum number of gates in the circuit computing this function. Let L(S) denote the complexity of a cir-
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cuit S and L( f) denote the complexity of a function f. Let the Shannon function denote the function L(n) =
max L( f), where maximum is taken over all #n-variable Boolean functions f.

Lower bounds on circuit complexity in the AC basis have been studied in [1], [2], [5]. In [1] O. M. Kasim-
Zade had proved the bound Q(nl/ %) for the complexity of the n-variable parity function. This result leads to
the lower bound for the Shannon function: L(n) = Q(n'/®). Later in [2] 0. M. Kasim-Zade proved the lower
bound Q((n/ In n)"/?) for the parity function and the Shannon function. By the extension of the method used
in [1], the latter result was improved in [5] where the lower bound Q(~/n) was obtained for the parity function,
the majority function and almost all Boolean functions of nn variables. That is, the lower bound L(n) = Q(~+/n)
for the Shannon function was established in the AC basis.

In Section 3 for any symmetric function we obtain the exact value of the circuit complexity in the AC
basis.

Theorem 1. For all natural n and for any symmetric function f(x, ..., x,)
L(f) = min (k(f), n — k(f) + 2).

By means of Theorem 1 it is easy to obtain the exact value of the circuit complexity in the AC basis for the
n-variable parity function and majority function.

L(p,) = V;lJ’ Lom,) = PJ + 1L

This theorem is proved in Section 4.

As to the upper bounds, the estimate L(#1) < n + 1 for the Shannon function was proved in [1] for all nat-
ural ». In [6] the stronger upper bound L(rn) < n was stated and the main ideas of the proof were shown. The
latter bound along with the lower bound following from Theorem 2 give the order of growth of the Shannon
function in the AC basis.

Theorem 2. For all naturaln

Theorem 3. In the AC basis L(n) = O(n).

2 Preliminaries

Denote by [#] the set of natural numbers {1, 2,...,n}.

Denote by x the tuple of arbitrary values of variables (x,, ..., x,,).The maximal Boolean n-tuple 1 =
(1,1,...,1) is called the top tuple of the Boolean cube, and the minimal Boolean n-tuple 0 = (0, O, ..., 0)
is called the bottom one. Similarly, for any subcube of a lower dimension its maximal and minimal tuples are
called the top and the bottom ones respectively.

For any P < [n], denote by x” a binary tuple x = (x1...,x,)such thatx, = 1for p € [n] iff p € P.

The layer of the Boolean cube with the index t, where t = 0, 1,. .., n, we define as the set of all n-tuples
containing exactly ¢ ones. Clearly, any such layer is the antichain in the Boolean cube. In these terms, the
support of a symmetric function f that equals 1 only on inputs with i, ..., i ) ones is a union of the layers
with the indices i}, .. ., iy ;) respectively.

We call a circuit reduced if the different inputs of any gate are connected with different gates of the circuit
and each gate computes a function other than the constant (see [2]). Note that for any circuit in the AC basis
of complexity s computing a function other than the constant there exists a reduced circuit of complexity at
most s in the AC basis computing the same function.

We call a numeration on circuit gates regular if each input of each circuit gate is connected to an output
of a gate with the smaller index or to a circuit input. It is known that a regular numeration may be introduced
on any circuit (possibly, by several ways) [3].

From now on in the proofs of lower bounds we consider reduced circuits in the AC basis with fixed arbi-
trary regular numerations on their gates.
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Denote by e, the gate with the index I, by g; the antichain function corresponding to this gate and by
h; the function computed on the output of the gate e;. For a given input x denote by A, (x) the value of the
function h, . By input variables of a circuit we call the symbols of variables x,, x,, . . ., x,, assigned respectively
to n inputs of the circuit.

3 Proof of Theorem 1

Let us prove two lemmas.

Lemmal. For all natural n for any symmetric function f(x,...,x,) the inequality

L(f) = min (k(f), n— k(f) + 2) is true.

Lemma2. For all natural n for any symmetric function f(x,...,x,) the inequality
L(f) < min (k(f), n— k(f) + 2) is true.

