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Abstract: Standard Gini correlation plays an important role in measuring the dependence between random
variables with heavy-tailed distributions. It is based on the covariance between one variable and the rank of
the other. Hence for each pair of random variables, there are two Gini correlations and they are not equal in
general, which brings a substantial di�culty in interpretation. Recently, Sang et al (2016) proposed a symmet-
ric Gini correlation based on the joint spatial rank function with a computation cost of O(n2) where n is the
sample size. In this paper, we study two symmetric and computationally e�cient Gini correlations with the
computational complexity of O(n log n). The properties of the new symmetric Gini correlations are explored.
The in�uence function approach is utilized to study the robustness and the asymptotic behavior of these cor-
relations. The asymptotic relative e�ciencies are considered to compare several popular correlations under
symmetric distributions with di�erent tail-heaviness as well as an asymmetric log-normal distribution. Sim-
ulation and real data application are conducted to demonstrate the desirable performance of the two new
symmetric Gini correlations.

Keywords: Asymptotic relative e�ciency, computationally e�cient Gini correlation, in�uence function, ro-
bustness, symmetric Gini correlation.

MSC subject classi�cation: 62G35, 62G20

1 Introduction
Measuring the strength of association and correlation between two random variables is of essential impor-
tance in many research �elds. Many notions of correlations have been proposed and studied [16, 21]. Perhaps
the most commonly used one is Pearson’s correlation coe�cient which measures the linear relationship be-
tween two random variables. Pearson’s correlation is computationally e�cient with a computation cost of
O(n) where n is the sample size. It is the most statistically e�cient one for normal variables; however, it is
very sensitive to outliers. Even one single outlier might have a large impact on the coe�cient’s value and its
performance [36, 37]. An important tool to study robustness is the in�uence function, whichmeasures e�ects
due to in�nitesimal perturbations of the underlying distribution [13]. It has been proven that the Pearson
correlation has an unbounded in�uence function, indicating its lack of robustness [5].

Alternatively, rank based correlations such as Spearman and Kendall’s tau are robust to outliers.
Kendall’s tau is a similarity measure of the ranks of two random variables [17] and Spearman’s correlation
is the Pearson correlation coe�cient evaluated on the ranks of the two variables [39]. Both values are widely
used formeasuringmonotonic relationships. They can be computed e�ciently at a cost of O(n log n) [18], and
their in�uence functions are bounded [3]. The tradeo� to robustness is a loss of statistical e�ciency in normal
settings. For the correlation parameter ρ = 0.1, 0.5, 0.9 in the normal distribution, the asymptotic relative
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e�ciencies (ARE) of Kendall’s tau to the Pearson correlation are about 91%, 89%and 84%, respectively, while
the ARE of the Spearman correlation are even lower [3].

Standard Gini correlations [1] are based on the covariance between one variable and the rank of the other.
More speci�cally, let H be the joint distribution of the random variables X and Y, and let F and G be the
marginal distribution functions of X and Y, respectively. The standard Gini correlations are de�ned as

γ1 = γ(X, Y) := cov(X, G(Y))
cov(X, F(X)) and γ2 = γ(Y , X) := cov(Y , F(X))

cov(Y , G(Y)) (1)

re�ecting di�erent roles of X and Y. The representation of the Gini correlations indicates that they havemixed
properties of those of the Pearson and Spearman correlations [39]. As expected, the statistical e�ciency and
robustness of Gini correlations are between those of Pearson and Spearman correlations. In terms of balance
between e�ciency and robustness, Gini correlations play an important role inmeasuring association for vari-
ables fromheavy-tailed distributions [43]. TheGini correlations are computationally e�cient and can be com-
puted at a cost of O(n log n) [31]. They are not symmetric in X and Y in general [31, 32], i.e., γ(X, Y) ≠ γ(Y , X).
In some applications, this asymmetry is natural and useful [9, 12, 33]. In other scenarios, symmetry is a de-
sired property for dependencemeasures. Some researchers [21, 27] even list symmetry as one of the axioms of
association measures. A symmetric Gini correlation was proposed in [4, 28], which is based on the joint rank
function. It is more statistically e�cient than the standard Gini correlations, but it is not computationally
e�cient with O(n2) complexity, which means it is prohibitive for large n. Yitzhaki and Olkin [42] proposed
two symmetric Gini correlations which are the arithmetic mean and geometric mean of the standard Gini
correlations, respectively.

r(1)
g = r(1)

g (X, Y) := γ1 + γ2
2 and r(2)

g = r(2)
g (X, Y) :=

√
|γ1γ2|. (2)

Clearly those symmetric Gini correlations inherit the computational e�ciency of O(n log n). However, they
have not been well studied in literature except that Xu et al. [41] studied r(1)

g under the normal settings. In
this paper, we systematically study the properties of these two symmetric Gini correlations and explore their
statistical e�ciency. Their robustness is studied by means of their in�uence functions. The limiting distribu-
tions of sample symmetric Gini correlations are established. It is interesting to see that there are three kinds
of asymptotical sampling distribution of the sample correlation, r̂(2)

g , depending on di�erent cases of r(2)
g . To

our best knowledge, this is a novel result and can be applied to the geometric mean type of statistics such as
the symmetrized information dependence measure de�ned in [26].

It is worthwhile to mention that the Gini correlations in (1) and the symmetric versions in (2) are quite
di�erent from the Gini gamma or Gini coe�cient [10, 24], although the names are very similar. Gini correla-
tion γ1 in (1) is a natural bivariate extension of univariate Gini mean di�erence (GMD) from the covariance
representation GMD(F) = E|X1 − X2| = 4Cov(X, F(X)), where X1, X2 are independent copies of X from F.
The Gini gamma was proposed by Gini [11]. Related to the Spearman correlation in a di�erent way, the Gini
gamma is a concordancemeasure which is de�ned based on both ranks of X and Y. It is easy to check that the
Gini gamma follows all axioms of concordance stated in [30]. However, neither r(1)

g nor r(2)
g is a concordance

measure, and neither hold to the coherence axiom.
The paper is organized as follows. In Section 2 we provide properties of r(1)

g and r(2)
g . Their in�uence func-

tions are presented in Section 3. The limiting distributions of sample correlations are established in Section
4. Statistical e�ciency and computational e�ciency of various correlations are compared in Subsection 4.2
and their �nite sample performance comparison is conducted through a simulation study on elliptical dis-
tributions and an asymmetric bivariate log-normal distribution in Section 5. A real data application on the
relationship between GDP per capita and suicide rate is presented in Section 6. Final remarks are provided
in Section 7. Proofs are relegated to the Appendix.
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2 Two symmetric Gini correlations
Basic properties of the two symmetric Gini correlations r(1)

g and r(2)
g in (2) are explored. Their relationships

with the linear correlation parameter, ρ, in bivariate elliptical distributions and log-normal distributions are
presented.

