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Abstract: The paper is concerned with problems in steganography on the detection of embeddings and sta-
tistical estimation of positions at which message bits are embedded. Binary stationary Markov chains with
known or unknown matrices of transition probabilities are used as mathematical models of cover sequences
(container files). Based on the runs statistics and the likelihood ratio statistic, statistical tests are constructed
for detecting the presence of embeddings. For a family of contiguous alternatives, the asymptotic power of
statistical tests based on the runs statistics is found. An algorithm of polynomial complexity is developed for
the statistical estimation of positions with embedded bits. Results of computer experiments are presented.
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1 Introduction

The paper is concerned with a topical problem in steganographic information security—this is the problem
of embedding detection, that is of the construction of statistical tests for the existence of embeddings and of
statistical estimates of positions (points) of embeddings.

The problem of detection of embeddings was studied in [1, 2, 3, 4] under the assumption that the prob-
abilistic model of a cover sequence is completely known. So, in [1] statistical tests were constructed for the
embedding existence in the case when the initial (cover) sequence is modeled by a Bernoulli scheme of inde-
pendent trials; it was also shown that the embedding detection is impossible if the fraction of the embeddings
tends to 0 as the length of the initial sequence tends to co. A similar fact was proved in [3]. In [2] a most pow-
erful statistical test for the embedding existence was constructed for the model based on a Bernoulli scheme
of independent trials, and statistical estimates of the fraction of embeddings were put forward. Statistical es-
timates of the model parameters of the embedding in a binary Markov chain were constructed and examined
in [5]; they allow to make preliminary conclusions on the fraction of embeddings. It is worth mentioning that
the majority of studies on the detection of embeddings are based on empirical characteristics of sequences,
which involve methods of discriminant analysis for testing the embedding existence. We also note that the
above problems of recognition of embeddings are close to those on the detection of deviations of output se-
quences of cryptographic generators from uniformly distributed random sequences [6].

Our purpose in this paper is to continue the studies initiated in [5]: we construct and analyse statistical
tests for the embedding existence, and to develop algorithms for the statistical estimation of embeddings
points.

The paper is organized as follows. In § 2 we describe the mathematical (g, r)-block model of embedding
in a binary Markov chain. In § 3 we construct statistical tests for the embedding existence based on the runs
statistics and on the short runs statistics, and in § 4 we consider tests based on the likelihood ratio statis-
tics. In §5, we put forward an algorithm of polynomial complexity for statistical estimation. The results of
numerical experiments are given in § 6.
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2 Mathematical model of embedding

We define the generalized (g, r)-block model of embedding, a particular case of which was proposed by the
authors of the present paper in [5]. Throughout, (Q, F, P) is the underlying probability space, V = {0, 1} is
the binary alphabet, V7. is the space of binary T-dimensional vectors, O (-) is the ‘big O’ notation introduced
by Landau, IN is the set of natural numbers, I{A} is the indicator of an event A, uif = (U suy) €V,
(t;,t, € N, t, <t,)isabinary string of t, — ¢, + 1 successive symbols of some sequence {u, : t € N}, w(:) is
the Hamming weight, £{&} is the probability distribution of a random variable &, 23(6) denotes the Bernoulli
distribution with parameter 6 € [0, 1]: P{€ = 1} = 1 — P{£ = 0} = 0, @(-) is the distribution function for the
standard normal law N(0, 1).

According to [5], an adequate model of the cover sequence for embedding a message is a binary sequence
xI = (X, %y ...,%p) € Vp, x, € V, t = 1,..., T, of length T, which is a homogeneous first-order binary
Markov chain with symmetric matrix of one-step transition probabilities P:

l+e 1-¢

1
P_P(s)_i( l-¢ l+e¢

), P{x, ® x,,,} = %(l—e), le] < 1. 1)
Here, ¢ is the parameter of the model: the case ¢ = 0 corresponds to a scheme of independent trials which was
examined in [1]. The case ¢ > 0 takes into account an attraction-type dependence, and the ¢ < 0, a repulsion-
type dependence. We note that the Markov chain (1) satisfies the ergodicity conditions [7] and has the uniform
stationary distribution (1/2, 1/2). In what follows, we shall assume that the Markov chain (1) is stationary,
and so its initial probability distribution agrees with the uniform distribution.

In practical applications [5] a message is subject to a cryptographic transformation before being em-
bedded in the cover sequence, and hence we assume in what follows that a message fiw =(&,....&) €
Vu» M < T,is asequence of M independent Bernoulli random variables:

S{E}=BO), PE =} =0, jeV,0,=1-6,t=1,...,M. ®)

The stego-key le = (¥p»--.>Yr) € Vp specifies the points (time instants) at which the message bits ‘q’{”
are embedded in the sequence x{. We introduce a special (g, r)-block model of the stego-key le (gr € N,
r < q), assuming that the length of the sequence xlT isa multipleof q: T = Kgq.