First, in Section 3.1 we shortly describe the idea of the proof of Lemma 1. Then in Sections 3.2 — 3.3 we give a
detailed proof. Further, using the ideas from [6], we prove Lemma 2. The proofs of Lemmas 1 and 2 together
lead to the proof of Theorem 1.

3.1 Lemma 1: the idea of proof

In this section we explain the idea of the proof of the lower bound from Lemma 1 of a special case. For any
symmetric function f consider all circuits computing this function and having the following property: all
circuit inputs are connected to inputs of all gates of the circuit. (In Section 3.4 we show that any symmetric
function may be computed by a circuit of such type.) For any circuit S + with the property described we prove
that the lower bound on its complexity is L(S f) > k(f). This special case is a good example to demonstrate
roughly the idea of the proof of Lemma 1. Proving the lemma in Sections 3.2 — 3.3 in general case, we do not
suppose circuits to have the above property.

For the special case under study we determine the notion of a first non-zero gate on a given input. On a
given tuple a € {0, 1}" let the gates e .. .»e; beall gates of the circuit S, such that hij (a) = 1forall j € [k].
Then the gate e, is called a first non-zero gate on the tuple « if it has the minimal index among the gates
€ 5.-er€ . Note that this definition is quite intuitive.

Take any chain C consisting of n + 1 different tuples of the cube {0, 1}".The chain C has the following
property: no gate of the circuit S, occurs to be twice a first non-zero gate on two different tuples of this chain.
Indeed, suppose the opposite: there is a first non-zero gate e, on tuples  and y of the chain C. Without loss
of generality suppose that the tuple f is less than the tuple y. By the definition of a first non-zero gate, all
gates with the indices less than ¢ output 0 on the tuples  and y. That is, the antichain function g, which
corresponds to the gate e, outputs 1 on a pair of two comparable tuples. This contradicts the fact that g, is an
antichain function.

From the property proved it follows that the complexity of the circuit S; is less then or equal to the number
of tuples of the chain C such that first non-zero gates occur on these tuples. Note that if the function f equals
1 on a given tuple, then there exists a first non-zero gate in the circuit S ; on this tuple. This leads to the lower
bound L(S;) > k(f) on the circuit complexity.

When we prove the above property we use the fact that the circuit S £ is of a special type: all circuit inputs
are connected with the inputs of the gate e, corresponding to the function g,. In the general case a circuit
does not have such a property and the statement similar to above cannot be proved for an arbitrary chain.
Furthermore, in general case the notion of a first non-zero gate has to be defined in a more sophisticated
manner. These technical peculiarities allow to prove Lemma 1 in the general case basing on the main ideas
introduced above.
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3.2 General construction.

Proof of Lemma 1. Consider an arbitrary symmetric function f(x,, ..., x,) such thatit equals 1 on the tuples
from k(f) different layers of the cube {0, 1}". Consider an arbitrary circuit S in the AC basis computing the
function f. Let L(S) = sand lete,, ..., e, be all the circuit gates. Antichain functions g, ..., g, are assigned
correspondingly to these gates. Let us prove the bound s > min (k(f), n — k(f) + 2).

To prove the lemma, we construct a chain C consisting of n + 1 different tuples of the cube {0, 1}"'. We
take the top and the bottom tuples of the cube as boundary tuples of the chain C, i.e. the tuples 1, 0 € {0, 1}".
In what follows we construct internal tuples of the chain.

Informally, we obtain internal tuples by moving in the cube in two directions: descending from the top
tuple or ascending from the bottom one. We descend as follows. In a current tuple of the chain, by a certain
algorithm, we choose its component equal to 1 and flip its value. The tuple obtained we add to the chain. From
now on the value of an input variable that corresponds to the chosen component we put be equal to 0 and
further it will not be changed. Similarly, we ascend from the bottom tuple: we choose a certain component
equal to 0 in a current tuple and flip its value. Thus, we obtain a new tuple of the chain C. We put be the
corresponding input variable equal to 1. Each time when we fix an input variable by some value we proceed
to a subcube of a smaller dimension and further we consider the top and the bottom tuples of this subcube.

