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Abstract: The paper is concerned with problems in steganography on the detection of embeddings and sta-
tistical estimation of positions at which message bits are embedded. Binary stationary Markov chains with
known or unknownmatrices of transition probabilities are used as mathematical models of cover sequences
(container �les). Based on the runs statistics and the likelihood ratio statistic, statistical tests are constructed
for detecting the presence of embeddings. For a family of contiguous alternatives, the asymptotic power of
statistical tests based on the runs statistics is found. An algorithm of polynomial complexity is developed for
the statistical estimation of positions with embedded bits. Results of computer experiments are presented.
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1 Introduction
The paper is concerned with a topical problem in steganographic information security—this is the problem
of embedding detection, that is of the construction of statistical tests for the existence of embeddings and of
statistical estimates of positions (points) of embeddings.

The problem of detection of embeddings was studied in [1, 2, 3, 4] under the assumption that the prob-
abilistic model of a cover sequence is completely known. So, in [1] statistical tests were constructed for the
embedding existence in the case when the initial (cover) sequence is modeled by a Bernoulli scheme of inde-
pendent trials; it was also shown that the embedding detection is impossible if the fraction of the embeddings
tends to 0 as the length of the initial sequence tends to∞. A similar fact was proved in [3]. In [2] a most pow-
erful statistical test for the embedding existence was constructed for the model based on a Bernoulli scheme
of independent trials, and statistical estimates of the fraction of embeddings were put forward. Statistical es-
timates of the model parameters of the embedding in a binary Markov chain were constructed and examined
in [5]; they allow to make preliminary conclusions on the fraction of embeddings. It is worth mentioning that
the majority of studies on the detection of embeddings are based on empirical characteristics of sequences,
which involve methods of discriminant analysis for testing the embedding existence. We also note that the
above problems of recognition of embeddings are close to those on the detection of deviations of output se-
quences of cryptographic generators from uniformly distributed random sequences [6].

Our purpose in this paper is to continue the studies initiated in [5]: we construct and analyse statistical
tests for the embedding existence, and to develop algorithms for the statistical estimation of embeddings
points.

The paper is organized as follows. In § 2 we describe the mathematical (q, r)-block model of embedding
in a binary Markov chain. In § 3 we construct statistical tests for the embedding existence based on the runs
statistics and on the short runs statistics, and in § 4 we consider tests based on the likelihood ratio statis-
tics. In § 5, we put forward an algorithm of polynomial complexity for statistical estimation. The results of
numerical experiments are given in § 6.
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2 Mathematical model of embedding
We de�ne the generalized (q, r)-block model of embedding, a particular case of which was proposed by the
authors of the present paper in [5]. Throughout, (Ø, F,P) is the underlying probability space, V = {0, 1} is
the binary alphabet,VT is the space of binary T-dimensional vectors,O (⋅) is the ‘big O’ notation introduced
by Landau,ℕ is the set of natural numbers, I{A} is the indicator of an event A, ut2

t1 = (ut1 , . . . , ut2) ∈ Vt2−t1+1
(t1, t2 ∈ ℕ, t1 ≤ t2) is a binary string of t2 − t1 + 1 successive symbols of some sequence {ut : t ∈ ℕ},w(⋅) is
the Hamming weight,L{î} is the probability distribution of a random variable î,B(è) denotes the Bernoulli
distribution with parameter è ∈ [0, 1]: P{î = 1} = 1 − P{î = 0} = è,Õ(⋅) is the distribution function for the
standard normal lawN(0, 1).

According to [5], an adequatemodel of the cover sequence for embedding amessage is a binary sequence
xT
1 = (x1, x2, . . . , xT) ∈ VT, xt ∈ V, t = 1, . . . , T, of length T, which is a homogeneous �rst-order binary

Markov chain with symmetric matrix of one-step transition probabilities P:

P = P(ù) =
1
2
( 1 + ù 1 − ù

1 − ù 1 + ù ) , P{xt ⊕ xt+1} =
1
2
(1 − ù), |ù| < 1. (1)

Here, ù is the parameter of themodel: the case ù = 0 corresponds to a scheme of independent trials whichwas
examined in [1]. The case ù > 0 takes into account an attraction-type dependence, and the ù < 0, a repulsion-
type dependence.We note that theMarkov chain (1) satis�es the ergodicity conditions [7] and has the uniform
stationary distribution (1/2, 1/2). In what follows, we shall assume that the Markov chain (1) is stationary,
and so its initial probability distribution agrees with the uniform distribution.

In practical applications [5] a message is subject to a cryptographic transformation before being em-
bedded in the cover sequence, and hence we assume in what follows that a message îM1 = (î1, . . . , îM) ∈
VM, M ≤ T, is a sequence ofM independent Bernoulli random variables:

L{ît} = B(è1), P{ît = j} = èj, j ∈ V, è1 = 1 − è0, t = 1, . . . ,M. (2)

The stego-key ãT1 = (ã1, . . . , ãT) ∈ VT speci�es the points (time instants) at which the message bits îM1
are embedded in the sequence xT

1 . We introduce a special (q, r)-block model of the stego-key ãT1 (q, r ∈ ℕ,
r ≤ q), assuming that the length of the sequence xT

1 is a multiple of q: T = Kq.
Let æk ∈ V, L{æk} = B(ä), k = 1, . . . , K, be auxiliary independent random variables, which govern

the choice of the blocks {x(k) = xkq
(k−1)q+1} for embedding the message îM1 : if æk = 1, then r successive bits

of the message are embedded in r randomly chosen bits of the block x(k); if æk = 0 then no embedding in
the block x(k) is performed; G(q,r) = {g(q,r)

1 , . . . , g(q,r)
Crq } = {uq

1 ∈ Vq : w(uq
1) = r} is the set consisting of

Cr
q lexicographically ordered binary vectors of length q equipped with the Hamming weight r; g1, g2, . . . are

independent random variables, gk has uniform probability distribution on the set {1, . . . , Cr
q},

P{ã(k) = g(q,r)
i |æk = 1} = P{gk = i} =

1
Cr

q
.

In the (q, r)-block model of embedding, the sequence ãT1 consists of blocks of length q: ã(1) = ãq1 , ã(2) =
ã2qq+1, . . . , ã(K) = ãKq

(K−1)q+1,

ã(k) =
{
{
{

(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
q

), æk = 0,

g(q,r)
i ∈ G(q,r), æk = 1, gk = i,

k = 1, . . . , T/q, (3)

the parameter ä characterizes the fraction of embeddings. We note that for the (q, r)-block model of embed-
ding the maximum capacity for the stego system is Tr/q bits, while the cardinality of the set of all possible
stego-keys

Ã(q,r) = {G(q,r) ∪ {(0, . . . , 0)}}T/q
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is |Ã(q,r)| = (1 + Cr
q)

T/q. In the case q = r = 1, we have the classical model [5] of a bit-wise embedding,
|Ã(1,1)| = 2T.