Let , € V, £{¢;} = B(), k = 1,..., K, be auxiliary independent random variables, which govern
the choice of the blocks {x, = xfkq_l)q ..} for embedding the message E{V[ :if {, = 1, then r successive bits
of the message are embedded in r randomly chosen bits of the block x,; if (. = 0 then no embedding in
the block x, is performed; G%” = {giq’r), . g(cq,’r)} = {u] € V, : w(ul) = r}is the set consisting of
C; lexicographically ordered binary vectors of lengtqh q equipped with the Hamming weight r; g, g,, . . . are
independent random variables, g, has uniform probability distribution on the set {1, .. ., C;},

r . 1
Plyg = 616 = 1} = Plge = it = .
q

In the (g, r)-block model of embedding, the sequence le consists of blocks of length g: ;) = yf, Vo) =

29 _ . Kq
Ygrrr oY) = Yik-1)g+1°
(9.’___,_’_9)> (k =0,

; k=1,...,T/q, 3)
99" e G, f =1, g =i,

Yy =

the parameter § characterizes the fraction of embeddings. We note that for the (g, r)-block model of embed-
ding the maximum capacity for the stego system is Tr/q bits, while the cardinality of the set of all possible
stego-keys

r” = {G“ u {(,...,0)}"
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is I = (1 + C;)T/ 1. In the case ¢ = r = 1, we have the classical model [5] of a bit-wise embedding,
Ir®D) =2,

For the most commonly encountered in steganography methods of embedding (the ‘LSB replacement’
and the ‘+ embedding’ [8]) the random stego-sequence YIT = (Y,,...,Y;) is generated by the sequences
{x.}, {&}, {y,} via the function transform

X, =0
Y, = xtantxt@ytsrt = { E;» Yi =1,

where 7, = Zj.zl ¥;- The sequences {x.}, {&}, {y,} are assumed to be jointly independent.
We note that for r = 1 the model presented here coincides with the g-block model considered in [5].
From the practical point of view, the case with 6, = 0, = 1/2in (2), which presents the greatest challenge
for embedding detection, is the most noteworthy in the framework of the Markov model of embedding (1)—(4).
In this case the one-dimensional distribution of probabilities is not distorted for an embedding in (4),

P{Y,=1}=P{Y, =0} =P{x, = 1} =P{x, =0} = 1/2, t=1,2,...,T. )

(4)

Another justification of the relevance of the case considered in the present paper is the practical utilization
of preliminary cryptographic transformation of a message that removes the nonuniformity in the probability
distribution of symbols.

3 Embedding detection based on the runs statistics

3.1 Using the total number of runs statistics

We introduce two hypotheses concerning the fraction § € [0, 1] of embeddings:
H,: {6 =0}, H : {6 > 0}. (6)

The hypothesis H, means that there are no embeddings and the stego-sequence YIT agrees with the cover
sequence xlT. The composite alternative H, means there exist embeddings with some unknown fraction § >
0. If the parameter of the cover sequence ¢ is known, then the null hypothesis, which will be denoted by
H,_, is simple; otherwise, H,, is also a composite hypothesis. If the hypothesis H,, holds, then the probability
measure P will be denoted by P, otherwise, by P5. One similarly denotes the moments of random variables.
The distributions P, and P were found in [5].

Lemma 1. Under the hypothesis H,, , the probability distribution of the stego-sequence YIT is as follows
Po{Y =y} =Pl =y} =271~ "1 +e)" ",
where

T-1

B = BT(y?) =1+ Z Ve ® Yen

t=1
is the minimal sufficient statistics with H, ..

The statistics By is called the ‘runs test’ in [9] (it means the total number of runs). By virtue of (1), under the
hypothesis H,, the sequence of indicators I{Y, & Y,,, = 1} consists of independent random variables with
Bernoulli distribution B(27*(1 - €)). Using the exact binomial probability distribution of the statistics B,
with the known value of &, one may construct a randomized statistical test for the embedding existence with
the given probability of the first kind error «,. However, for practical purposes, it is more convenient to use
its asymptotic variant as T — oo, which is given by the critical region

%i*:{le; BT21+§T(1—3)—%ta T(1-¢&2)} fore >0,

ZE ={yl : Bp<1+3iT1-e) + T -¢)} fore<o, )
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where t, is the a-quantile of the standard normal distribution: ®(t,,) = «.

Theorem 1. Let the model of embedding (4) hold. Then as T — 00 the asymptotic size of test (7) for the hy-
potheses H,, ., H, based on the total number of runs statistics By coincides with a preassigned significance level
« € (0, 1). The asymptotic expression for the power of this test in the case of the (1, 1)-model of embedding and

of the family of simple contiguous alternatives H, 5 : {0 = %}, B > 0, s as follows:

1, 0<pB<1/2,
Wl =w? - @(ta+2p el 2), B=1/2, 8)
— &
o, B>1/2.

Proof. Under the hypothesis H,,, the De Moivre-Laplace limit theorem implies that

{BT—I—%T(I—e)
0

N

Hence, using (9) we have, as T — oo,

} — N(,1) as T — oo. )

PAZE) o B2} - o
In the case g = r = 1, under the alternative H,, it follows from (1), (2), (4), (5) that the initial first moment of
the random variable By is equal to

T-1
Es{Br} =1+ ) EsfY, @Y} =1+27(T - 1)(1 - (1 - 8)%).

t=1

Using similar arguments, we calculate the initial second moment under the alternative H,. We have

T-1 T-1
E;{B.} = E; {(1 +Y Y, eY, )1+ ) Y, e Ytzﬂ)} =

=1 t,=1

T-1
= E; { Y (v, @Y, )Y, Ytzﬂ)} +2Es{B;} -1 =

tt,=1

T-2
=3Bs{Br}-2+2) Y Po{Y, =hY,, =1-hY,,=hi+
t=1 heV
T-2T-1-1
+2 Z Z Z PslY, =h,Y, =1-h,Y,  =h,Y, , =1-h} =
=2 t=1 h;heV
= 3Es{B;} — 2 + 27 (T = 2)(1 + &(e — 2)(1 — 8)*)+
T-2
+4 Y (T-1-1)(Py{Y, =0,Y,,, = 1,Y,,, =0,Y,,,, = 1}+
T=2

+Pe{Y, =0,Y,; =LY, = 1Y, = 0}) =
=1+23(T- DA -e(1 -8+ 27T -2)(1 +ele - 2)(1 - §)H)+
+27HT = 2)(T - 3)(1 + &(e8* — 268 — 2 + €)(1 - 8)%).