2.1 General properties

Let X and Y be two random variables from F and G, respectively, with the joint distribution H.

Proposition 2.1. Assume that H is continuous and its �rst moment exists, then we have
1. r(1)

g (X, Y) = r(1)
g (Y , X).

2. −1 ≤ r(1)
g (X, Y) ≤ 1.

3. If X and Y are statistically independent, then r(1)
g (X, Y) = 0.

4. If Y is a monotonic increasing (decreasing) function of X, then r(1)
g (X, Y) equals +1(−1).

5. r(1)
g (aX + c, bY + d) = sign(ab)r(1)

g (X, Y) for any constants c, d and nonzero a, b.

Proposition 2.2. Under the same assumptions of Proposition 2.1, we have
1. r(2)

g (X, Y) = r(2)
g (Y , X).

2. 0 ≤ r(2)
g (X, Y) ≤ 1.

3. If X and Y are statistically independent, then r(2)
g (X, Y) = 0.

4. If Y is a monotonic function of X, then r(2)
g (X, Y) = 1.

5. r(2)
g (aX + c, bY + d) = r(2)

g (X, Y) for any constant c, d and nonzero a, b.

The symmetry of r(1)
g and r(2)

g is obvious noting the commutative property of addition and multiplication.
Properties 2-5 in the above two propositions follow simply from the properties of the original Gini correla-
tions γ1 and γ2, shown by [31]. Property 5 states that the two symmetric Gini correlations describe a linear
relationship between X and Y.

Note thatweassumecontinuousH inPropositions (2.1) and (2.2). IfH is not continuous, some revisions on
de�nitions in γ1 and γ2 are needed for general properties. For example, replacing F(x) with (F(x) + F(x−))/2
and G(x) with (G(x) + G(x−))/2 in (1) keeps γ1 and γ2 in the range [−1, 1]. For simplicity, the continuous
distribution is assumed throughout the paper.

Before we study the symmetric Gini correlations in elliptical distributions and lognormal distribution,
we would like to provide de�nitions of other measures of association that will be used and compared in the
paper. For H with a �nite second moment, the Pearson correlation rp is

rp := cov(X, Y)√
var(X)var(Y)

.

The rank based Spearman and Kendall’s tau correlations don’t need a moment condition. The Spearman
correlation is de�ned as the Pearson correlation on the ranks of X and Y, that is,

rs := rp(F(X), G(Y)) = 12EH(F(X)G(Y)) − 3.

The Kendall’s tau rτ is de�ned as

rτ := EH{sgn(X1 − X2)(Y1 − Y2)} = 2PH(X1 − X2)(Y1 − Y2) > 0) − 1,

where (X1, Y1)T and (X2, Y2)T are independently distributed from H.
For Z = (X, Y)T from H with �nite �rst moment, the joint-rank based symmetric Gini correlation r(s)

g [28] is
de�ned as

r(s)
g := EH(XS2(Z))√

EH(XS1(Z))
√
EH(YS2(Z))

= EH(YS1(Z))√
EH(XS1(Z))

√
EH(YS2(Z))

,
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where S(z) = (S1(z), S2(z))T = EH z−Z
‖z−Z‖ is the spatial rank of z = (x, y)T with respect to H and the norm ‖ · ‖

is the Euclidean norm.
Those correlations have di�erent properties andmay have di�erent values under the same distribution. It

is preferred to consider their Fisher consistent versions so that they correspond to the same quantity or same
parameter [7]. For a distribution H with a parameter ρ, ρr is Fisher consistent for ρ if

ρr(H) = ρ.

We denote the Fisher consistent versions of Pearson, Spearman and Kendall’s tau correlations as ρp, ρs and
ρτ, respectively.

Next the symmetry Gini correlations as well as each of above mentioned correlation are studied in ellip-
tical distributions and lognormal distribution.

2.2 Gini correlations in elliptical distributions

A d-variate continuous random vector Z has an elliptical distribution H if its density function is of the form

f (z|µ, Σ) = |Σ|−1/2g{(z − µ)TΣ−1(z − µ)}, (3)

where µ is the location parameter, the positive de�nite matrix Σ is the scatter parameter and the nonnegative
function g is the density generating function. One important property for the elliptical distribution is that
the nonnegative random variable R = ||Σ−1/2(Z − µ)|| is independent of U = {Σ−1/2(Z − µ)}/R, where ‖ · ‖
is the Euclidean norm and U is uniformly distributed on the unit sphere. When d = 1, the class of elliptical

distributions coincides with the location-scale class. For d = 2, let Z = (X, Y)T and Σ =
(
σ2

1 σ12
σ12 σ2

2

)
, then

the corresponding linear correlation coe�cient of X and Y is

ρ = ρ(X, Y) := σ12
σ1σ2

. (4)

Conventionally, we write the parameters of bivariate elliptical distributions as (µ1, µ2, σ1, σ2, ρ).
If second moment of Z exists, then the covariance matrix exists and is equal to ER2

d Σ. In this case, the
Pearson correlationrp iswell de�nedand is equal to theparameter ρ.Moredetails on the elliptical distribution
family refer to [6].

Note that under bivariate elliptical distributions, γ1 = γ2 = ρ [28, 31]. Consequently, we have the relation-
ships between r(i)

g , i = 1, 2, and ρ as follows.

Proposition 2.3. For bivariate elliptical distributions with �nite �rst moments, we have r(1)
g = ρ and r(2)

g = |ρ|.

If σ1 = σ2, the joint-rank based Gini correlation r(s)
g proposed in [28] has the following relationship with ρ.

r(s)
g = k(ρ) =


ρ, ρ = 0, ±1,
1
ρ + ρ − 1

ρ
EK( 2ρ

ρ+1 )
EE( 2ρ

ρ+1 )
, otherwise,

(5)

where EK(x) =
∫ π/2

0 1/
√

1 − x2 sin2 θ dθ and EE(x) =
∫ π/2

0

√
1 − x2 sin2 θ dθ are the complete elliptic inte-

gral of the �rst kind and the second kind, respectively. The Fisher consistent version of r(s)
g is hard to obtain

an explicit form but a numerical solution is possible.
For Kendall’s tau, Blomqvist [2] proved that rτ = 2/π arcsin(ρ) in the normal case. Lindskog et al. [20]

proved that this such relationship holds under all elliptical distributions in general. Hence the Fisher consis-
tent version of Kendall’s correlation is

ρτ = sin
(π

2 rτ
)
. (6)
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Under elliptical distributions, the Spearman correlation rs = 6/π arcsin(ρ/2), the result obtained by [22]
for the normal case. Then the Fisher consistent version of Spearman correlation is

ρs = 2 sin
(π

6 rs
)
. (7)
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Figure 1: Various correlations in lognormal distributions with parameters (µ1 = µ2 = 0, σ1 = σ2 = 1, ρ) in the left plot and
with parameters (µ1 = µ2 = 0, σ1 = 1, σ2 = 2, ρ) in the right plot. The black solid line is the straight line with slope 1 passing
through the origin.