For the most commonly encountered in steganography methods of embedding (the ‘LSB replacement’
and the ‘± embedding’ [8]) the random stego-sequence YT

1 = (Y1, . . . , YT) is generated by the sequences
{xt}, {ît}, {ãt} via the function transform

Yt = xt ⊕ ãtxt ⊕ ãtîót = {
xt, ãt = 0,
îót , ãt = 1, (4)

where ót = ∑t
j=1 ãj. The sequences {xt}, {ît}, {ãt} are assumed to be jointly independent.

We note that for r = 1 the model presented here coincides with the q-block model considered in [5].
From the practical point of view, the casewith è0 = è1 = 1/2 in (2), which presents the greatest challenge

for embedding detection, is themost noteworthy in the framework of theMarkovmodel of embedding (1)–(4).
In this case the one-dimensional distribution of probabilities is not distorted for an embedding in (4),

P{Yt = 1} = P{Yt = 0} = P{xt = 1} = P{xt = 0} = 1/2, t = 1, 2, . . . , T. (5)

Another justi�cation of the relevance of the case considered in the present paper is the practical utilization
of preliminary cryptographic transformation of a message that removes the nonuniformity in the probability
distribution of symbols.

3 Embedding detection based on the runs statistics

3.1 Using the total number of runs statistics

We introduce two hypotheses concerning the fraction ä ∈ [0, 1] of embeddings:

H0 : {ä = 0}, H1 : {ä > 0}. (6)

The hypothesis H0 means that there are no embeddings and the stego-sequence YT
1 agrees with the cover

sequence xT
1 . The composite alternativeH1 means there exist embeddings with some unknown fraction ä >

0. If the parameter of the cover sequence ù is known, then the null hypothesis, which will be denoted by
H0,ù, is simple; otherwise,H0 is also a composite hypothesis. If the hypothesisH0 holds, then the probability
measure Pwill be denoted by P0, otherwise, by Pä. One similarly denotes the moments of random variables.
The distributions P0 and Pä were found in [5].

Lemma 1. Under the hypothesisH0,ù, the probability distribution of the stego-sequence YT
1 is as follows

P0{Y
T
1 = yT

1 } = P0{x
T
1 = yT

1 } = 2−T(1 − ù)BT−1(1 + ù)T−BT ,
where

BT = BT(y
T
1 ) = 1 +

T−1

∑
t=1

yt ⊕ yt+1

is the minimal su�cient statistics withH0,ù.

The statistics BT is called the ‘runs test’ in [9] (it means the total number of runs). By virtue of (1), under the
hypothesis H0 the sequence of indicators I{Yt ⊕ Yt+1 = 1} consists of independent random variables with
Bernoulli distribution B(2−1(1 − ù)). Using the exact binomial probability distribution of the statistics BT
with the known value of ù, one may construct a randomized statistical test for the embedding existence with
the given probability of the �rst kind error á,. However, for practical purposes, it is more convenient to use
its asymptotic variant as T → ∞, which is given by the critical region

X B+
1á = {yT

1 : BT ≥ 1 + 1
2T(1 − ù) − 1

2 tá√T(1 − ù2)} for ù > 0,

X B−
1á = {yT

1 : BT ≤ 1 + 1
2T(1 − ù) + 1

2 tá√T(1 − ù2)} for ù < 0, (7)
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where tá is the á-quantile of the standard normal distribution:Õ(tá) = á.

Theorem 1. Let the model of embedding (4) hold. Then as T → ∞ the asymptotic size of test (7) for the hy-
pothesesH0,ù,H1 based on the total number of runs statisticsBT coincides with a preassigned signi�cance level
á ∈ (0, 1). The asymptotic expression for the power of this test in the case of the (1, 1)-model of embedding and
of the family of simple contiguous alternativesH1,ä : {ä =

ñ
Tâ }, â > 0, is as follows:

WB+
1 = WB−

1 →

{{{{
{{{{
{

1, 0 < â < 1/2,

Õ (tá + 2ñ
|ù|

√1 − ù2
) , â = 1/2,

á, â > 1/2.

(8)

Proof. Under the hypothesisH0, the De Moivre–Laplace limit theorem implies that

L0 {
BT − 1 − 1

2T(1 − ù)
1
2
√T(1 − ù2)

} → N(0, 1) as T → ∞. (9)

Hence, using (9) we have, as T → ∞,

P0{X
B+
1á } → á, P0{X

B−
1á } → á.

In the case q = r = 1, under the alternativeH1, it follows from (1), (2), (4), (5) that the initial �rst moment of
the random variable BT is equal to

Eä{BT} = 1 +
T−1

∑
t=1

Eä{Yt ⊕ Yt+1} = 1 + 2−1(T − 1)(1 − (1 − ä)2ù).

Using similar arguments, we calculate the initial second moment under the alternativeH1. We have

Eä{B
2
T} = Eä {(1 +

T−1

∑
t1=1Yt1 ⊕ Yt1+1)(1 +

T−1

∑
t2=1Yt2 ⊕ Yt2+1)} =

= Eä {
T−1

∑
t1,t2=1(Yt1 ⊕ Yt1+1)(Yt2 ⊕ Yt2+1)} + 2Eä{BT} − 1 =

= 3Eä{BT} − 2 + 2
T−2

∑
t=1

∑
ℎ∈V

Pä{Yt = ℎ, Yt+1 = 1 − ℎ, Yt+2 = ℎ}+

+ 2
T−2

∑
ó=2

T−ó−1

∑
t=1

∑
ℎ1,ℎ2∈VPä{Yt = ℎ1, Yt+1 = 1 − ℎ1, Yt+ó = ℎ2, Yt+ó = 1 − ℎ2} =

= 3Eä{BT} − 2 + 2−1(T − 2)(1 + ù(ù − 2)(1 − ä)2)+

+ 4
T−2

∑
ó=2

(T − ó − 1)(Pä{Yt = 0, Yt+1 = 1, Yt+ó = 0, Yt+ó+1 = 1}+

+ Pä{Yt = 0, Yt+1 = 1, Yt+ó = 1, Yt+ó+1 = 0}) =

= 1 + 2−13(T − 1)(1 − ù(1 − ä)2) + 2−1(T − 2)(1 + ù(ù − 2)(1 − ä)2)+

+ 2−2(T − 2)(T − 3)(1 + ù(ùä2 − 2ùä − 2 + ù)(1 − ä)2).