For the variance, we have

D,{By} = 1T(1 - (1-8)°¢*(1 - 65 + 38%) — 2(1 - (1 - 8)’&*(1 - 108 + 58%)) =
=T(;(1-(1-08)’(1-66 +358%)(1+0(1)), T — co.
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By the construction (4) the random sequence {Y,} satisfies the strong mixing property [10, 11], and hence
the central limit theorem for weakly dependent random variables holds,

g, {BT -1-3T(1-(1-68))

VDs{Br}

In the case € > 0, we take into account (10) and substitute § = 7% as T — oo into the expression for the

} — N(0, 1). (10)

power. As a result, we have

lim W =lim P4{ 22" }=lim Py{B;>1 + 1T(1 — &) - 3¢, \[T(1 - €2)}=
=lim ps{BT —BsiBr} 1+ 1T(1 - &) - Eo{By} - %tam}z
\VDs{B;} VD4{B;}
DY =
VT (1 - (1-8)%(1 - 66 + 38%))

Analyzing various values of 3 in this expression, we arrive at (8). The case & < 0 is dealt with similarly. O

3.2 Using the short runs statistics

Let us construct the sequence of indicators of sign changes in the sequence Y;,..., Y, € V;:
z, =Y, @Y, eV, t=1,...,T - L (11
Next, we define the set of patterns in sequence (11):

{6,,6,,...}, b, = (1,0,...,0,1), 7 € N U {0};

T
here b, is the chain of 7 successive 0’s bounded from the left and right by 1’s. Such patterns specify series
of 0’s and 1’s of length 7 + 1 in the stego-sequence {Y,}. Further, we consider the disjoint random events €_,
T € N U{0}:
€ ={(z 215+ - -5 Zpara1) = b1

Lemma 2. Let the model of embedding (4) hold, q = r = 1. Then under the alternative H, the probability
distribution of the random events €_ is given by

Py{C )} =P {C.}+a.(8,6) =2 "P(1+&)7(1-e)+a,(e), (12)
where a,(5,€) > 0asd — 0, |e] < 1.
Proof. Using the law of total probability for the model of embedding under consideration we find that

Ps{C.} = Z PB{YtHHl:”TZ}PS{(Zt’ Zir1r e Zt+1+l)=b1|)}tt+T+l =“;+2}=
Ui eV,
= (1-8)""Py{¢,} +6 Y U (] - gy
uT eV, wui?)>0

2 —(T+2 2
XP{(Zps Zisrs - > Zosenr) = byt = ul*) —2 (1 +)7(1 - &)™

O
Theorem 2. Under the hypotheses of Lemma 2, the function a.(3, €) has the asymptotic expansion
a, = da(e) + O (8%),
272 -¢), T=0, 13)

a(rl)(s) =4 27%(1-¢)1 +e), T=1,
27 le(l-e)A+e)" X2+ (r+ De—1+2), T2
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Proof. We partition the set {,,,, = {u{" = (uy,...,u,,) € Vo,: w@l™) = 1}, |U| = 7 + 2, of binary
vectors of length 7 + 2, T > 3, with unit Hamming weight into three disjoint subsets:
—_¢(0) 1 (2
u-r+2,1 _u‘r+2,1 U il‘r+2,1 U il‘r+2,1’

G _y, T2 . _ .

Woiigy =y " €y v ujy +ug, =1} j€{0,1}
@ g2 Nt B

Wy =l " el s Zj:3 u; =1}

Arguing as in the proof of Lemma 2, we have
Ps{C,} = P{C,} - 8(7 + 2)P{C }+
+8 Z Z PE{(Zt’ZtH’ ceed Zt+r+1) = brl))tt+T+l = u‘i’+2} + O (62) : (14)

je012} 2y,

Let us consider the case T > 2. The subset 11(1132)1, j € {0,1,2}, contains sequences u]*> € {I_,,, such that
f+7+1

the events €_ N {y; = uf”} are equiprobable under the alternative H;:

PS{QZF n {yt+‘[+l — u‘i’+2}} —

t

81 =82 (1 -e)(1 + ), ' e, (15)
=1 8(1-8)"27"31 -1 +e), ul? e u),
24-7-3 2 2 -2 2 (2)
d(1-8)"27 (- (1+e)(1+e)" ", ui™ ety

Now (13) with T > 2 follows by substitution of (15) into (14). The case T < 2 in (13) is considered similarly. [
Theorem 3. Under the hypotheses of Lemma 2, the function a.,(8, €) has the second-order asymptotic expansion
a, = da’(e) + 8%a(e) + 0 (&%),

where
aP(e)=2"e(-2 + ), aP(e)= 27e(~1 + 4e + £7),
agz)(s)=2_4£2(—7+108+£2), agz)(s)z 27e(1-12e+26°+166°+¢*),
aP(e)=2""e(1+e)" (12420 ~147+13) 426> (-27°+77 — 8)+
+28(1° =31+9) +(BGT+2)+¢), T > 4. (16)

The proof is similar to that of Theorem 2, the set of stego-keys I, , being split into classes of equiprobable
events.