2.3 Gini correlations in bivariate lognormal distribution

The random vector, (X, Y)T , is said to have a bivariate lognormal distribution with parameters
(µ1, µ2, σ1, σ2, ρ) if (log X, log Y)T follows a bivariate normal distribution with the same parameters.

Clearly, Kendall’s tau and Spearman correlation are invariant under monotonically increasing transfor-
mations, thus equations (6) and (7) still hold. For the Pearson correlation, it is easy to have

rp = exp(ρσ1σ2) − 1√
{exp(σ2

1) − 1}{exp(σ2
2) − 1}

. (8)

Then the Fisher consistent version of Pearson correlation for the parameter ρ in the lognormal distribution is

ρp =
log
(
rp
√

exp(σ2
1) − 1

√
exp(σ2

2) − 1
)

+ 1
σ1σ2

. (9)

For the two new symmetric Gini correlations, we have derived the functional relationships as below.

Proposition 2.4. Under the bivariate lognormal distribution with parameters (µ1, µ2, σ1, σ2, ρ), we have

r(1)
g = 1

2

(
2Φ(ρσ1/

√
2) − 1

2Φ(σ1/
√

2) − 1
+ 2Φ(ρσ2/

√
2) − 1

2Φ(σ2/
√

2) − 1

)
, (10)
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r(2)
g =

√
|2Φ(ρσ1/

√
2) − 1|

|2Φ(σ1/
√

2) − 1|
|2Φ(ρσ2/

√
2) − 1|

|2Φ(σ2/
√

2) − 1|
, (11)

where Φ is the cdf of the standard normal variable. Further, if σ1 = σ2 = σ, the Fisher consistent version of
symmetric Gini correlations are

ρ(1)
g =

√
2
σ Φ−1

(
r(1)
g (2Φ(σ/

√
2) − 1) + 1

2

)
, (12)

ρ(2)
g =

√
2
σ Φ−1

(
sgn(ρ)r(2)

g (2Φ(σ/
√

2) − 1) + 1
2

)
. (13)

The proposition states that explicit forms of the Fisher consistent symmetric Gini correlations are only avail-
able for the homogeneous case. Also (13) indicates that the Fisher consistent version of r(2)

g requires informa-
tion of the sign of ρ. If σ1 ≠ σ2, we need a numerical method to approximate them.

Plots in Fig. 1 display the relationship of various correlations to the parameter ρ in the lognormal distri-
butions. In the left plot, σ1 = σ2 = 1, we have r(1)

g = r(2)
g > ρ > rs > rp > rτ if 0 < ρ < 1, otherwise they are

equal at 0 and 1. On the right with σ1 = 1 and σ2 = 2, if 0 < ρ < 1, then r(1)
g > r(2)

g , though the di�erences
between r(1)

g and r(2)
g are tiny and unnoticeable in the plot. Also we have r(2)

g > rs > rτ > rp. Note that the
Pearson correlation, rp, can not reach 1 when σ1 ≠ σ2. The maximum value in the plot above is 0.6642169
when ρ = 1. From Equation (8), it is easy to prove that rp < 1 for ρ = 1 if σ1 ≠ σ2. In other words, for a
normal random variable X and a positive constant a ≠ 1, rp(exp(X), exp(aX)) < 1, meaning that the Pearson
correlation is not suitable to describe nonlinear relationships.

3 Influence function
The in�uence function (IF) introduced by Hampel [13] is now a standard tool which serves two purposes. The
�rst is to measure local robustness for e�ects on estimators due to in�nitesimal perturbations of distribution
functions. The second is to derive limiting distributions and asymptotic variances. See also [14]. For a cdf H
on Rd and a functional T : H 7→ T(H) ∈ Rm with m ≥ 1, the IF of T at H is de�ned as

IF(z; T, H) = lim
ϵ↓0

T((1 − ϵ)H + ϵδz) − T(H)
ϵ , z ∈ Rd ,

where δz denotes the point mass distribution at z. Under regularity conditions on T (see [14, 34] for details),
we have EH{IF(Z; T, H)} = 0 and the von Mises expansion

T(Hn) − T(H) = 1
n

n∑
i=1

IF(zi; T, H) + op(n−1/2), (14)

where Hn denotes the empirical distribution based on a sample z1,...,zn. This representation shows the con-
nection between the IF and the robustness of T, observation by observation. Further, (14) yields the asymp-
totic m-variate normality of T(Hn),

√
n(T(Hn) − T(H)) d→ N(0,EH(IF(Z; T, H)IF(Z; T, H)T)). (15)

We �rst derive the in�uence functions for the standard Gini correlations γ1 and γ2, which are stated in
the following proposition.

Proposition 3.1. For any continuous bivariate distribution H with �nite �rst moment, the in�uence functions
of the traditional Gini correlations are given by

IF((u, v)T ; γ1, H) = γ1

(
(u − EX)[G(v) − EG(Y)]

cov(X, G(Y)) − (u − EX)[F(u) − EF(X)]
cov(X, F(X))

)
,
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IF((u, v)T ; γ2, H) = γ2

(
(v − EY)[F(u) − EF(X)]

cov(Y , F(X)) − (v − EY)[G(v) − EG(Y)]
cov(Y , G(Y))

)
.

The in�uence functions of the standard Gini correlations are approximately linear in u and v. Comparingwith
the quadratic e�ects of the Pearson correlation coe�cient [5],

IF((u, v)T ; rp , H) = (u − EX)(v − EY)
σXσY

− 1
2 rp

[
(u − EX)2

σ2
X

+ (v − EY)2

σ2
Y

]
,

γ1 and γ2 are more robust than the Pearson correlation. However, they are not strictly robust since their in-
�uence functions are unbounded. Kendall’s tau, rτ, and Spearman correlation, rs, have bounded in�uence
functions [3], which are

IF((u, v)T ; rτ , H) = 2{2PH [(u − X)(v − Y) > 0] − 1 − rτ},
IF((u, v)T ; rs , H) = −3rs − 9 + 12(F(u)G(v) + E(F(X)I(Y > v)) + E(G(Y)I(X ≥ u)).

In this sense, the standard Gini correlations are more robust than rp but less robust than rτ and rs.