For the variance, we have

Dä{BT} =
1
4T(1 − (1 − ä)2ù2(1 − 6ä + 3ä2) − 1

4 (1 − (1 − ä)2ù2(1 − 10ä + 5ä2)) =

= T( 14 (1 − (1 − ä)2ù2(1 − 6ä + 3ä2)))(1 + o(1)), T → ∞.
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By the construction (4) the random sequence {Yt} satis�es the strong mixing property [10, 11], and hence
the central limit theorem for weakly dependent random variables holds,

Lä {
BT − 1 − 1

2T(1 − (1 − ä)2ù)

√Dä{BT}
} → N(0, 1). (10)

In the case ù > 0, we take into account (10) and substitute ä =
ñ
Tâ asT → ∞ into the expression for the

power. As a result, we have

limWB+
1 =limPä{X

B+
1á }=limPä{BT≥1 +

1
2T(1 − ù) − 1

2 tá√T(1 − ù2)}=

=limPä{
BT − Eä{BT}
√Dä{BT}

≥
1 + 1

2T(1 − ù) − Eä{BT} −
1
2 tá√T(1 − ù2)

√Dä{BT}
}=

= Õ(lim
Tùä(2 − ä) + tá√T(1 − ù2)

√T(1 − (1 − ä)2ù2(1 − 6ä + 3ä2))
) .

Analyzing various values of â in this expression, we arrive at (8). The case ù < 0 is dealt with similarly.

3.2 Using the short runs statistics

Let us construct the sequence of indicators of sign changes in the sequence Y1, . . . , YT ∈ VT:

zt = Yt ⊕ Yt+1 ∈ V, t = 1, . . . , T − 1. (11)

Next, we de�ne the set of patterns in sequence (11):

{b1, b2, . . .}, bó = (1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ó

, 1), ó ∈ ℕ ∪ {0};

here bó is the chain of ó successive 0’s bounded from the left and right by 1’s. Such patterns specify series
of 0’s and 1’s of length ó + 1 in the stego-sequence {Yt}. Further, we consider the disjoint random events Có,
ó ∈ ℕ ∪ {0}:

Có = {(zt, zt+1, . . . , zt+ó+1) = bó}.

Lemma 2. Let the model of embedding (4) hold, q = r = 1. Then under the alternative H1 the probability
distribution of the random events Có is given by

Pä{Có} = P0{Có} + aó(ä, ù) = 2−(ó+2)(1 + ù)ó(1 − ù)2 + aó(ä, ù), (12)

where aó(ä, ù) → 0 as ä → 0, |ù| < 1.

Proof. Using the law of total probability for the model of embedding under consideration we �nd that

Pä{Có} = ∑
uó+21 ∈Vó+2Pä{ã

t+ó+1
t =uó+2

1 }Pä{(zt, zt+1, . . . , zt+ó+1)=bó|ã
t+ó+1
t =uó+2

1 }=

= (1 − ä)ó+2P0{Có} + ä ∑
uó+21 ∈Vó+2: w(uó+21 )>0

äw(u
ó+21 )−1(1 − ä)ó+2−w(u

ó+21 )×

×Pä{(zt, zt+1, . . . , zt+ó+1) = bó|ã
t+ó+1
t = uó+2

1 } ÚÚÚ→
ä→0

2−(ó+2)(1 + ù)ó(1 − ù)2.

Theorem 2. Under the hypotheses of Lemma 2, the function aó(ä, ù) has the asymptotic expansion

aó = äa(1)ó (ù) + O (ä2) ,

a(1)ó (ù) =
{
{
{

2−1ù(2 − ù), ó = 0,
2−2ù(1 − ù)(1 + ù), ó = 1,
2−ó−1ù(1 − ù)(1 + ù)ó−2(ù2 + (ó + 1)ù − ó + 2), ó ≥ 2.

(13)
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Proof. We partition the set Uó+2,1 = {uó+2
1 = (u1, . . . , uó+2) ∈ Vó+2: w(u

ó+2
1 ) = 1}, |U| = ó + 2, of binary

vectors of length ó + 2, ó ≥ 3, with unit Hamming weight into three disjoint subsets:

Uó+2,1 =U
(0)
ó+2,1 ∪ U(1)

ó+2,1 ∪ U(2)
ó+2,1,

U
(j)
ó+2,1 ={u

ó+2
1 ∈ Uó+2,1 : uj+1 + uó+2−j = 1}, j ∈ {0, 1},

U(2)
ó+2,1 ={u

ó+2
1 ∈ Uó+2,1 : ∑

ó

j=3
uj = 1}.

Arguing as in the proof of Lemma 2, we have

Pä{Có} = P0{Có} − ä(ó + 2)P0{Có}+

+ä ∑
j∈{0,1,2}

∑
uó+21 ∈U(j)ó+2,1Pä{(zt, zt+1, . . . , zt+ó+1) = bó|ã

t+ó+1
t = uó+2

1 } + O (ä2) . (14)

Let us consider the case ó ≥ 2. The subset U(j)
ó+2,1, j ∈ {0, 1, 2}, contains sequences uó+2

1 ∈ Uó+2,1 such that
the events Có ∩ {ãt+ó+1t = uó+2

1 } are equiprobable under the alternativeH1:

Pä{Có ∩ {ãt+ó+1t = uó+2
1 }} =

=
{{
{{
{

ä(1 − ä)ó+22−ó−3(1 − ù)(1 + ù)ó, uó+2
1 ∈ U(0)

ó+2,1,
ä(1 − ä)ó+22−ó−3(1 − ù)2(1 + ù)ó, uó+2

1 ∈ U(1)
ó+2,1,

ä(1 − ä)ó+22−ó−3(1 − ù)2(1 + ù2)(1 + ù)ó−2, uó+2
1 ∈ U(2)

ó+2,1.

(15)

Now (13) with ó ≥ 2 follows by substitution of (15) into (14). The case ó < 2 in (13) is considered similarly.

Theorem 3. Under the hypotheses of Lemma 2, the function aó(ä, ù) has the second-order asymptotic expansion

aó = äa(1)ó (ù) + ä2a(2)ó (ù) + O (ä3) ,

where

a(2)0 (ù)=2−2ù(−2 + ù), a(2)1 (ù)= 2−3ù(−1 + 4ù + ù2),

a(2)2 (ù)=2−4ù2(−7+10ù+ù2), a(2)3 (ù)= 2−5ù(1−12ù+2ù2+16ù3+ù4),

a(2)ó (ù)=2−ó−2ù(1+ù)ó−4(ó−2+ù(2ó2−14ó+13)+2ù2(−2ó2+7ó − 8)+

+ 2ù3(ó2 − 3ó + 9) + ù4(5ó + 2) + ù5), ó ≥ 4. (16)

The proof is similar to that of Theorem 2, the set of stego-keys Uó+2,2 being split into classes of equiprobable
events.