From Theorems 2, 3 it follows that under the alternative H, (existence of embeddings) the probability
distribution of the total number of runs of a given length differs from that distribution under the hypothesis
H,. In particular, for ¢ > 0 the probabilities of the events €,, &, &, increase as § increases from 0 to 1,
whereas fort > 7, = 2 + (3 + €)(1 - €)™! the probability P;{C,} decreases with the increasing of §. This
being so, we consider the statistics

T-2 T-2
Bry = Z 2z Bry = Z 22415 (17)
t=1 t=1

where the statistics B, is the total number of series of 0’s and of 1’s of length 1 in the sequence {y,}, and the
statistics B, is related to the total number of runs statistics B by the relation By, = By — 2z, — 1.

Using Theorem 1 from [5] one may show that under the alternative H, the initial first-order moments of
the bivariate statistics (B}, Br,), as given by (17), read as

Eo{Br,} = (T -2);(1 - (1-08)%) = By{By,} + T38(2 - 8)e + o(T), T — oo,
Eg{Br,} = (T -2);(1- (1-08)’e(2 - €)) = Eg{Br,} + T18(2 - 8)e2 — &) + o(T), T — co.  (18)

From (18) it is seen that for ¢ > 0 the mean number of sign changes or of two neighbouring sign changes is
larger when the embeddings exist than in the opposite case.
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Theorem 4. Let the model of embedding (4) holds. Then, as T — oo, the statistical test for the hypotheses H,, .,
H, of the asymptotic significance level « € (0, 1) based on the bivariate statistics (17) is given by the critical
region

'%flfm = {)’1T : (Br Brp) € Dyt (19)

where the region D | , is as follows

Dy, = {(BT,I’BT,Z) 2 (Bry — Tugy)e 20, (By, - T['l(z),l)e =0,
(20)

!

(5-3¢)(1-¢) 1-¢
( By, - [4(2),1 > ( 16 e > ( BT,I - #3,1 ) > Te }
_ = 1,2 [
Bry —thys .~ i Bry —thy

4

1-¢
7T — arccos (2 5_35)

1 -5 242
=-(1-¢),¢,=2"(1-¢)1n R
Ho,1 2( ) € ( ) e

that is, .
Py {27} = Pol(Br, Bry) € Dyt —

Proof. Using the fact that under the hypothesis H,, the random variables {z,} are independent and have the
Bernoulli distribution B(27'(1 - ¢)), and since the random variables z,z,,, and z,z,,, are independent if
[t — s| > 1, we find that

E\{B;,} = T%(l —-¢&)(1+0(1)), Ej{B;,} = T;ll(l —£)*(1 + o(1)),
Dy{By,} = (T - 2)Dyfz,} = T;(1 - &)(1 + o(1)),
Dy{Br,} = (T = 2)Dy{z,2,,,} + 2 Z covo{z,2i1> 220} =

1<t<s<T-2
= (T - 2)Dy{z,z,,1} + 2(T = 3) covy{2,2,,1> 2112412} =
=(T-2(G-e - G0 - +2AT-3) (1 -e) - (1 -9)") =
=TL(1-&)(1-¢)(5-3e)(1 +0(1)),

T-2

covo{Br 1, Brot = Z covyiz,, 2,2, ) =
t,s=1

= (T - 2) covyiz,, 2,21} + (T = 3) covplz,, 15 2,201} =
=T -6)(;(1-&)’ - ;(1-e)) =T{(1-)1-e) - (1 -&)1-¢) =
=T1(1-€)(1 - &)1 +0(1)).

Next, since the sequence of pairs (z,, z,2,,,) € V, is I-dependent, it follows thatas T — oo the random vector

% (TBT,1 - %T(l -&), B, - iT(l - 8)2)’ has an asymptotic normal distribution N, ((0, 0)’, 2,), where

1 1-¢

) L 1€

S=(1-¢ )< e 5-3909) ) 1)
4 16

In Fig. 1 the region D , for the case ¢ > 0 is marked by the ‘+ sign. Such a form of the domain follows

from the asymptotical normality of the bivariate statistics (Br.;, B;,) and from expressions (18). To calculate
1

the probability of the first kind error, we use the linear transform of the region D, ,. We apply the matrix 2; 2
to the unit vectors (1, 0), (0, 1) € R?* and construct the Gram matrix:

u = %,%(1,0), u, = Z,2(0, 1),

! ! 6 (5-3e)(1-¢) 1l-¢
< u}ul u}uz > - 2 ( 16 T4 )
i 2\2 1-¢ 1 .
U, U (1-¢%) % 1

4
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BTZ T T T

Eo{Br,) &"—)

Eo{Bm} BT,l

Figure 1. The region 91,2 for e > 0 and the scattering ellipses for § € [0, 1].

The angle ¢ between the vectors u; and u, is expressed in terms of the coefficient of correlation:

!
uu,

_ _ _ _ 1-¢
|u1||u2|> = 7 — arccos (corry{Br,, Br,}) = m — arccos (2 5735)'

¢ = arccos (

Because of the joint asymptotic normality of statistics (17), the random variable

Q,, = l( By, - ﬂg,l ) -1 ( By, _P‘(z),l )
2T\ Br, - g, °\ Br, -,

has an asymptotically exponential distribution with the parameter 1/2 as T — o0. Hence, from the equation

¢ (r — arccos(2 51:386)) B

2 2mec/?