Let us continue to describe the construction process in detail. To construct the chain, we consider the
gates of the circuit S in the order of a given regular numeration starting from the gate e,. The following pa-
rameters characterize the construction process.

— The number of the step i € [s]; it is determined by a circuit gate which initiates the step.
- Constructing the chain, we simultaneously obtain two sets: F;, T; € [n]. These are the sets of the indices
of the inputs variables whose values after the i-th step we have put equal to 0 (F;) and 1 (T;) respectively.

We call an input variable of the circuit free with respect to a set A, where A C [n], if its index belongs to

the set [n] \ A. During the chain construction we will consider free variables with respect to sets F; U T;.

Informally, these are variables such that up to a certain moment we have not yet define their values to by

0 or 1. We call circuit inputs free with respect to a set A, where A C [n], if the variables assigned to these

inputs are free with respect to the set A.

On the i-th step we consider a subcube with the top tuple x ! and the bottom one x

struct a new subcube with the top and bottom tuples x"\F and T respectively.

- E,is aset of gates from the set {e,, . . ., e;} whose inputs may be connected only to outputs of gates with
smaller indices and to circuit inputs corresponding to input variables with the indices from the set F, UT;.

For any i we have E; C {e,,...,¢;}. On the i-th step we add a circuit gate to the set E; if none of its inputs

are connected to circuit inputs free with respect to the set F; U T;.

T,

[I\F- -1 and we con-

Note that the sets F;, T; and E; are not decreasing in i. At the beginning of the construction we puti = 0,
Fy=T,=&,E, = @ and C = {0, 1} as mentioned above.
Now we define the key notion of the proof.

Definition 1. Consider the set of gates E € {e,, ..., e,}. Consider an arbitrary input & € {0, 1}" of the circuit S.
Lete, ,...,e, beall circuit gates such that for any j € 1

1) hrj (@) = 1;

2) e, € {e,....e} \ E.
We call the gate e,,, first non-zero gate on the tuple & with respect to the set E if it has the minimal index among
the gatese, ...,e,.

Sometimes when we discuss a first non-zero gate on a given input we will not specify with respect to what set
it is considered as far as it will be clear from the context.
We construct the chain in such a way that for any i after the i-th step the following properties are fulfilled.

1. Forallt, p <i:F,NT, = @ (i.e. we can not put a variable to be equal to 1 and later change it to 0; it was
mentioned earlier informally).
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2. Foranygatee; € {e)>...,e;}\ E;and for a function h ; computed on the output of the gate e; the following
equality takes place:

h(x"™\) = hy(x") = 0.

Property 2 plays a crucial role in the construction process. Informally, this property means that if we input
the top and the bottom tuples of a current subcube after the i-th step to the circuit inputs then all circuit gates
except the gates from the set E; output 0 on these two tuples.

There are two stages in the construction of the chain.

Stage 1. The stage consists of s steps, by the number of circuit gates. Suppose i steps are done, we describe
the (i + 1)-th step.

At the end of the i-th step the first i circuit gates e, e,, ..., e; are considered. We have constructed a
certain set F; which includes the indices of the input variables that we have put be equal to 0. Similarly,
we have constructed a set T; consisting of the indices of the input variables that we have put be equal to 1.
The chain C contains the tuples 0, 1 € {0, 1}" as well as the tuples that we have obtained simultaneously with
constructing F; and T;,. We have also constructed a set E;. Now we consider the (n — |F;| — |T}|)-dimensional
subcube with the top and the bottom tuples x"\E and xl.T respectively.

Starting the (i + 1)-th step, we proceed to the gate e, ,. All possible cases are considered below. Note they
can not occur simultaneously.

i+1°

1. The inputs of the gate e;,, are connected directly to none of the free circuit inputs with respect to the set
F,UT,.LetE,, =E;U{e,,},F,, =F,T,, =T, The (i + 1)-th step is finished.