From Theorems 2, 3 it follows that under the alternative H1 (existence of embeddings) the probability
distribution of the total number of runs of a given length di�ers from that distribution under the hypothesis
H0. In particular, for ù > 0 the probabilities of the events C0,C1,C2 increase as ä increases from 0 to 1,
whereas for ó > óù = 2 + ù(3 + ù)(1 − ù)−1 the probability Pä{Có} decreases with the increasing of ä. This
being so, we consider the statistics

BT,1 =
T−2

∑
t=1

zt, BT,2 =
T−2

∑
t=1

ztzt+1, (17)

where the statisticsBT,2 is the total number of series of 0’s and of 1’s of length 1 in the sequence {yt}, and the
statisticsBT,1 is related to the total number of runs statistics BT by the relationBT,1 = BT − zT−1 − 1.

Using Theorem 1 from [5] one may show that under the alternative H1 the initial �rst-order moments of
the bivariate statistics (BT,1,BT,2), as given by (17), read as

Eä{BT,1} = (T − 2) 12 (1 − (1 − ä)2ù) = E0{BT,1} + T 1
2ä(2 − ä)ù + o(T), T → ∞,

Eä{BT,2} = (T − 2) 14 (1 − (1 − ä)2ù(2 − ù)) = E0{BT,2} + T 1
4ä(2 − ä)ù(2 − ù) + o(T), T → ∞. (18)

From (18) it is seen that for ù > 0 the mean number of sign changes or of two neighbouring sign changes is
larger when the embeddings exist than in the opposite case.
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Theorem 4. Let themodel of embedding (4) holds. Then, asT → ∞, the statistical test for the hypothesesH0,ù,
H1 of the asymptotic signi�cance level á ∈ (0, 1) based on the bivariate statistics (17) is given by the critical
region

X
B1,2
1á = {yT

1 : (BT,1,BT,2) ∈ D1,2}, (19)

where the regionD1,2 is as follows

D1,2 = {(BT,1,BT,2) : (BT,1 − Tì0,1)ù ≥ 0, (BT,2 − Tì2
0,1)ù ≥ 0,

( BT,1 − ì0,1
BT,2 − ì2

0,1
)

�
(

(5−3ù)(1−ù)
16 −

1−ù
4

−
1−ù
4

1
4

)( BT,1 − ì0,1
BT,2 − ì2

0,1
) ≥ Tc1,2},

(20)

ì0,1 =
1
2 (1 − ù), c1,2 = 2−5(1 − ù2)2 ln

ð − arccos (2√ 1−ù
5−3ù)

2ðá
,

that is,
P0{X

B1,2
1á } = P0{(BT,1,BT,2) ∈ D1,2} → á.

Proof. Using the fact that under the hypothesisH0,ù the random variables {zt} are independent and have the
Bernoulli distribution B(2−1(1 − ù)), and since the random variables ztzt+1 and zszs+1 are independent if
|t − s| > 1, we �nd that

E0{BT,1} = T 1
2 (1 − ù)(1 + o(1)), E0{BT,2} = T 1

4 (1 − ù)2(1 + o(1)),

D0{BT,1} = (T − 2)D0{zt} = T 1
4 (1 − ù2)(1 + o(1)),

D0{BT,2} = (T − 2)D0{ztzt+1} + 2 ∑
1≤t<s≤T−2

cov0{ztzt+1, zszs+1} =

= (T − 2)D0{ztzt+1} + 2(T − 3) cov0{ztzt+1, zt+1zt+2} =

= (T − 2)( 14 (1 − ù)2 − 1
16 (1 − ù)4) + 2(T − 3)( 18 (1 − ù)3 − 1

16 (1 − ù)4) =

= T 1
16 (1 − ù2)(1 − ù)(5 − 3ù)(1 + o(1)),

cov0{BT,1,BT,2} =
T−2

∑
t,s=1

cov0{zt, zszs+1} =

= (T − 2) cov0{zt, ztzt+1} + (T − 3) cov0{zt+1, ztzt+1} =

= (2T − 6)( 14 (1 − ù)2 − 1
8 (1 − ù)3) = T 1

4 (1 − ù2)(1 − ù) − 3
4 (1 − ù2)(1 − ù) =

= T 1
4 (1 − ù2)(1 − ù)(1 + o(1)).

Next, since the sequence of pairs (zt, ztzt+1) ∈ V2 is 1-dependent, it follows that asT → ∞ the randomvector
1
√T

(BT,1 −
1
2T(1 − ù),BT,2 −

1
4T(1 − ù)2)

�
has an asymptotic normal distributionN2((0, 0)

�, Ò0), where

Ò0 = (1 − ù2) (
1
4

1−ù
4

1−ù
4

(5−3ù)(1−ù)
16

) . (21)

In Fig. 1 the region D1,2 for the case ù > 0 is marked by the ‘+’ sign. Such a form of the domain follows
from the asymptotical normality of the bivariate statistics (BT,1,BT,2) and from expressions (18). To calculate
the probability of the �rst kind error, we use the linear transform of the regionD1,2. We apply the matrixÒ−

12
0

to the unit vectors (1, 0), (0, 1) ∈ R2 and construct the Gram matrix:

u1 = Ò−
12

0 (1, 0)�, u2 = Ò−
12

0 (0, 1)�,

( u�
1u1 u�

1u2
u�
1u2 u�

2u2
) = Ò−10 =

26

(1 − ù2)2
(

(5−3ù)(1−ù)
16 −

1−ù
4

−
1−ù
4

1
4

) .
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E0

{
BT,1

} BT,1

E0

{
BT,2

}

BT,2

Figure 1. The regionD1,2 for ù > 0 and the scattering ellipses for ä ∈ [0, 1].

The angle õ between the vectors u1 and u2 is expressed in terms of the coe�cient of correlation:

õ = arccos (
u�
1u2

|u1||u2|
) = ð − arccos (corr0{BT,1,BT,2}) = ð − arccos (2√ 1−ù

5−3ù) .

Because of the joint asymptotic normality of statistics (17), the random variable

Q1,2 =
1
T
( BT,1 − ì0,1

BT,2 − ì2
0,1

)
�
Ò−10 ( BT,1 − ì0,1

BT,2 − ì2
0,1

)

has an asymptotically exponential distribution with the parameter 1/2 asT → ∞. Hence, from the equation

P0{(BT,1,BT,2) ∈ D1,2} = P0{Q1,2 ≥ c}
õ
2ð

=
(ð − arccos(2√ 1−ù

5−3ù ))

2ðec/2
= á

we �nd c =
26

(1 − ù2)2
c1,2 (the ellipse equation in Fig. 1:Q1,2 = c). The case ù < 0 is considered similarly with

u1 = Ò−
12

0 (−1, 0)�, u2 = Ò−
12

0 (0, −1)�.