Po{(Br1, Bry) € Dyt = Pp{Qy, = ¢}

6

wefindc = m ¢, , (the ellipse equation in Fig. 1: Q, , = ¢). The case & < 0 is considered similarly with

_1 _1
u, =2,2(-1,0)",u, = Z,2(0,-1)". O
Lemma 3. Under the (1, 1)-model of embedding and the alternative H, the random variables z,, z, are inde-

pendent if |t — s| > 2, the random variables z,, z z,,, are independent if |t — s| > 2, and the random variables
242,15 2,2, are independent if [t — s| = 3.

Proof. Let us consider the random variables z,, z,,, k > 2, and find the expectation Es{z,z,,}, k > 2:

Es{z, 2,0} =Pslz 21 = 1=2Po{Y, = 0,Y,,; = LY, = 0, Y, 5y = 1+
+2P8{Yt =0, Yt+1 = 1’Yt+k = l’Yt+k+1 = O} =
=2 Z P(S{(Yt’ Yt+1’ Yt+k’ Yt+k+1):(0’ 1,0,1), (Yt’ Yer1o Yesio yt+k+1):u}+

uev,

+2 z P5{(Yt’ Yt+1’ Yt+k’ Yt+k+1)=(0’ 1) 1) O)) (yt’ YHI’ Yt+k’ Yt+k+1)=u} =

uev,

=2 Y (1-8'1-2’1-c"") +8(1-8)°2(1 - &)1 — ") + 2(1 - &)(1 + ce"))+
ce{l,-1}

#8%(1 = 8)%(6 - 26 — ce " + 206" — ce"*) + 48 (1 - 8) +8%) = (11 - (1 = 9))))” = (Bolz})™.
Since the random variables z,, z,,; are binary and since covy{z,, z,,;} = 0 for k > 2, then such variables are

independent. A similar argument shows that the random variables z,, z.z,,, are independent if |t — s| > 2
and that the random variables z,z,,,, z,z,,, are independent if [t — s| > 3. O
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Now we will employ Lemma 3 to find asymptotic expressions for the first and second moments of the bivariate
statistics (Br,, Br,) under the alternative H, . The first-order moments were found in (18). In the course of
the proof of Theorem 1 it was shown that

Dy{Br,} = T2(1 - (1 -8)°*(1 - 68 +38%))(1 + o(1)), T — 0.

In view of Lemma 3 we have, as T — 00,

covs{Br 1, Br,t = Zth: covsiz,, 2,211 =
= (T - 2) covgiz,, 2,2, ) + (T = 3) covgiz,, 2,1 2,01+
+(T - 3) covsiz,, z,_12,} + (T — 4) covgiz,, 2,52, 1} =
= 2T (covsiz,, 22,1} + covglz,, 2,12, 1)(1 + 0(1)),
covsiz,, 2,2, = Pslz,z,, = 1}(1 - Pslz, = 1}) =
= 11— (1-8)e(2-&)(1-3(1-(1-0)) =
=31-(1-8 (1~ ~(1- 82 ~¢),
covsiz,, 24,1240} = Pslzi2,120,, = 1} — Pslz, = 1}Ps{z,,,2,,, = 1}
Using the law of total probability, we find, for the model of embedding (1, 1),
Py{z,z,,,2,,, = 1} =2P4{Y, =0,Y,,, = 1,Y,,=0,Y,,, =1} =
=2 ) P{Y,=0,Y,, =LY, =0,Y,,=1Ly" =u} =

uev,

=1(1-(1-08)e(B3-2e+&) +(1-98)'e),

covsizy 21120} = Pslzi2i0200, = 1} = Pslz, = BPslz,2,, = 1} =
= Po{z,2120, = 1} - (1= (1-8)’e(3 - &) + (1 - 8)'e’(2 - ¢)) =
= %(1 -8)’8(2 - 90)’(1 - ).
We thus have
covg{By,, Bry) = T}l(l —(1-08)e(1—¢)* - (1-08)"e(3-2¢)(1 +0(1)).
Using Lemma 3 as T — oo we find the variance Dg{B,}:
Ds{Br,} = (T = 2)Ds{z,2,1} + 2(T - 3) covs{2,2,415 2111 210+
+2(T - 4) covs{z 21> 21122143}
Ds{z,211} = Pslziziy = (1 = Pslziz,, = 1} =
= L(1-(1-0)e2-2)(3+(1-0)e2-¢)),
covs{z,zy1> 2120t = Pslzizi12000 = 1} = (Polzi24 = 1))’ =
= L(1-(1-8)2e(1—e+&) - (1-8)'E(2 - 4e+¢£)),
2
covs{2i2,,15 210203} = Psl2i201200205 = 1} — (Pslziz,,, = 11)°
A similar argument as for Ps{z,z,,,z,,, = 1} shows that
Ps{z,2112110205=1}=2P:{Y,=0,Y,,=1,Y, ,=0,Y, 5=1,Y, ,=0} =
=2 Z PslY, =0,Y,,, =1Y,,,=0,Y,,5=1Y,, =0, Ytt+4 =u} =

uevy
= %(1 —(1-0)*(e(4+8°)-36*(2-20+8%) +£° (4-48+28%-8°) - ),
Covsiz, 2,15 Z110Z043) = %6(1 —8)*0e(1-¢)(-8"+e(2-8-8%)—*(2-9)).