2. Aninput of the gate e;_, is connected directly to a free circuit input with respect to the set F, U T;. Let a
variable x,,, where m € [n] \ (F; U T;), be assigned to this circuit input. Let us verify whether Property 2
is true for the gate e, ,, i.e. the equation h;,, (x"™\/') = k.., (x"") = 0 takes place.

2.1. If Property 2is true, then we put E;,, = E;, F;,; = F;, T;,; = T;. The (i + 1)-th step is finished.

2.2. Assume Property 2 for the gate e, , is not true for the top tuple of the current subcube (the bottom
tuple case will be described later). That is, h; +1(x["]\F ') = 1. For convenience let us divide this case
into two substeps.

2.2.1. At first we start with the gate e
one on the tuple x"\f
to 0.
We will use some auxiliary notations: Firﬂ, E:H and later Tirﬂ, where r is a natural parameter.
Forr = 1let F!

.1 = F; U{m}. Letalso T;,, = T;. That is, we proceed to a subcube of a smaller

dimension n — |F1.1+1| — |T;,1|. We add the top tuple x"\Eit of this subcube to the chain C. Then

we put Ei1+1 be equal to the union of the set E; and the set of gates e, where j < i + 1, such that

when we put the value of the variable x,, to be equal to some value, their inputs will be no longer
connected to any free circuit inputs with respect to the set F,,, U T, .

2.2.2. Further, we proceed to the gates e i» where j < i + 1. At first, we still consider the value of r to be
equal to 1.

Consider the gates € where j < i+ 1and e ¢ E

them on the tuple K\ Suppose we found gates such that Property 2 does not take place on

them. Let ¢, be a gate with the minimal index among these gates.

;+1- BY the condition of the case 2.2, the gate e, is a first non-zero
with respect to the set E;. Let the above-mentioned variable x,, be equal

7

i+1- Let us verify whether Property 2 is true for

Lemma 3. At least one input of the above-mentioned gate e is connected directly to a free circuit
input with respect to the set F;, | U T;,,.

Proof. For the function h; computed on the output of the gate ¢, we have hl(x[”]\Ffr“) =1,
hl(xT"“) = 0. The value of the antichain function g, corresponding to the gate ¢, is determined
by values on some circuit inputs as well as by values on the gates of two types:

1) gatese, suchthate, ¢ E;, , whereu <,
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2.3.

2) gatese, suchthate, € E;, , whereu < I.

i+1°

Values on the outputs of the 2-type gates are determined by values on the outputs of the 1-type
gates. Since [ is minimal, all 1-type gates e ; output 0 on the top and the bottom tuples of the
subcube. Therefore, 2-type gates output the same values on these two tuples. That is, the function
g; outputs two different values on a pair of tuples with the following property: in these tuples the
components corresponding to the values of gates with indices smaller than / are equal. Therefore,
the values of some other components in these tuples should be different. That is, there exists a
free circuit input with respect to the set F;,, U T}, and it is connected directly to an input of the

gate ¢;. Lemma 3 is proved. O

Let us proceed with an argument. By Lemma 3, the gate ¢; is a first non-zero one on the tuple
£V with respect to the set E., | . Consider any free circuit input with respect to the set F, | UT;,
such that it is connected directly with some input of the gate e;. Put a variable assigned to thlS
input to be equal to 0. That is, we add the index of this variable to the set F;, . The set obtained
we denote by F.'!. That is, we proceed to the subcube of a smaller dimension. We add to the
chain C the top tuple of this subcube KlPIVE
Let E/'! be equal to the union of the set E,, and the set of all gates e;, where j < i+ 1, such
that their inputs are no longer connected dlrectly to any circuit inputs free with respect to the set
F 1T++11 U Tz+1
Further, we start a cycle: we perform the process described in 2.2.2forallr = 2,...,q, wheregis a
value of the parameter r such that Property 2 is true for all gates e where j € [i + 1] and e ¢ El RE

Note an important property that will be used further.