Lemma 3. Under the (1, 1)-model of embedding and the alternative H1 the random variables zt, zs are inde-
pendent if |t − s| ≥ 2, the random variables zt, zszs+1 are independent if |t − s| ≥ 2, and the random variables
ztzt+1, zszs+1 are independent if |t − s| ≥ 3.

Proof. Let us consider the random variables zt, zt+k, k ≥ 2, and �nd the expectation Eä{ztzt+k}, k ≥ 2:

Eä{ztzt+k}=Pä{ztzt+k = 1}=2Pä{Yt = 0, Yt+1 = 1, Yt+k = 0, Yt+k+1 = 1}+
+2Pä{Yt = 0, Yt+1 = 1, Yt+k = 1, Yt+k+1 = 0} =

= 2 ∑
u∈V4 Pä{(Yt, Yt+1, Yt+k, Yt+k+1)=(0, 1, 0, 1), (ãt, ãt+1, ãt+k, ãt+k+1)=u}+

+2 ∑
u∈V4 Pä{(Yt, Yt+1, Yt+k, Yt+k+1)=(0, 1, 1, 0), (ãt, ãt+1, ãt+k, ãt+k+1)=u} =

= 2
16 ∑

c∈{1,−1}

((1 − ä)4(1 − ù)2(1 − cùk−1) + ä(1 − ä)3(2(1 − ù)(1 − cùk−1) + 2(1 − ù)(1 + cùk))+

+ä2(1 − ä)2(6 − 2ù − cùk−1 + 2cùk − cùk+1) + 4ä3(1 − ä) + ä4) = ( 1
2 (1 − ù(1 − ä)2))

2
= (Eä{zt})

2.

Since the random variables zt, zt+k are binary and since covä{zt, zt+k} = 0 for k ≥ 2, then such variables are
independent. A similar argument shows that the random variables zt, zszs+1 are independent if |t − s| ≥ 2
and that the random variables ztzt+1, zszs+1 are independent if |t − s| ≥ 3.
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Nowwewill employ Lemma 3 to �nd asymptotic expressions for the �rst and secondmoments of the bivariate
statistics (BT,1,BT,2) under the alternativeH1,ä. The �rst-order moments were found in (18). In the course of
the proof of Theorem 1 it was shown that

Dä{BT,1} = T 1
4 (1 − (1 − ä)2ù2(1 − 6ä + 3ä2))(1 + o(1)), T → ∞.

In view of Lemma 3 we have, as T → ∞,

covä{BT,1,BT,2} = ∑
T−2

t,s=1
covä{zt, zszs+1} =

= (T − 2) covä{zt, ztzt+1} + (T − 3) covä{zt, zt+1zt+2}+
+(T − 3) covä{zt, zt−1zt} + (T − 4) covä{zt, zt−2zt−1} =
= 2T(covä{zt, ztzt+1} + covä{zt, zt+1zt+2})(1 + o(1)),
covä{zt, ztzt+1} = Pä{ztzt+1 = 1}(1 − Pä{zt = 1}) =

= 1
4 (1 − (1 − ä)2ù(2 − ù))(1 − 1

2 (1 − (1 − ä)2ù)) =

= 1
8 (1 − (1 − ä)2ù(1 − ù) − (1 − ä)4ù2(2 − ù)),

covä{zt, zt+1zt+2} = Pä{ztzt+1zt+2 = 1} − Pä{zt = 1}Pä{zt+1zt+2 = 1}.

Using the law of total probability, we �nd, for the model of embedding (1, 1),

Pä{ztzt+1zt+2 = 1} = 2Pä{Yt = 0, Yt+1 = 1, Yt+2 = 0, Yt+3 = 1} =

= 2 ∑
u∈V4 Pä{Yt = 0, Yt+1 = 1, Yt+2 = 0, Yt+3 = 1, ãt+3t = u} =

= 1
8 (1 − (1 − ä)2ù(3 − 2ù + ù2) + (1 − ä)4ù2),

covä{zt, zt+1zt+2} = Pä{ztzt+1zt+2 = 1} − Pä{zt = 1}Pä{zt+1zt+2 = 1} =

= Pä{ztzt+1zt+2 = 1} − 1
8 (1 − (1 − ä)2ù(3 − ù) + (1 − ä)4ù2(2 − ù)) =

= 1
8 (1 − ä)2ä(2 − ä)ù2(1 − ù).

We thus have

covä{BT,1,BT,2} = T 1
4 (1 − (1 − ä)2ù(1 − ù)2 − (1 − ä)4ù2(3 − 2ù))(1 + o(1)).

Using Lemma 3 as T → ∞ we �nd the varianceDä{BT,2}:

Dä{BT,2} = (T − 2)Dä{ztzt+1} + 2(T − 3) covä{ztzt+1, zt+1zt+2}+
+2(T − 4) covä{ztzt+1, zt+2zt+3},

Dä{ztzt+1} = Pä{ztzt+1 = 1}(1 − Pä{ztzt+1 = 1} =

= 1
16 (1 − (1 − ä)2ù(2 − ù))(3 + (1 − ä)2ù(2 − ù)),

covä{ztzt+1, zt+1zt+2} = Pä{ztzt+1zt+2 = 1} − (Pä{ztzt+1 = 1})2 =

= 1
16 (1 − (1 − ä)22ù(1 − ù + ù2) − (1 − ä)4ù2(2 − 4ù + ù2)),

covä{ztzt+1, zt+2zt+3} = Pä{ztzt+1zt+2zt+3 = 1} − (Pä{ztzt+1 = 1})2.

A similar argument as for Pä{ztzt+1zt+2 = 1} shows that

Pä{ztzt+1zt+2zt+3=1}=2Pä{Yt=0, Yt+1=1, Yt+2=0, Yt+3=1, Yt+4=0} =

= 2 ∑
u∈V5 Pä{Yt = 0, Yt+1 = 1, Yt+2 = 0, Yt+3 = 1, Yt+4 = 0, ãt+4t = u} =

= 1
16 (1−(1−ä)

2(ù(4+ä3)−3ù2(2−2ä+ä2)+ù3(4−4ä+2ä2−ä3)−ù4)),

covä{ztzt+1, zt+2zt+3} =
1
16 (1−ä)

2äù(1−ù)(−ä2+ù(2−ä−ä2)−ù2(2−ä)).
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As a result, we have

Dä{BT,2} = T 1
16 (5 − (1 − ä)2(2(4 + ä3)ù + 2(1 − 10ä + 5ä2)ù2−

−2(4 − 16ä + 8ä2 + ä3)ù3 + (3 − 10ä + ä2)ù4))(1 + o(1)).