22 = Yuriy S. Kharin and Egor V. Vecherko, Detection of embeddings in binary Markov chains DE GRUYTER

As a result, we have

Dy{Br,} = T1-(5 - (1 - 8)*(2(4 + 8%)e + 2(1 - 108 + 556%)&” -
~2(4 - 168 + 88" + 8)&’ + (3 - 108 + 8%)e"))(1 + o(1)).
Using the strong mixing property [10], one may show that under the alternative H, 5 the distribution of
the random vector
1
~T

as T — oo is asymptotically normal N,((0,0)’, Z,) with zero mean and covariance matrix =, = (01,3)s
i, j = 1,2, where

(Bry — 1T~ (1= 8)%€), By, — 1T(1 - (1 - 8)e(2 - ©)))

01,00 = :11(1 - (1-9)°°(1 - 68 +38%)),
01,00 = 01,00 = i(l —(1-8)e(1-¢)’ - (1-8)"'’(3 - 2¢)),
O = (5 - (1- 824 +8%)e + 2(1 - 108 + 58%)¢’~
—2(4 - 160 + 88> + 8°)e’ + (3 — 108 + 8%)eY)).

Unfortunately, for the test (19) based on the short runs statistics we have not succeed to obtain an explicit
expression for the power and to examine it, because the covariance matrix depends on . This dependence
is illustrated in Fig. 1, which depicts the scattering ellipses (corresponding to the asymptotic matrices) when
the parameter § is increasing from 0 to 1. The following important property of the asymptotically normal
distribution of the random vector (17) under the alternative H, 5 is worth pointing out: with § changing from 0
to 1 the centre of the asymptotically normal distribution of the bivariate statistics (B, Br,) always lies on
the line

{ bl = lTSA + %T(l - 5)) A= 8(2 _ 6) (22)

by = ;Te(2—e)A+ 1T(1 -¢)’,

Taking into account the property (22), we construct a statistical test for the hypotheses H, ., H, based on
the statistics obtained as the orthogonal projection of the statistics (B, Br,) on the line (22). Such a test
for € > 0 is given by the critical region

20" ={y t B+ 22 -8B, 2 IT(1— &) + 1T(1 - &)’ (2 — &) — t,1[Td, }, (23)

dy = 27°(1 - £°)(68 — 100e + 65¢” — 20¢” + 3¢").

Theorem 5. Let the model of embedding (4) hold and let € > 0. Then, as T — 00, the asymptotic size of test
(23) for the hypotheses H, ., H, based on the projection of the short runs statistics

b=Br - T(1—¢&) +3(2-&) (B, - ;T1-¢)) (24)
coincides with the significance level « € (0, 1). The asymptotic power of this test for the (1, 1)-model of embed-

ding and for the family of contiguous alternatives H, 5 : {0 = \/LT} is as follows:

e(1+ 12 -¢)?
L P i) )
Ve,

Proof. The angle between the line (22) and the b,-axis is ¢ = arctan (%(2 — €)), and hence, the orthogonal
projection of the point (B, By ,) on this line is given by

AR

| T — oo. (25)

(Br, — 3T(1 - ) cos¢ + (Bry — 3T(1 - ¢))sin .
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Multiplying this expression by cosec ¢, we get the random variable bj, which, according to (21), has the asymp-
totically normal distribution N, (0, d;;) under the hypothesis H,, .. Hence, PO{%T} —aasT — oo.

Let us find the power of test (23) as T — oo for contiguous alternatives of the form indicated in the
theorem. We have

W1h+:P6{BT,l + %(2 -&)Bp, > %T(l -8+ éT(l —e)’2-¢) - to\Tdy}
= Ps{Br; +5(2 -8By, - Bs{By,} — 22— )Ee{Br,} <
< %T&(z - 8e+ %T(S(z ~-8)e(2—¢e)’ +t, Td,} —

ST8(2 - 8)e + TO(2 — 8)e(2 — &) + t,\[Td,}

— ®| lim

VT (@100 + 12 - €020,y + 2 - £)ogy)

Substituting § = £ in this expression as T — 00, we find that

VT

VTpe + Tpe(2 — €)* + t,[Td, + O (1) 1+ 12 _¢?
o ] e(l+-(2—-¢
Wt - o lim : ) t+w

T(d, +0 (L)) : \/cTh

4 Embedding detection on the basis of the likelihood ratio
statistics

Let us now consider the case when the parameter ¢ in (1) is unknown and separated from the zero: g, < |¢| <
1, where g, > 0 is the known boundary value.

We construct the likelihood function for the observed stego-sequence le € V. Following [5], we partition
the set V, of binary t-dimensional vectors into f + 1 disjoint subsets,

v,=rPurPu...ur?, (26)

where

1"0(’) ={ul eV,: u =1}

1"1(’) ={ul eV,: u_, =u =0}
=l ev,: Uy =0ty iy =...=u_y = Lu, =0} 1<j<t,

=@ eV,:u=...=u_ =u =1} @7)
TPe patrtition (26), (27) generates the partition of all possible trajectories of fragments of the key sequence
y=u €V,

Lemma 4. The likelihood function for the (g, r)-block model of embedding is as follows

T
L(e,8) = PofYy =y} =277 ) (1= @S/C)" ™ [ o u, 3,
1

u’f er@r t=

where

t (t)
1, u, €I,

@y y) = 11+ (1P, Wl e, 1<j<t,

t o
1, u, €7,
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The proof is similar to that of Theorem 5 for the g-block model of embedding in [5].
To test the hypotheses H,, H, on the existence of embeddings we now construct the statistical likelihood
ratio test [12]. The statistics A of this test for the hypotheses H,, H, takes the form