Lemma 4. Any gate e, , where p € [i + 1], such that during the process described in 2.2 it was added
to the set E. |, where r q> outputs 0 on all tuples of the (n — |F] ol = 1Ty |)-dimensional subcube on
which gates e,, Wherea < p,e, ¢ E; |, output 0.

i+1°

Proof. No inputs of the gate e, are connected to circuit inputs free with respect to the set F;, | U T},
That is, this gate outputs the same value on all above-mentioned tuples. Since T}, = T;, it outputs 0
on the bottom tuple of the subcube. Hence, this gate also outputs 0 on all tuples described. Lemma 4

is proved. O

After all above actions are performed we put F,,; = FZA, E, = E?+1- The (i + 1)-th step is finished.
Now we consider the last possible case.

Let Property 2 for the gate e;,, be not true on the bottom tuple of the subcube: A, , (xT) = 1.

i+1

Lemma 5. Cases 2.2 and 2.3 cannot occur simultaneously.

Proof. Suppose the opposite. For all gates e; ¢ E;, where j < i + 1, functions h output 0 on the

[n\F;

tuples x and x". For all gatese; € E; w1th j < i+1functions h output the same on both tuples.

The tuples x"VF and xT are comparable By the conditions of the case 2, there is an input of the gate
e;,; which is connected to a circuit input such that it has different values in these two tuples. Hence,
the function g;,, outputs 1 on a pair of comparable tuples that differ at least in one component. This

contradicts the fact that g;,, is an antichain function. Lemma 5 is proved. O

Now we return to the Case 2.3. It is symmetrical to the Case 2.2. So, we proceed similarly with the
only difference that we let free variables be equal to ones instead of zeros. First, put a variable x; be
equal to 1 and T, +1 = T; U {k} (using the notation introduced in the Case 2.2). Put F,,; = F,. That
is, we proceed to a subcube of a dimension n — |F,,,| — |T;,,|. We add the tuple x Tin to the chain
C. Then, similarly to the Case 2.2, we perform the cycle described in 2.2.2 to construct respectively
the sets T*> T 1 and so on, until for some v we obtain that Property 2 is true for all gates e with

i+12
j<i+1lsuch that e ¢ E}.,.ThenweputT, , =T}, ,E;,, = E],|.The (i + 1)-th step is ﬁnlshed

i+1° i+1°
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If as a result of Stage 1 the values of all input variables became fixed, then the chain C consisting of n + 1
tuples will be constructed and we finish the process.

Suppose we have performed s steps described in the Cases 1 and 2 of Stage 1. That is, we have considered
all s gates of the circuit S but the chain is still not constructed. After the s-th step we has obtained the sets F,,
T, and E. For simplicity, from now on we omit indices and write F, T and E respectively. Now we proceed to
Stage 2.

Stage 2. The original n-dimensional cube is restricted to a subcube of a dimension n — |F| — |T| such that
all the circuit gates e, . . ., e, except those from the set E, output 0 on the top tuple x"™\F and on the bottom
one x” of this subcube. Let T® = T. Then we add to T° the indices of variables from the set [n] \ (F U T). That
is, we obtain the sets T, T2 and so on as follows:

1) ifi > 0 and there is no first non-zero gate on the tuple x! with respect to the set E, then we add to the set
T' the index of any variable from the set [n] \ (F UT"). We obtain a set T**' and a tuple %" which we add
to the chain; .

2) ifi > 0 and there exists a first non-zero gate on the tuple x7 with respect to the set E, then, similarly to
the proof of Lemma 3, it is easy to show that there exists an input of this gate connected to a circuit input
free with respect to the set [1] \ (F UT"). We put the free input variable corresponding to that circuit input
to be equal to 1. Thus we obtain a set T™! and a new tuple x7"" which we add to the chain.

If during the above process when we add a variable to the set T® and obtain a gate e, such that its inputs are
no longer connected to circuit inputs free with respect to the set F U T", then we put E = E U {e;}. Clearly,
all such gates have a property similar to one from Lemma 4. Note that each time we consider a first non-zero
gate with respect to a current set E.