Proposition 3.2. For any continuous distribution H with �nite �rst moment, the in�uence functions of r(1)
g and

r(2)
g are given by

IF((u, v)T ; r(1)
g , H) = 1

2 IF((u, v)T ; γ1, H) + 1
2 IF(u, v)T ; γ2, H)

IF((u, v)T ; r(2)
g , H) =


sgn(γ1γ2)

2r(2)
g

(γ2IF((u, v)T ; γ1, H) + γ1IF((u, v)T ; γ2, H)) if r(2)
g ≠ 0;

does not exist, if r(2)
g = 0.

Since the square root function is not di�erentiable at zero, the in�uence function of r(2)
g does not exist when

r(2)
g = 0. This brings di�culty in deriving the limiting distribution of sample r̂(2)

g when r(2)
g = 0, as explained

further in a later section. The in�uence function of r(1)
g and that of nonzero r(2)

g are linear combinations of
the in�uence functions of γ1 and γ2, and hence are approximately linear in u and v. The symmetric Gini cor-
relation r(s)

g proposed in [28] also has an approximately linear in�uence function. We expect that the newly
studied Gini correlations and the symmetric one based on the joint rank perform similarly in terms of robust-
ness and statistical e�ciency.

In Figure 2, we demonstrate the in�uence functions of rp, rτ, r(s)
g and r(1)

g and r(2)
g under the bivariate

normal distribution with µ1 = µ2 = 0, σ1 = σ2 = 1 and ρ = 0.5. Since we know that r(1)
g = ρ and r(2)

g = |ρ| for
bivariate normal distributions, the in�uence functions for the two Gini correlations are identical for ρ = 0.5,
and thus share the same plot in Figure 2. Indeed under a general elliptical distribution, IF((u, v)T ; r(2)

g , H) =
IF((u, v)T ; r(1)

g , H) for ρ > 0 and IF((u, v)T ; r(2)
g , H) = −IF((u, v)T ; r(1)

g , H) for ρ < 0. Note that scales of the value
of the in�uence functions in the four plots are quite di�erent.

4 Estimation
Estimation of the two new symmetric Gini correlations can be done easily by plugging in estimators γ̂1 and
γ̂2 of γ1 and γ2, respectively. Given a random sample Z = {Z1, Z2, ..., Zn} with Z i = (Xi , Yi)T , the traditional
Gini correlations γ1 and γ2 can be estimated by a ratio of U-statistics. That is,

γ̂1 = U1
U2

=
2/[n(n − 1)]∑1≤i<j≤n h1

(
(Xi , Yi), (Xj , Yj)

)
2/[n(n − 1)]∑1≤i<j≤n h2

(
(Xi , Yi), (Xj , Yj)

) , (16)

γ̂2 = U3
U4

=
2/[n(n − 1)]∑1≤i<j≤n h3

(
(Xi , Yi), (Yj , Xj)

)
2/[n(n − 1)]∑1≤i<j≤n h4

(
(Xi , Yi), (Xj , Yj)

) , (17)
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IF of rp IF of rτ

IF of r(s)
g IF of r(1)

g and r(2)
g

Figure 2: Influence functions of correlation coe�cients rp, rτ, r(s)
g , r(1)

g and r(2)
g for the bivariate normal distribution with µ1 =

µ2 = 0, σ1 = σ2 = 1 and ρ = 0.5.

where h1
(

(x1, y1), (x2, y2)
)

= h3
(

(y1, x1), (y2, x2)
)

= 1/4[(x1 − x2)I(y1 > y2) + (x2 − x1)I(y2 > y1)] and
h2
(

(x1, y1), (x2, y2)
)

= h4
(

(y1, x1), (y2, x2)
)

= 1/4|x1−x2|. Schechtman andYitzhaki [31] appliedU-statistics
theorem to establish consistency and asymptotic normality of γ̂1 and γ̂2. The same result can be reached
through the in�uence function approach which is derived in Proposition 3.1. More speci�cally, for H with
�nite second moment,

√
n(γ̂1 − γ1) d→ N(0, vγ1 ) and

√
n(γ̂2 − γ2) d→ N(0, vγ2 ) as n →∞,

where the asymptotic variances vγ1 and vγ2 areE[IF((X, Y)T ; γ1, H)2] andE[IF((X, Y)T ; γ2, H)2], respectively.
For a bivariate normal distribution, Xu et al. [41] provided an explicit formula vγ1 = vγ2 = π/3+(π/3+4

√
3)ρ2−

4ρ arcsin(ρ/2) − 4ρ2√4 − ρ2.
Note that a direct computation of U-statistics in (16) and (17) is time-intensive with complexity O(n2).

Rewriting U1 and U2 as linear combinations of order statistics reduces the computation to O(n log n) [31].
That is,

U1 = 1
4
(n

2
) n∑
i=1

(2i − 1 − n)X(Y(i)) and U2 = 1
4
(n

2
) n∑
i=1

(2i − 1 − n)X(i),

where X(i) is the ith order statistic of X1, X2, ..., Xn and X(Y(i)) is the X corresponding to the order statistic Y(i).
Similarly, U3 and U4 are linear combinations of order statistics. This provides computational e�ciency for γ̂1
and γ̂2.
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Thus, we have computationally e�cient estimators for r̂(1)
g and r̂(2)

g ; r̂(1)
g is the arithmetic mean of γ̂1 and

γ̂2, while r̂(2)
g is the geometric mean of γ̂1 and γ̂2.

r̂(1)
g = γ̂1 + γ̂2

2 , r̂(2)
g =

√
|γ̂1γ̂2|, (18)

which are continuous functions of γ̂1 and γ̂2 and they can be e�ciently calculated in O(n log n) of time. The
strong consistency of r̂(1)

g and r̂(2)
g follows directly from the strong consistency of γ̂1 and γ̂2.

Proposition 4.1. Let Z1, Z2, ..., Zn be a random sample from a continuous bivariate distribution H with �nite
�rst moment. Then r̂(1)

g and r̂(2)
g given in (18) converge almost surely to r(1)

g and r(2)
g , respectively.

4.1 Limiting distributions

To simplify the presentation, we denote

δ1(X, Y) = (X − EX)[G(Y) − EG(Y)]
cov(X, G(Y)) − (X − EX)[F(X) − EF(X)]

cov(X, F(X)) ,

δ2(X, Y) = (Y − EY)[F(X) − EF(X)]
cov(Y , F(X)) − (Y − EY)[G(Y) − EG(Y)]

cov(Y , G(Y)) .

With the in�uence function derived in Proposition 3.2, we can easily obtain the asymptotic normality of r̂(1)
g .