Ar = Ap(y]) = =2In LEO >0, (28)

max{L(¢, 81), L(E0)}

where &, (¢, 5 1) are the maximum-likelihood estimates, which were constructed in [5] under the hypotheses
H, and H, respectively. The statistics (28) introduced above is equivalent to the likelihood ratio statistics

sup Psiyy,..., vy}

lel<1,6>0

supPo{y,.... yr}

lel<1

Besides, according to [5],

arg max Ps{y,,..., yr} = (6,,6)), arglllellili(PO{yl,...,yT} =&

lel<1,6>0

The statistical test of size a € (0, 1) based on the statistics A is defined by the critical region
o= 01 € Vet A2 Ag), (29)
where A, > 0 is the solution of the equation

sup PofA; 2 A} = sup (1 - Fy(e, T, Ap)) = a. (30)
g<lel<1 g<lel<1
Here, F, (¢, T, A ) is the distribution function of the statistics (28) under the null hypothesis H,,.
To estimate the value of A, satisfying (30), we use the Monte Carlo method: we model M, samples of
a Markov chain of length T with the parameter ¢,. For each sample we calculate the value of the statistics
by (28). Let AV, ..., A pe the calculated values. Then A, can be estimated by the sample quantile of level
1-a:
Ao = Mia-omy)3 €2))
the accuracy of this estimate increases with M, — ©0. So, the statistical tests (29) for the embedding exis-
tence assumes the form:

the hypothesis H,, (respectively, H,) is adopted if p > a (p < ),
(1+Y70 1% > A41).

The available asymptotic properties of the likelihood ratio test [12, 13] may be used under the regularity
conditions [12] guaranteeing the existence, uniqueness, and asymptotic normality of the maximum likelihood
estimates of the parameters € and 6.

P:M0+1

Theorem 6. Under the model of embedding (4), as T — oo the test of asymptotic significance level « € (0, 1)
based on the likelihood ratio statistics for the composite null hypothesis is given by the critical region (29) with
the threshold A, = Xf%l; that is,

Po{%ﬁ} =Py{Ar > Xf—oc,l} - a.
This test is consistent under fixed alternatives § = §; > 0:
Wr =P 2} - 1.

The proof follows the argument of [13] with the use of the central limit theorem for weakly dependent random
variables [10].
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5 Statistical estimation of embeddings points

If the alternative H, is adopted, then there arises the problem of estimation of points of embeddings—these
being the time instants ¢ € {1,..., T} at which in accordance with (4) a bit of the sequence {x,} is replaced
by a bit of the hidden message {£,}.

Theorem 7. Let le =(p.->yr) €l (@) pe the key sequence corresponding to the (g, r)-model of embedding,
le € V. be the observed stego-sequence, }71T = f( le) is some statistical estimate of the key sequence le based
on observations le. The minimum of the error probability in estimating the stego-key

Py{y; #7y,} — min

is attained for the statistics

P =arg max, Pty =Yy =y} (32)

which maximizes the a posteriori probability of the stego-key. The minimum of error probability is as follows:

r'(e6,T) = r?gypg{ﬁ £} =

(33)
=1- ) PylY] =y} max Paly] = u|Y] =y }.
. uler@n
Y1 €Vr
Proof. We choose an arbitrary statistics
— Ty . (gr)
fQY)): Vp - 1?7, (34)

and calculate for it the corresponding error probability for the estimate of the true stego-key yT e ran,

r(f;6,8,T) = Plji #p1}=1-Pylji =y ).

After equivalent transformations, using (34) and the rlaw of total probability, we find that

r(fi60,T)=1- Y Pyp =ypL,y =w}l=1- > Y PJf(Y))=p,,y =u,Y =y}=

uler@n ul'er@n yrev,

=1- ) Y P{Y{ = y[IPs{y] =u Y] =y} x Po{f(Y)) = y{lyf =u, Y] =y} =

yTevy uler@n

=1-) Po{Y[ =y} Y Hf())=uy Psly =) 1Y =y{}. (35

yievy uf er@n
Minimizing this expression in f(-) and using (34), we obtain the optimal function f(-) in the form

1) = arg max Polyy = u/1¥] =y}, (36)

which agrees with the statistics (32).
Substituting (36) into (35), we get (33). O

The estimate (32) by the maximum a posteriori probability criterion admits the following equivalent repre-
sentation, which is convenient for its evaluation:

7 =arg max Poly, =u|Y) =y} = arg max Pyfy = up, ¥, =y}, (37)
The solution of problem (37) for the (g, r)-block model of embedding by the exhaustive search has a compu-
tational complexity O(T(1 + C;)T/ ). Let us find a polynomial algorithm for solving this problem on the basis
of the classical Viterbi algorithm [14].
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We set

s, (U _or...,u) = max VlogPlg{Yf =Yy =un. Ly =l

Upseoolly_c 1

¢ =max{2r + 1,9 - 1}.
The initial values of s,(u;, ..., u,) witht = 1, ..., c are as follows:

s, (u,) = log @, (uy, y,) +log Psly, = u},
Sy tty) =5, (U, .. 0, y) + log @, (u), ¥))+

+logPsly, =y =t s sy =), 2<t < (38)
here, @,(-) is the same as in Lemma 4.