Using the strong mixing property [10], one may show that under the alternative H1,ä the distribution of
the random vector

1
√T

(BT,1 −
1
2T(1 − (1 − ä)2ù),BT,2 −

1
4T(1 − (1 − ä)2ù(2 − ù)))

�

as T → ∞ is asymptotically normal N2((0, 0)
�, Ò1) with zero mean and covariance matrix Ò1 = (ò1,ij),

i, j = 1, 2, where

ò1,00 =
1
4 (1 − (1 − ä)2ù2(1 − 6ä + 3ä2)),

ò1,01 = ò1,10 =
1
4 (1 − (1 − ä)2ù(1 − ù)2 − (1 − ä)4ù2(3 − 2ù)),

ò1,11 =
1
16 (5 − (1 − ä)2(2(4 + ä3)ù + 2(1 − 10ä + 5ä2)ù2−

−2(4 − 16ä + 8ä2 + ä3)ù3 + (3 − 10ä + ä2)ù4)).

Unfortunately, for the test (19) based on the short runs statistics we have not succeed to obtain an explicit
expression for the power and to examine it, because the covariance matrix depends on ä. This dependence
is illustrated in Fig. 1, which depicts the scattering ellipses (corresponding to the asymptotic matrices) when
the parameter ä is increasing from 0 to 1. The following important property of the asymptotically normal
distribution of the randomvector (17) under the alternativeH1,ä is worth pointing out: with ä changing from 0
to 1 the centre of the asymptotically normal distribution of the bivariate statistics (BT,1,BT,2) always lies on
the line

{
b1 =

1
2TùÄ + 1

2T(1 − ù),
b2 =

1
4Tù(2 − ù)Ä + 1

4T(1 − ù)2, Ä = ä(2 − ä). (22)

Taking into account the property (22), we construct a statistical test for the hypothesesH0,ù, H1 based on
the statistics obtained as the orthogonal projection of the statistics (BT,1,BT,2) on the line (22). Such a test
for ù > 0 is given by the critical region

X h+
1á = {yT

1 : BT,1 +
1
2 (2 − ù)BT,2 ≥

1
2T(1 − ù) + 1

8T(1 − ù)2(2 − ù) − tá√Tdh}, (23)

dh = 2−6(1 − ù2)(68 − 100ù + 65ù2 − 20ù3 + 3ù4).

Theorem 5. Let the model of embedding (4) hold and let ù > 0. Then, as T → ∞, the asymptotic size of test
(23) for the hypothesesH0,ù,H1 based on the projection of the short runs statistics

h = BT,1 −
1
2T(1 − ù) + 1

2 (2 − ù)(BT,2 −
1
4T(1 − ù)2) (24)

coincides with the signi�cance level á ∈ (0, 1). The asymptotic power of this test for the (1, 1)-model of embed-
ding and for the family of contiguous alternativesH1,ä : {ä = ñ

√T
} is as follows:

Wh+
1 → Õ(tá +

ñù(1 + 1
4 (2 − ù)2)

√dh

), T → ∞. (25)

Proof. The angle between the line (22) and the b2-axis is õ = arctan ( 12 (2 − ù)), and hence, the orthogonal
projection of the point (BT,1,BT,2) on this line is given by

(BT,1 −
1
2T(1 − ù)) cos õ + (BT,1 −

1
2T(1 − ù)) sin õ.
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Multiplying this expression by cosec õ, we get the randomvariableh, which, according to (21), has the asymp-
totically normal distributionN1(0, dh) under the hypothesisH0,ù. Hence, P0{X

h+
1á } → á as T → ∞.

Let us �nd the power of test (23) as T → ∞ for contiguous alternatives of the form indicated in the
theorem. We have

Wh+
1 =Pä{BT,1 +

1
2 (2 − ù)BT,2 ≥

1
2T(1 − ù) + 1

8T(1 − ù)2(2 − ù) − tá√Tdh}

= Pä{BT,1 +
1
2 (2 − ù)BT,2 − Eä{BT,1} −

1
2 (2 − ù)Eä{BT,2} ≤

≤ 1
2Tä(2 − ä)ù + 1

8Tä(2 − ä)ù(2 − ù)2 + tá√Tdh} →

→ Õ(lim
1
2Tä(2 − ä)ù + 1

8Tä(2 − ä)ù(2 − ù)2 + tá√Tdh}

√T(ò1,00 +
1
4 (2 − ù)2ò1,11 + (2 − ù)ò1,01)

) .

Substituting ä =
ñ
√T

in this expression as T → ∞, we �nd that

Wh+
1 → Õ(lim

√Tñù + 1
4
√Tñù(2 − ù)2 + tá√Tdh + O (1)

√T (dh + O ( 1
√T

))
) → Õ(tá +

ñù(1 + 1
4 (2 − ù)2)

√dh

).

4 Embedding detection on the basis of the likelihood ratio
statistics

Let us now consider the case when the parameter ù in (1) is unknown and separated from the zero: ù0 ≤ |ù| <
1, where ù0 > 0 is the known boundary value.

We construct the likelihood function for the observed stego-sequenceyT
1 ∈ VT. Following [5],wepartition

the setVt of binary t-dimensional vectors into t + 1 disjoint subsets,

Vt = Ã(t)
0 ∪ Ã(t)

1 ∪ . . . ∪ Ã(t)
t , (26)

where

Ã(t)
0 = {ut

1 ∈ Vt : ut = 1},

Ã(t)
1 = {ut

1 ∈ Vt : ut−1 = ut = 0},

Ã(t)
j = {ut

1 ∈ Vt : ut−j = 0, ut−j+1 = . . . = ut−1 = 1, ut = 0}, 1<j<t,

Ã(t)
t = {ut

1 ∈ Vt : u1 = . . . = ut−1 = ut = 1}. (27)

The partition (26), (27) generates the partition of all possible trajectories of fragments of the key sequence
ãt1 = ut

1 ∈ Vt.

Lemma 4. The likelihood function for the (q, r)-block model of embedding is as follows

L(ù, ä) = Pä{Y
T
1 = yT

1 } = 2−T ∑
uT1 ∈Ã(q,r)(1 − ä)b0(uT1 )(ä/Cr

q)
br(uT1 ) T

∏
t=1

ÿt(u
t
1, y

t
1),

where

ÿt(u
t
1, y

t
1) =

{{{
{{{
{

1, ut
1 ∈ Ã(t)

0 ,
1 + (−1)yt−j+ytùj, ut

1 ∈ Ã(t)
j , 1 ≤ j < t,

1, ut
1 ∈ Ã(t)

t .
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The proof is similar to that of Theorem 5 for the q-block model of embedding in [5].
To test the hypothesesH0, H1 on the existence of embeddings we now construct the statistical likelihood

ratio test [12]. The statistics ëT of this test for the hypothesesH0, H1 takes the form

ëT = ëT(y
T
1 ) = −2 ln

L( ̂ù, 0)
max{L( ̂ù1, ̂ä1), L( ̂ù, 0)}

≥ 0, (28)

where ̂ù, ( ̂ù1, ̂ä1) are the maximum-likelihood estimates, which were constructed in [5] under the hypotheses
H0 andH1 respectively. The statistics (28) introduced above is equivalent to the likelihood ratio statistics

sup
|ù|<1,ä>0
Pä{y1, . . . , yT}

sup
|ù|<1
P0{y1, . . . , yT}

.