Proposition 4.2. Let Z1, Z2, ..., Zn be a random sample from 2-dimensional distribution H with �nite second
moment. As n →∞, √

n(r̂(1)
g − r(1)

g ) d−→ N(0, vg1 ),

where vg1 = E[IF((X, Y)T ; r(1)
g , H)2] = 1/4E

[
{γ1δ1(X, Y) + γ2δ2(X, Y)}2].

For a bivariate normal distribution, Xu et al. [41] provided an explicit formula of vg1 to be vg1 = (1− ρ2)(π/6 −
ρ arcsin(ρ/2) + (1 − ρ2))/

√
4 − ρ2, which is smaller than vγ1 , the asymptotic variance of γ̂1. This means that

the symmetric Gini correlation is more statistically e�cient than the standard Gini correlation under normal
distributions.

Under the lognormal distribution, asymptotic normality of the Fisher consistent estimator ρ̂(1)
g is obtained

by the Delta method. Its asymptotic variance is k1(ρ)−2vg1 , where

k1(ρ) = ∂r(1)
g
∂ρ = ψ(ρσ1/

√
2)σ1/

√
2

2Φ(σ1/
√

2) − 1
+ ψ(ρσ2/

√
2)σ2/

√
2

2Φ(σ2/
√

2) − 1

with ψ and Φ being the pdf and cdf of the standard normal random variable, respectively.
To study the asymptotic behavior of r̂(2)

g , we have to overcome the di�culty brought about by the nonex-
istence of the in�uence function when r(2)

g = 0. It is interesting to see that there are three di�erent limiting
distributions of r̂(2)

g , corresponding to three cases of r(2)
g . We present the results in the following two proposi-

tions.
For r(2)

g ≠ 0, the in�uence function of r(2)
g exists and can be used to establish the asymptotic normality of

r̂(2)
g and calculate its asymptotic variance.

Proposition 4.3. Let Z1, Z2, ..., Zn be a random sample from 2-dimensional distribution H with �nite second
moment. When r(2)

g ≠ 0 and as n →∞,

√
n(r̂(2)

g − r(2)
g ) d−→ N(0, vg2 ),

where vg2 = E[IF((X, Y)T ; r(2)
g , H)2] = |γ1γ2|

4 E[{δ1(X, Y) + δ2(X, Y)}2].
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Remark 4.1. If γ1 = γ2 ≠ 0, we have vg1 = vg2 , meaning that two estimators r̂(1)
g and r̂(2)

g have the same
statistical e�ciency.

If r(2)
g = 0, the in�uence function of r(2)

g does not exist, and hencewe have to rely onU-statistic theory to derive
the limiting distributions of r̂(2)

g . There are two di�erent cases resulting from r(2)
g = 0, depending on whether

or not both γ1 and γ2 are zero. Without loss of generality, we assume γ1 = 0 and the two cases correspond to
γ2 = 0 and γ2 ≠ 0, respectively.

Proposition 4.4. Let Z1, Z2, ..., Zn be a random sample from 2-dimensional distribution H with �nite second
moment. When r(2)

g = 0, we have
1. If γ2 ≠ 0, r̂(2)

g converges to the square root of a folded normal random variable. That is,

n1/4 r̂(2)
g

d−→
√
|Z|,

where Z is a normal random variable with mean zero and variance given in the proof.
2. If γ2 = 0, we have

√
nr̂(2)
g

d−→ 24√
∆1∆2

√√√√∣∣∣ ∞∑
s=1

λs(χ2
1s − 1)

∣∣∣,
where ∆1 = 4Cov(X, F(X)) and ∆2 = 4Cov(Y , G(Y)) are Gini’s mean di�erences for F and G, respectively,
χ2

1s (s = 1, 2, ...) are independent χ2
1 variables and {λs} (s = 1, 2, ...) are coe�cients given in the proof.

4.2 Asymptotic relative e�ciency

We compare the asymptotic e�ciency of the symmetric Gini correlations with other correlations under el-
liptical distributions and lognormal distributions. We consider Fisher consistent estimators. Note that the
purpose here is not to estimate parameter ρ, which is usually provided by likelihood inference. Rather, the
Fisher consistent correlation coe�cients estimate the same parameter and hence their asymptotic variances
and statistical e�ciencies are comparable. Denote ρ̂(1)

g , ρ̂(2)
g , ρ̂(s)

g , ρ̂γ , ρ̂τ and ρ̂p as corresponding estimators
of symmetric Gini, standard Gini γ1, Kendall’s tau and Pearson correlations. The asymptotic variances of
those estimators are derived by the Delta method.

We consider three elliptical distributions with the same parameters (µ1 = µ2 = 0, σ1 = σ2 = 1, ρ =
0.1, 0.5, 0.9) but di�erent fatness on the tail regions, which are
• normal distribution with g(t) = 1/(2π)e−t/2,
• t-distributions with g(t) = 1/(2π)(1 + t/ν)−ν/2−1, where ν = 5, 15 is the degrees of freedom,
• Kotz type distribution with g(t) = 1/(2π)e−

√
t.

Bivariate lognormal distributions with parameters (µ1 = µ2 = 0, σ1 = σ2 = 1, ρ = 0.1, 0.5, 0.9) and (µ1 =
µ2 = 0, σ1 = 1, σ2 = 2, ρ = 0.1, 0.5, 0.9) are also considered.

We compute the asymptotic variances (ASV) of the Pearson estimators ρ̂p, and asymptotic relative e�-
ciencies (ARE) of estimators ρ̂(1)

g , ρ̂(2)
g , ρ̂(s)

g , ρ̂γ , and ρ̂τ relative to ρ̂p, which are reported in the �rst part of
Table 1. The asymptotic relative e�ciency (ARE) of one estimator ρ̂1 with respect to another ρ̂2 is de�ned by

ARE(ρ̂1, ρ̂2) = ASV(ρ̂2)/ASV(ρ̂1).