Theorem 8. Under the (g, r)-block model of embedding (4), q > r, the recurrence relation

S5, (Uy_ps. o Uy) =

t t
= max 5, (U Uy Uyy) HlogF(uy o 15 ¥, )+
U1 €V

+logPsly, =y 1 = poo s Vi = U} (39)
holds for s,(u,_, . ..,u,) witht > ¢, where

" " %, ut1 € Fo(t),
ft(ut—Zr—l’yt—Zr—l) = 1 Ve itV oJ t (t) p
s+ (=1) s),ulefj,131s2r+1.

Proof. Inthe case q < 2r + 2 we have

t_ ot
5 (U _gr 15> U) = max VlogPS{Yl = YoV S UV = Uy} =

Upseeslhy_2r 2 €

= max log Pd{YlH = )’i_l’Yt = Yo Y1 = U Voo = U Ve = Uyh =

Upseensthy—2r2 €V

t—1 t—1
= max logPy{Y, =y, Ly =up,.. ¥ = U+

Upsesthy_or 2 €V
+logPoly, = wlyy = ups ooy =t i3+

+1og PslY, = 3, 1Y, =y oy = up oy = ).
The case g > 2r + 2 is dealt with similarly. Combining these cases, we arrive at (39). O

Corollary 1. Under the hypotheses of Theorem 8 the estimate )71T = (Y1, .- ., Pr) of the stego-key by the maximum
a posteriori probability criterion is as follows

(Pree>--->Pp) =arg max  sp(Up ..., Ur),
ur up€V

e

P = argrll}ea}/xsm(v, Pstre- P t=T—c—1,..., L (40)

Proof. The estimate )71T = ($4>.-.» Pr) of the stego-key is obtained as the reverse execution of the algorithm
for finding max v sr by (38), (39). O
€

UT_gerelh

The algorithm of the estimation of embedding points (the forward run (38), (39), the backward run (40)) has
a numerical complexity O(2° + (T — ¢)2**?). R
Having estimate the embedding points le by (40), one can construct an estimate £ of the message itself:

t
—_ —_ 1 . Y} P P AT
§& =y, where t = . ngnnT}{t : k;yk =1L t=1...,w(}).

€{L,...,
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6 Results of computer experiments

We give the results of three series of computer experiments using simulated data.

Series 1. The initial Markov sequence (1) of length T = 10* with the parameter £ = 0.13 was simulated.
For q = r = 1, the key Bernoulli sequence was simulated using (3) with various values of the parameter § €
[0, 1], the stego-sequence le was constructed by (4). Figure 2 depicts the total number of runs statistics By
versus the fraction of embeddings 8. Circles mark the values of the statistics ﬁBT for the sequence le thus
constructed with the corresponding fraction of embeddings &, the solid line shows the graph for the mean
value ﬁE(;{BT}.

0.50

0.48

0.46

0.44 ¥

0.42 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1

Figure 2. The total number of runs statistics By versus the fraction of embeddings §.

Series 2. As in Series 1, the Monte Carlo method with the number of replications M, = 2° was used to
construct estimates of powers for the tests (7), (23) under the hypotheses H, ., H, with known cover sequence
parameter ¢ = 0.48; the length T = 213, the significance level « = 0.05, and the fraction of embeddings
é € {0.005,0.01,0.015, 0.02, 0.025,0.03, 0.04, 0.05, 0.06, 0.07}.

Wy

0.8 b

0.6 b

0.4r b

0.2} b

0.0 1 1 1 1 1 1
0.00 0.01 0.02 0.03 0.04 0.05 o0.06 0

Figure 3. Powers of the tests ﬁ‘flﬁi Ez‘flgf versus the fraction of embeddings §.

Figure 3 shows graphically the powers of the statistical tests (7), (23) versus the fraction of the embed-
dings &. The black solid line depicts the theoretical curve of the test power (7) based on the total number of
runs statistics, the grey solid line shows the theoretical curve of the test power (23) based on the projection
of short runs statistics, the black circles correspond to estimates of the powers of test (7), the white circles
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show estimates of the powers of test (23). The 95%-confidence intervals for the powers of tests (7) and (23)
are shown in grey and black, respectively.

It is seen from the graph that test (23) based on the short runs statistics is more powerful than test (7)
based on the total number of runs statistics. Numerical experiments show that for small values ¢ the powers
of tests (7) and (23) are practically the same.

wp . .
0.8 B
0.6 B

0.4 i

0'0 1 1 1
0.0 0.1 0.2 0.30 or/q

Figure 4. Power of the test 3{1’},‘ versus the fraction of embeddings ér/q.

Series 3. For the block model of embedding with g = 2, r = 1, the Monte Carlo method was used to find
the threshold estimates ;\a by (31) and the power of the statistical test (29) based of the likelihood ratio with the
model parameters € = 0.12; the length T = 28, and the significance level & = 0.05. The threshold estimate
was calculated with the number of replications M,, = 500, the estimates of powers were calculated with the
number of replications M, = 250, 100, 200, 150, 100 and the fraction of the actual embedding dr/q = §/2,
which equals 0.10, 0.15, 0.20, 0.25, 0.30, respectively. Figure 4 shows the graph of the power estimates for the
test 2} versus the fraction of the actual embedding /2.

Computer experiments demonstrate the efficiency of the statistical test thus constructed for the embed-
ding detection and the agreement between theoretical and experimental results.

In conclusion, we note that embeddings may also be detected using small-parametric models of high-
order Markov chains [15].

Acknowledgment: The authors are grateful to A. M. Zubkov for suggesting to study the runs statistics for the
embedding detection and to the referees for comments and advices.
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