We repeat the above process until all free input variables became fixed to some values, i.e. until we con-
struct the chain required. Note that in Stage 2 we choose the set T to fix the idea, we could also choose the
set F and put variables to be equal to zeros respectively.

When constructing the chain C we feed to the circuit inputs only tuples of types xT and "\ (for brevity,
indices are omitted). These tuples are comparable, since on each step T' € [n] \ F. Thus, the set C is indeed
a chain.

(n]\F

3.3 Lemma 1: completion of the proof.

The chain C has the following property.

Lemma 6. None of the gates of the circuit S occur to be first non-zero (with respect to the corresponding sets)
twice on the tuples of the chain C.

Proof. The proof is by contradiction. Without loss of generality that assume that the tuple x* is added to the
chain on the step b and the tuple x" is added on the step ¢, where b < c. On these steps the sets E, and E,
are constructed. Moreover, E, C E_. Assume there is an index ¢ € [s] such that the gate e, is a first non-zero
gate on the tuples x* and x” " with respect to the corresponding sets. In particular, ht(xp ) = ht(xP ’) = 1. For
any gatee; ¢ E_, where j < t, by the definition of first non-zero gate (with respect to the set E. and hence,

the set E,) the following equality takes place: hj(xp ) = hj(xp ,) = 0. Also for any gate e; € E, \ E,, where

j < t, by the property from Lemma 4, we obtain: hj(xP ) = hj(xP I) = 0. Values of gates e; € E,, where j < t,
are determined by values of other gates with smaller indices. Therefore, values of any gates with the indices
less than ¢ are equal on the tuples x* "and x”. By the construction, the tuple x* ' differs from the tuple x” by
the value of at least one component corresponding to an input variable such that it is connected directly with
an input of the gate e,.

That is, the antichain function g, corresponding to the gate e, outputs 1 on a pair of comparable tuples.
This contradicts the fact that g, is an antichain function. Lemma 6 is proved. O
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Let us finish the proof of Lemma 1. Recall that the constructed chain C contains 7 + 1 tuplessssssssss of the
cube {0, 1}". The circuit outputs the same value on all tuples of C such that there are no first non-zero gates
on them with respect to a corresponding set. Denote this value by a € {0, 1}. There exists a first non-zero gate
on any tuple of the chain on which the circuit outputs 1 — a. The function f(x;,..., x,,) takes value 1 on k( f)
tuples of this chain and value 0 onn + 1 — k(f) tuples. There are two possible cases.

1. Ifa = 0, then for any tuple on which the circuit outputs 1 there exists a first non-zero gate in the circuit.
That is, there are first non-zero gates on k( f) tuples of the chain C. By Lemma 6, all these gates are different.
Therefore, L(S) > k(f).

2. Ifa = 1, then for any tuple on which the circuit outputs 0 there exists a first non-zero gate in the circuit.
That is, there are first non-zero gates on n+ 1 —k( f) tuples of the chain C. Similarly, by Lemma 6, we obtain:
L(S) = n+1—k(f). Moreover, the last circuit gate e, is not the first non-zero one, i.e. if there is a first non-
zero gate on a tuple, then the circuit outputs 0 on it, and the gate e, as well. Therefore, L(S) > n+2—k(f).

We have shown that L(S) > min (k(f), n — k(f) + 2). Since the circuit S is arbitrary, we obtain the similar
inequality for L( f). Lemma 1 is completely proved.

3.4 Proof of Lemma 2.

Consider an arbitrary symmetric Boolean function f(x;,..., x,). We split the proof into two parts. In the first
one we will prove the bound L(f) < k(f) and then we will show the bound L(f) < n — k(f) + 2. These two
bounds together will give us the statement required.