Besides, according to [5],

arg max
|ù|<1,ä>0
Pä{y1, . . . , yT} = ( ̂ù1, ̂ä1), argmax

|ù|<1
P0{y1, . . . , yT} = ̂ù.

The statistical test of size á ∈ (0, 1) based on the statistics ëT is de�ned by the critical region

X ë
1á = {yT

1 ∈ VT : ëT ≥ ëá}, (29)

where ëá > 0 is the solution of the equation

sup
ù0≤|ù|<1P0{ëT ≥ ë} = sup

ù0≤|ù|<1(1 − F0(ù, T, ëT)) = á. (30)

Here, F0(ù, T, ëT) is the distribution function of the statistics (28) under the null hypothesisH0.
To estimate the value of ëá satisfying (30), we use the Monte Carlo method: we model M0 samples of

a Markov chain of length T with the parameter ù0. For each sample we calculate the value of the statistics
by (28). Let ë(1), . . . , ë(M0) be the calculated values. Then ëá can be estimated by the sample quantile of level
1 − á:

ë̂á = ë([(1−á)M0]); (31)

the accuracy of this estimate increases with M0 → ∞. So, the statistical tests (29) for the embedding exis-
tence assumes the form:

the hypothesisH0 (respectively,H1) is adopted if p ≥ á (p < á),

p =
1

M0 + 1
(1 +∑

M0
i=1

I{ë(i) > ëT}) .

The available asymptotic properties of the likelihood ratio test [12, 13] may be used under the regularity
conditions [12] guaranteeing the existence, uniqueness, andasymptotic normality of themaximum likelihood
estimates of the parameters ù and ä.

Theorem 6. Under the model of embedding (4), as T → ∞ the test of asymptotic signi�cance level á ∈ (0, 1)
based on the likelihood ratio statistics for the composite null hypothesis is given by the critical region (29) with
the threshold ëá = ö2

1−á,1; that is,

P0{X
ë
1á} = P0{ëT ≥ ö2

1−á,1} → á.

This test is consistent under �xed alternatives ä = ä1 > 0:

Wë
1 = Pä{X

ë
1á} → 1.

The proof follows the argument of [13] with the use of the central limit theorem for weakly dependent random
variables [10].
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5 Statistical estimation of embeddings points
If the alternativeH1 is adopted, then there arises the problem of estimation of points of embeddings—these
being the time instants t ∈ {1, . . . , T} at which in accordance with (4) a bit of the sequence {xt} is replaced
by a bit of the hidden message {ît}.

Theorem 7. Let ãT1 = (ã1, . . . , ãT) ∈ Ã(q,r) be the key sequence corresponding to the (q, r)-model of embedding,
yT
1 ∈ VT be the observed stego-sequence, ̂ãT1 = f(yT

1 ) is some statistical estimate of the key sequence ãT1 based
on observations yT

1 . The minimum of the error probability in estimating the stego-key

Pä{ ̂ãT1 ̸= ãT1 } → min

is attained for the statistics
̂ãT∗1 = arg max

uT1 ∈Ã(q,r)Pä{ãT1 = uT
1 |Y

T
1 = yT

1 }, (32)

which maximizes the a posteriori probability of the stego-key. The minimum of error probability is as follows:

r∗(ù, ä, T) = min
f(⋅)
Pä{ ̂ãT1 ̸= ãT1 } =

= 1 − ∑
yT1 ∈VT Pä{Y

T
1 = yT

1 } max
uT1 ∈Ã(q,r)Pä{ãT1 = uT

1 |Y
T
1 = yT

1 }.
(33)

Proof. We choose an arbitrary statistics

̂ãT1 = f(YT
1 ) : VT → Ã(q,r), (34)

and calculate for it the corresponding error probability for the estimate of the true stego-key ãT1 ∈ Ã(q,r):

r(f; ù, ä, T) = Pä{ ̂ãT1 ̸= ãT1 } = 1 − Pä{ ̂ãT1 = ãT1 }.

After equivalent transformations, using (34) and the rlaw of total probability, we �nd that

r(f; ù, ä, T) = 1 − ∑
uT1 ∈Ã(q,r) Pä{ ̂ãT1 = ãT1 , ã

T
1 = uT

1 } = 1 − ∑
uT1 ∈Ã(q,r) ∑

yT1 ∈VT Pä{f(Y
T
1 ) = ãT1 , ã

T
1 = uT

1 , Y
T
1 = yT

1 } =

= 1 − ∑
yT1 ∈VT ∑

uT1 ∈Ã(q,r) Pä{YT
1 = yT

1 }Pä{ã
T
1 = uT

1 |Y
T
1 = yT

1 } × Pä{f(Y
T
1 ) = ãT1 |ã

T
1 = uT

1 , Y
T
1 = yT

1 } =

=1−∑
yT1 ∈VTPä{Y

T
1 =y

T
1 } ∑
uT1 ∈Ã(q,r)I{f(yT

1 )=u
T
1 }Pä{ã

T
1 =u

T
1 |Y

T
1 =y

T
1 }. (35)

Minimizing this expression in f(⋅) and using (34), we obtain the optimal function f(⋅) in the form

f∗(yT
1 ) = arg max

uT1 ∈Ã(q,r)Pä{ãT1 = uT
1 |Y

T
1 = yT

1 }, (36)

which agrees with the statistics (32).
Substituting (36) into (35), we get (33).

The estimate (32) by the maximum a posteriori probability criterion admits the following equivalent repre-
sentation, which is convenient for its evaluation:

̂ãT∗1 = arg max
uT1 ∈Ã(q,r)Pä{ãT1 = uT

1 |Y
T
1 = yT

1 } = arg max
uT1 ∈Ã(q,r)Pä{ãT1 = uT

1 , Y
T
1 = yT

1 }. (37)

The solution of problem (37) for the (q, r)-block model of embedding by the exhaustive search has a compu-
tational complexityO(T(1+Cr

q)
T/q). Let us �nd a polynomial algorithm for solving this problem on the basis

of the classical Viterbi algorithm [14].
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We set

st(ut−c, . . . , ut) = maxu1,...,ut−c−1∈V logPä{Yt
1 = yt

1, ã1 = u1, . . . , ãt = ut},

c = max{2r + 1, q − 1}.