The second part of Table 1 lists ASV of all correlations under the lognormal distribution with σ1 = 1 and
σ2 = 2. In this case, the Pearson correlation has extremely large asymptotic variances, the result agreeing
well with [19, 23]. The asymptotic variance of r̂p involves the fourth moment and is given by Witting and
Müller-Funk ([40]) as follows.

vp = (1 + r2
p

2 ) σ22
σ20σ02

+ r2
p

4 (σ40
σ2

20
+ σ04
σ2

02
− 4σ31
σ11σ20

− 4σ13
σ11σ02

),
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Dist ρ ρ̂(1)
g ρ̂(2)

g ρ̂(s)
g ρ̂γ1 ρ̂τ ASV(ρ̂p)

0.1 0.9776 0.9776 0.9321 0.9558 0.9111 0.9816
Normal 0.5 0.9570 0.9570 0.9769 0.9398 0.8915 0.5631

0.9 0.9053 0.9053 0.9601 0.9004 0.8439 0.0361

0.1 1.0505 1.0505 1.0182 1.0304 1.0146 1.1558
t(15) 0.5 1.0230 1.0230 1.0560 0.9852 0.9896 0.6643

0.9 0.9564 0.9564 1.0289 0.9468 0.8804 0.0427

0.1 2.0233 2.0233 2.0095 1.9502 2.2586 2.8800
t(5) 0.5 1.8646 1.8646 1.9795 1.7666 2.1060 1.5961

0.9 1.5665 1.5665 1.8629 1.5346 1.7940 0.1019

0.1 1.3539 1.3539 1.2081 1.1385 1.2171 1.6382
Kotz 0.5 1.0732 1.0732 1.1850 1.0854 1.1510 0.9378

0.9 0.9882 0.9882 1.1599 0.9789 1.0256 0.0602

0.1 4.1136 4.1136 N/A 2.1825 3.4713 3.7341
Lognormal 0.5 9.8414 9.8414 N/A 6.0519 9.7859 6.1741
(σ1 = σ2 = 1) 0.9 14.630 14.630 N/A 12.491 21.052 0.9006

ASV(ρ̂(1)
g ) ASV(ρ̂(2)

g ) ASV(ρ̂(s)
g ) ASV(ρ̂γ1 ) ASV(ρ̂τ) ASV(ρ̂p)

0.1 4.9484 4.2810 N/A 1.7109 1.0774 18862
Lognormal 0.5 2.7026 2.4453 N/A 1.0202 0.6316 227142
(σ1 = 1; σ2 = 2) 0.9 0.1858 0.1820 N/A 0.0721 0.0428 379866

Table 1: Asymptotic relative e�ciencies (ARE) of estimators ρ̂(1)
g , ρ̂(2)

g , ρ̂(s)
g , ρ̂γ1 and ρ̂τ relative to ρ̂p for di�erent distributions,

with asymptotic variance (ASV(ρ̂p)) of Pearson estimator ρ̂p. The second part is ASV of all correlations under the lognormal
distribution with σ1 = 1 and σ2 = 2.

where σkl = E[(X−EX)k(Y−EY)l]. For the lognormal case of ρ = 0.5, σ1 = 1 and σ2 = 2,wehave vp = 72895.7
and using the Delta method, the ASV of the Fisher consistent Pearson correlation ρ̂p is vp multiplied by 3.12.

Since we have yet to determine the relationship between ρ and r(s)
g for the lognormal distribution, the

asymptotic relative e�ciencies of ρ̂(s)
g under the lognormal distribution are not presented in this paper. Note

that by Remark 4.1, we have γ1 = γ2 and hence the ASV’s of ρ̂(1)
g and ρ̂(2)

g are same for all cases except for the
second setup of the lognormal distribution. In that case, ρ̂(2)

g is 15%, 10% and 2% more e�cient than ρ̂(1)
g for

ρ = 0.1, 0.5 and 0.9, respectively.
Table 1 shows that the asymptotic variances of ρ̂p, ρ̂(1)

g , ρ̂(2)
g , ρ̂g, ρ̂γ , and ρ̂τ all decrease as ρ increases in

elliptical distributions. Asymptotic variances increase for t distributions as the degrees of freedom ν decrease.
Under normal distributions, the Pearson correlation estimator is the maximum likelihood estimator of ρ,
thus is the most e�cient asymptotically. The two proposed symmetric Gini estimators ρ̂(1)

g , ρ̂(2)
g are both high

in e�ciency with ARE’s greater than 90 percent; thus, more e�cient than Kendall’s estimator ρ̂τ and the
traditional Gini correlation estimator ρ̂γ . For heavy-tailed elliptical distributions, symmetric Gini estimators
ρ̂(1)
g and ρ̂(2)

g are more e�cient than Pearson’s estimator ρ̂p. They are also more e�cient than the traditional
Gini correlation in all elliptical distributions. The rank based symmetric Gini correlation ρ̂(s)

g has a similar
e�ciency as ρ̂(1)

g and ρ̂(2)
g , but it has a slight advantagewhen ρ = 0.5 and0.9. Under the lognormal distribution

with σ1 = σ2 = 1, ρ̂(1)
g and ρ̂(2)

g are competitive with Kendall’s tau. Under the case of σ1 = 1, σ2 = 2 however,
a large variation in Y will degrade the performance of γ̂2 and consequently ρ̂(1)

g and ρ̂(2)
g . ASV of Kendall’s tau

is the most e�cient in this case.
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5 Empirical Results
We �rst conduct a small simulation to compare computational e�ciency of each correlation. Then we com-
pare �nite sample statistical e�ciency of these methods.

5.1 Computational e�ciency

To study the computational e�ciency of thesemethods among �nite samples, we perform a small simulation
to compare the calculation times of the two symmetric Gini correlation estimators r̂(1)

g , r̂(2)
g with Kendall’s tau

r̂τ, Spearman r̂s, and Pearson r̂p correlation estimators, as well as the symmetric Gini correlation estimator
r̂(s)
g . Samples of sizes n = 10000, 50000 and 100000 were drawn from a bivariate Normal distribution with
parameters (µ1 = µ2 = 0, σ1 = σ2 = 1, ρ = 0). For each sample, the computation times of each correlation
measure were recorded. The procedure is then repeated 30 times to procure themean and standard deviation
of computation times for eachmeasure. In Table 2, we display themean and standard deviation (in parenthe-
sis) of calculation times for r̂(1)

g , r̂(2)
g , r̂(s)

g , τ̂, r̂s, and r̂p. The values in Table 2 were achieved on a Windows PC
with an Intel ® CoreTM i7-9700K CPU@ 3.60GHz, 8 cores. The R package "pcaPP" is used for fast computation
of Kendall’s tau correlation.

n r(1)
g r(2)

g r(s)
g rτ rs rp

10, 000 .004 (.0072) .001 (.0040) .390 (.0061) .000 (.0000) .002 (.0063) .000 (.0000)
50, 000 .007 (.0079) .008 (.0086) 9.75 (.0286) .005 (.0078) .011 (.0084) .000 (.0000)

100, 000 .016 (.0061) .013 (.0076) 39.6 (.4872) .008 (.0083) .024 (.0093) .002 (.0053)

Table 2: The mean and standard deviation (in parenthesis) of calculation times for r̂(1)
g , r̂(2)

g , r̂(s)
g , τ̂, r̂s, and r̂p under a bivariate

Normal distribution.