Proof. 1. Let the function f be equal to 1 on layers with indices i}, .. ., i £ Where iy < ... <iyg.
Recall that by x we denote a set of values of variables (x;, . . ., x,,). Forafunction f,forany ¢ € {i},..., i}
we define a function ki, (x) as follows: h,(x) = 1iff Z;zl x, = i,. Clearly, all the functions h, are antichains
since they are characteristic functions of layers of the cube.
Denote by y a set of values of variables (yy, . .., Yi(p)-1)-
Let M, be a set of tuples (y, x) such that three properties take place simultaneously: 1) there exists j €

[k(f) — 1] such that y; = 1;2) y, = Oforallg # j;3) P; x, = i;. Let M, be a set of tuples (y, x) such

that the following properties take place: y, = O forallq € [k(f) — 1] and Z;zl X, = ik p)-

Define a function g of k(f) — 1 + n variables y; ..., ¥(p)-1> %1 - - -, X,, as follows: g(y,x) = 1iff the
tuples (y, x) belong to the set M, LI M,.

It is easy to see that the function g is antichain. Indeed, consider two tuples from the support of g :
(ypx) # (v, %,). If (v, %), (y,,%,) € M, and y, # y,, then the tuples are incomparable. If
(y1,%1), (¥5,%,) € M, and y, = y,, then the indices of the components where i; ones appear in the
tuple x, differ from those in the tuple x,. That is, the tuples (y,, x,) and (y,, x,) are incomparable. If
(¥1>%1)> (95, x,) € M,, then, similarly to the previous case, it is easy to see that the tuples are incompa-
rable. If without loss of generality (y,, x;) € M, (y,,%,) € M,, then y, > y, and there are more ones
in x, than in x,. Therefore, the tuples (y,, x,), (¥,, x,) are incomparable.

Let us compute the function f(x) as follows:

@) =g (h),....h (%), %). (1)

That is, if we feed to the function g the characteristic functions of the layers whose union forms the

support of f, except the function ), then we obtain a realization of the function f.

Let us verify the equality (1). Consider an arbitrary tuple & = («;, . .., «,). There are two possibilities.

A. fla) =L then Y &, € {i,...,ixp} I X)) @, <ijp)y, then there exists an index j € [k(f) -
1] such that hj(a) = 1 and hq(a) = 0, and Z;=1 a, = i;forallq # j.Thus, the tuple (y, @),
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where (..., Yi(p)-1> &) = (hl(a), ey hk(f)_l(a),oc) , belongs to the set M. Hence, g(y, «) = 1. If
Z;zl o, = i), then y, = hq((x) =0forall g € [k(f) — 1]. That is, the tuple (y, &) belongs to the set
M, and therefore g(y, ) = 1.

B. f(a) = 0, then hj(a) = Oforall j € [k(f)]. In particular, hk(f)(oc) = 0. Thus, Z;zl o, # igp- It
follows that the tuple (y, &) = (h1 (@), ... by (@), oc) belongs neither to M, nor to M,. Therefore,
9y, &) = 0.

From the equality (1) it follows that the function f may be computed in the AC basis by a circuit of the

complexity at most k().

That is, for any symmetric function f there exists a circuit S of the complexity L(S;) < k(f) such that it

computes f and has the following property: for any gate of the circuit its inputs are connected to all the
circuit inputs.

2. From the proof of the Case 1 it follows that for the function 7 the inequality L(7) < k(?), where k(?) =
n+ 1 - k(f), takes place. That is, the function 7 may be computed by a circuit of the complexity at most
n+ 1 —k(f). By a gate computing negation, from any circuit computing ? we can easily obtain a circuit
computing f. Thatis, L(f) < n—k(f) + 2.

Hence, for an arbitrary symmetric function f, we have shown that L(f) < min (k(f),n — k(f) + 2). So,

Lemma 2 is proved. O

The proofs of Lemmas 1 and 2 together give the proof of Theorem 1.

4 Proof of Theorem 2

For the majority function k(m,) = [gJ + 1. By Theorem 1, we obtain: L(m,,) = ng + 1. For the parity function

k(p,) = [ "T“ J Correspondingly, by Theorem 1, we obtain: L(p,) = [ "—;1 J . This proves Theorem 2.

Note that the maximum of the upper bound from Lemma 2 is achievable: for odd # it is equal to the
complexities of the functions m,,, p, and p,,, and for even , it is equal to the complexities of the functions
m, and p,.
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