The initial values of st(u1, . . . , ut) with t = 1, . . . , c are as follows:

s1(u1) = log ÿ1(u1, y1) + logPä{ã1 = u1},

st(u1, . . . , ut) = st−1(u1, . . . , ut−1) + log ÿt(u
t
1, y

t
1)+

+ logPä{ãt = ut|ãt−1 = ut−1, . . . , ã1 = u1}, 2 ≤ t ≤ c; (38)

here, ÿt(⋅) is the same as in Lemma 4.

Theorem 8. Under the (q, r)-block model of embedding (4), q > r, the recurrence relation

st(ut−c, . . . , ut) =

= max
ut−c−1∈Vst−1(ut−c−1, ut−c, . . . , ut−1) + log ft(u

t
t−2r−1, y

t
t−2r−1)+

+ logPä{ãt = ut|ãt−1 = ut−1, . . . , ãt−c = ut−c} (39)

holds for st(ut−c, . . . , ut) with t > c, where

ft(u
t
t−2r−1, y

t
t−2r−1) = {

1
2 , u

t
1 ∈ Ã(t)

0 ,
1
2 (1 + (−1)yt−j+ytùj), ut

1 ∈ Ã(t)
j , 1 ≤ j ≤ 2r + 1.

Proof. In the case q ≤ 2r + 2 we have

st(ut−2r−1, . . . , ut) = maxu1,...,ut−2r−2∈V logPä{Yt
1 = yt

1, ã1 = u1, . . . , ãt = ut} =

= max
u1,...,ut−2r−2∈V logPä{Yt−1

1 = yt−1
1 , Yt = yt, ã1 = u1, . . . , ãt−1 = ut−1, ãt = ut} =

= max
u1,...,ut−2r−2∈V logPä{Yt−1

1 = yt−1
1 , ã1 = u1, . . . , ãt−1 = ut−1}+

+ logPä{ãt = ut|ã1 = u1, . . . , ãt−1 = ut−1}+

+ logPä{Yt = yt | Y
t−1
1 = yt−1

1 , ã1 = u1, . . . , ãt = ut}.

The case q > 2r + 2 is dealt with similarly. Combining these cases, we arrive at (39).

Corollary 1. Under the hypotheses of Theorem8 the estimate ̂ãT1 = ( ̂ã1, . . . , ̂ãT)of the stego-key by themaximum
a posteriori probability criterion is as follows

( ̂ãT−c, . . . , ̂ãT) = arg maxuT−c,...,uT∈V sT(uT−c, . . . , uT),

̂ãt = argmaxv∈V
st+c(v, ̂ãt+1, . . . , ̂ãt+c), t = T − c − 1, . . . , 1. (40)

Proof. The estimate ̂ãT1 = ( ̂ã1, . . . , ̂ãT) of the stego-key is obtained as the reverse execution of the algorithm
for �nding max

uT−c,...,uT∈V sT by (38), (39).

The algorithm of the estimation of embedding points (the forward run (38), (39), the backward run (40)) has
a numerical complexityO(2c + (T − c)22c+2).

Having estimate the embedding points ãT1 by (40), one can construct an estimate ̂î of the message itself:

̂îó = ytó , where tó = mint∈{1,...,T}
{t :

t

∑
k=1

̂ãk = ó}, ó = 1, . . . , w( ̂ãT1 ).
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6 Results of computer experiments
We give the results of three series of computer experiments using simulated data.

Series 1. The initial Markov sequence (1) of length T = 104 with the parameter ù = 0.13 was simulated.
For q = r = 1, the key Bernoulli sequence was simulated using (3) with various values of the parameter ä ∈
[0, 1], the stego-sequence yT

1 was constructed by (4). Figure 2 depicts the total number of runs statistics BT
versus the fraction of embeddings ä. Circles mark the values of the statistics 1

T−1BT for the sequence yT
1 thus

constructed with the corresponding fraction of embeddings ä, the solid line shows the graph for the mean
value 1

T−1Eä{BT}.

0.0 0.2 0.4 0.6 0.8 δ
0.42

0.44

0.46

0.48

0.50

B

Figure 2. The total number of runs statistics BT versus the fraction of embeddings ä.

Series 2. As in Series 1, the Monte Carlo method with the number of replications M1 = 28 was used to
construct estimates of powers for the tests (7), (23) under the hypothesesH0,ù,H1 with known cover sequence
parameter ù = 0.48; the length T = 213, the signi�cance level á = 0.05, and the fraction of embeddings
ä ∈ {0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07}.
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Figure 3. Powers of the tests X B+
1á ,X h+

1á versus the fraction of embeddings ä.

Figure 3 shows graphically the powers of the statistical tests (7), (23) versus the fraction of the embed-
dings ä. The black solid line depicts the theoretical curve of the test power (7) based on the total number of
runs statistics, the grey solid line shows the theoretical curve of the test power (23) based on the projection
of short runs statistics, the black circles correspond to estimates of the powers of test (7), the white circles
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show estimates of the powers of test (23). The 95%-con�dence intervals for the powers of tests (7) and (23)
are shown in grey and black, respectively.

It is seen from the graph that test (23) based on the short runs statistics is more powerful than test (7)
based on the total number of runs statistics. Numerical experiments show that for small values ù the powers
of tests (7) and (23) are practically the same.

0.0 0.1 0.2 0.30 δr/q
0.0
α
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0.6

0.8

W λ
1

Figure 4. Power of the test X ë
1á versus the fraction of embeddings är/q.

Series 3. For the block model of embedding with q = 2, r = 1, the Monte Carlo method was used to �nd
the threshold estimates ë̂á by (31) and thepower of the statistical test (29) basedof the likelihood ratiowith the
model parameters ù = 0.12; the length T = 218, and the signi�cance level á = 0.05. The threshold estimate
was calculated with the number of replicationsM0 = 500, the estimates of powers were calculated with the
number of replicationsMë = 250, 100, 200, 150, 100 and the fraction of the actual embedding är/q = ä/2,
which equals 0.10, 0.15, 0.20, 0.25, 0.30, respectively. Figure 4 shows the graph of the power estimates for the
test X ë

1á versus the fraction of the actual embedding ä/2.
Computer experiments demonstrate the e�ciency of the statistical test thus constructed for the embed-

ding detection and the agreement between theoretical and experimental results.
In conclusion, we note that embeddings may also be detected using small-parametric models of high-

order Markov chains [15].

Acknowledgment: The authors are grateful to A.M. Zubkov for suggesting to study the runs statistics for the
embedding detection and to the referees for comments and advices.
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