From the complexity study, we know that r̂(1)
g , r̂(2)

g , τ̂, and r̂s all have calculation times of O(n log n), r̂(s)
g

has a calculation time of O(n2), and r̂p has a calculation time of O(n). In Table 2, we can see that r̂p is themost
computationally e�cient, with r̂(1)

g , r̂(2)
g , τ̂, and r̂s being only slightly less e�cient. It is clear from Table 2 that

all of r̂(1)
g , r̂(2)

g , r̂p, τ̂, and r̂s would perform well with most all sample sizes, however, r̂(s)
g would not perform

well with large samples.

5.2 Finite sample e�ciency

In order to study the e�ciency of these methods among �nite samples, we conduct a small simulation com-
paring the two symmetric Gini correlations with Kendall’s τ, Spearman, and Pearson correlation estimators.
Samples of sizes n = 30 and n = 300 were drawn from 4 t-distributions with degrees of freedom 1, 5, 15, and
∞, and from the Kotz and Lognormal distributions. Let µ = (0, 0)T and Σ = ( σ2

1 ρσ1σ2
ρσ1σ2 σ2

2
) be the parameters.

The R Package “mnormt" was used to generate data from the multivariate t distributions, bivariate normal
distribution and the lognormal distribution by taking the exponential transformation of a bivariate normal
random sample. We generate data from the Kotz distribution by �rst obtaining uniformly distributed random
vectors on the unit circle by u = (cos θ, sin θ)T with θ in [0, 2π], then generate r from a Gamma distribution
with shape parameter α=2, and scale parameter β=1. Thus, we obtain Σ1/2ru + µ, a sample from a bivariate
Kotz(µ, Σ) distribution.
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An estimator ρ̂(m) is computed for the mth sample and the root mean squared error (RMSE) is used for a
criterion for assessing estimators, which is de�ned as

RMSE(ρ̂) =

√√√√ 1
M

M∑
m=1

(ρ̂(m) − ρ)2.

In our experiment, M is set to be 3000. The procedure is then repeated 30 times to procure the mean and
standard deviation of √nRMSE. In Table 3, we display the mean and standard deviation (in parenthesis) of√
nRMSE of ρ̂(1)

g , ρ̂(2)
g , ρ̂τ, ρ̂s, and ρ̂p.

We notice a decreasing trend in√nRMSEs as ρ increases for each sample size and an increasing trend as
degrees of freedom, ν, decrease for t distributions. Under the normal distribution,√nRMSEs of both proposed
symmetric Gini estimators, ρ̂(1)

g and ρ̂(2)
g , are highly competitive with√nRMSE of ρ̂p. For ρ = 0.1 , ρ̂(2)

g outper-
forms ρ̂p in all distributions. We include the heavy-tailed distribution, t(1), to demonstrate the behavior of
Pearson and Gini estimators when their asymptotic variancesmay not exist. We observe that for large sample
size, ρ̂p is around twice as large as both ρ̂(1)

g and ρ̂(2)
g . When the sample size is small (n = 30), and degree of

freedom ν is large (15, ∞) ρ̂(2)
g performs the best. For the lognormal distribution, when ρ is small, we see ρ̂(2)

g
outperforms ρ̂τ and ρ̂s. For the remaining cases in the lognormal distribution both proposed symmetric Gini
estimators have a smaller √nRMSE than the Pearson correlation estimator. As expected, Kendall’s tau and
Spearman’s correlation estimator produced similar√nRMSE’s under Normal and log-normal distributions.

5.3 Robustness

We also conduct a simulation with contaminated data to demonstrate robustness and show how contamina-
tion a�ects the performance of each correlations. We generate contaminated data of sizes (n = 300, 1000)
from the following mixture normal model with contamination rates (ε = 1%, 5%).

(1 − ε)N(µ1 = µ2 = 0, σ1 = σ2 = 1, ρ = 0.9) + εN(µ1 = µ2 = 0, σ1 = σ2 = σ, ρ = −0.9),

where σ = 2, 4. Themajority of the data is highly positively correlatedwith a contamination by a small portion
of negatively correlated outliers. The same criterion√nRMSE is used to evaluate the di�erence between each
correlation estimator and the true parameter value 0.9. M and the number of repetitions are the same as the
previous subsection: 3000 and 30, respectively. The result is listed in Table 4.

In each case above, thePearson correlationhas thehighest RMSE. This indicates thePearson correlation’s
sensitivity to contamination and the high level of degradation those outliers have on its performance. The
most robust correlation is the Kendall’s tau. The performance of the Gini correlations are between those of
the Pearson andKendall’s correlations. This result supports our �ndings from the derived in�uence functions
in Section 3. The two symmetric Gini correlations ρ̂(1)

g and ρ̂(2)
g perform very similarly, but they are less robust

than the joint rank based Gini correlation ρ̂(s)
g .

6 Real data analysis
For the purpose of illustration, we apply the developed Gini correlations to the “GDP per captia and Suicide
rates" data which is available on Kaggle. Many factors (mental health issues, weather, culture, etc.) a�ect
suicide. We would like to explore whether or not an economic factor, such as GDP, relates to suicide rate by
measuring the correlation using several correlation coe�cients.

The data contains information from 160 countries around the world from the years 2000, 2005, 2010,
2015 and 2016. There are 2 missing values in 2000 data and 5 missing values in other years. We drop those
countries with missing values and consider only the complete data for each year. We analyze how GDP and
crude suicide rates are related and how the relationship changes through years. The crude suicide rate is
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Dist ρ n ρ̂(1)
g ρ̂(2)

g ρ̂(s)
g ρ̂τ ρ̂s ρ̂p

0 30 1.0342 (.0122) 1.0232 (.0124) 1.0071 (.0116) 1.0874 (.0129) 1.0604 (.0131) 1.0188 (.0117)
300 1.0182 (.0130) 1.0091 (.0130) 1.0117 (.0142) 1.0553 (.0136) 1.0526 (.0136) 1.0058 (.0130)

0.1 30 1.0240 (.0114) 0.7766 (.0112) 0.9999 (.0149) 1.0764 (.0110) 1.0505 (.0112) 1.0086 (.0121)
300 1.0039 (.0143) 0.9430 (.0126) 1.0041 (.0126) 1.0413 (.0150) 1.0387 (.0151) 0.9913 (.0134)

Norm 0.5 30 0.8022 (.0120) 0.8007 (.0117) 0.7828 (.0119) 0.8505 (.0128) 0.8428 (.0135) 0.7821 (.0110)
300 0.7708 (.0097) 0.7710 (.0097) 0.7590 (.0105) 0.8004 (.0096) 0.8095 (.0099) 0.7536 (.0094)

0.9 30 0.2249 (.0050) 0.2251 (.0050) 0.2188 (.0041) 0.2529 (.0057) 0.2787 (.0066) 0.2094 (.0047)
300 0.2013 (.0021) 0.2013 (.0021) 0.1943 (.0023) 0.2104 (.0025) 0.2252 (.0031) 0.1911 (.0017)

0.1 30 1.0654 (.0133) 0.8088 (.0107) 1.0379 (.0123) 1.1050 (.0142) 1.0713 (.0138) 1.0739 (.0122)
300 1.0520 (.0154) 0.9776 (.0135) 1.0431 (.0126) 1.0745 (.0162) 1.0623 (.0160) 1.0758 (.0155)

t(15) 0.5 30 0.8349 (.0101) 0.8324 (.0082) 0.8179 (.0100) 0.8735 (.0110) 0.8642 (.0113) 0.8335 (.0099)
300 0.8053 (.0099) 0.8056 (.0099) 0.7965 (.0094) 0.8238 (.0099) 0.8344 (.0097) 0.8132 (.0101)

0.9 30 0.2387 (.0047) 0.2391 (.0047) 0.2284 (.0047) 0.2636 (.0049) 0.2965 (.0058) 0.2266 (.0042)
300 0.2148 (.0026) 0.2148 (.0026) 0.2036 (.0029) 0.2208 (.0026) 0.2478 (.0032) 0.2078 (.0030)

0.1 30 1.1753 (.0166) 0.8914 (.0126) 1.1533 (.0122) 1.1534 (.0162) 1.1039 (.0163) 1.2961 (.0169)
300 1.1919 (.0169) 1.0703 (.0117) 1.1772 (.0139) 1.1312 (.0144) 1.1009 (.0145) 1.5167 (.0244)

t(5) 0.5 30 0.9374 (.0108) 0.9277 (.0097) 0.9107 (.0079) 0.9228 (.0096) 0.9144 (.0107) 1.0264 (.0166)
300 0.9286 (.0118) 0.9297 (.0118) 0.9039 (.0125) 0.8801 (.0130) 0.9080 (.0133) 1.1631 (.0212)

0.9 30 0.2807 (.0077) 0.2814 (.0077) 0.2598 (.0056) 0.2857 (.0070) 0.3395 (.0082) 0.2904 (.0098)
300 0.2589 (.0042) 0.2589 (.0042) 0.2314 (.0039) 0.2414 (.0039) 0.3011 (.0049) 0.3011 (.0082)

0.1 30 2.6127 (.0208) 2.1841 (.0211) 2.4072 (.0303) 1.3646 (.0181) 1.2460 (.0177) 3.3060 (.0228)
300 6.4427 (.1052) 5.2414 (.0986) 6.0693 (.0827) 1.3753 (.0134) 1.2719 (.0145) 10.2563 (.1223)

t(1) 0.5 30 2.2951 (.0456) 1.5163 (.0150) 2.1902 (.0405) 1.1217 (.0142) 1.1390 (.0158) 2.9658 (.0441)
300 5.5947 (.1303) 4.0462 (.0418) 5.4037 (.1292) 1.1027 (.0107) 1.4174 (.0123) 9.1351 (.1800)

0.9 30 1.1631 (.0556) 0.9047 (.0282) 1.1915 (.0494) 0.4023 (.0117) 0.6295 (.0155) 1.5994 (.0695)
300 2.8601 (.1712) 2.2857 (.0754) 2.7902 (.1719) 0.3471 (.0042) 0.9411 (.0089) 4.9999 (.2216)

0.1 30 1.1821 (.0114) 0.8978 (.0115) 1.1503 (.0151) 1.1884 (.0135) 1.1291 (.0125) 1.2439 (.0113)
300 1.1753 (.0186) 1.0615 (.0148) 1.1644 (.0165) 1.1660 (.0161) 1.1248 (.0157) 1.2714 (.0201)

Kotz 0.5 30 0.9324 (.0130) 0.9251 (.0107) 0.9089 (.0135) 0.9451 (.0138) 0.9355 (.0142) 0.9692 (.0139)
300 0.9159 (.0104) 0.9167 (.0104) 0.8881 (.0133) 0.9103 (.0104) 0.9525 (.0109) 0.9705 (.0109)

0.9 30 0.2765 (.0041) 0.2769 (.0041) 0.2601 (.0075) 0.2939 (.0055) 0.3538 (.0057) 0.2697 (.0044)
300 0.2511 (.0038) 0.2511 (.0038) 0.2282 (.0030) 0.2515 (.0039) 0.3453 (.0045) 0.2484 (.0032)

0.1 30 1.0905 (.0117) 0.8027 (.0114) N/A 1.0783 (.0126) 1.0522 (.0121) 1.6570 (.0241)
300 1.1377 (.0136) 1.0186 (.0123) N/A 1.0401 (.0120) 1.0375 (.0121) 1.7446 (.0298)

Log- 0.5 30 0.9048 (.0134) 0.9160 (.0128) N/A 0.8522 (.0133) 0.8434 (.0132) 1.2171 (.0159)
norm 300 0.9107 (.0152) 0.9134 (.0152) N/A 0.7977 (.0102) 0.8065 (.0107) 1.6509 (.0272)

0.9 30 0.2855 (.0041) 0.2860 (.0041) N/A 0.2552 (.0035) 0.2815 (.0038) 0.3287 (.0055)
300 0.2584 (.0032) 0.2584 (.0032) N/A 0.2115 (.0031) 0.2261 (.0035) 0.5059 (.0079)

0.1 30 0.8479 (.0139) 0.8203 (.0134) N/A 1.0777 (.0121) 1.0524 (.0115) 1.6443 (.0146)
Log- 300 1.3134 (.0155) 1.1014 (.0161) N/A 1.0393 (.0108) 1.0368 (.0107) 1.9501 (.0313)
norm 0.5 30 0.9925 (.0124) 1.0078 (.0114) N/A 0.8476 (.0098) 0.8397 (.0108) 1.4877 (.0142)
σ1 = 1 300 1.2022 (.0173) 1.1943 (.0188) N/A 0.8021 (.0092) 0.8114 (.0094) 3.0405 (.0353)
σ2 = 2 0.9 30 0.3722 (.0059) 0.3721 (.0059) N/A 0.2531 (.0044) 0.2795 (.0052) 0.5643 (.0101)

300 0.3556 (.0054) 0.3534 (.0054) N/A 0.2117 (.0025) 0.2265 (.0030) 1.9782 (.0258)

Table 3: The mean and standard deviation (in parenthesis) of
√
nRMSE of ρ̂(1)

g , ρ̂(2)
g , ρ̂τ, ρ̂s, and ρ̂p under di�erent distributions.
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Year GDP vs Suicide Rate Log(GDP) vs Suicide Rate
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Figure 3: Scatter plots between GDP and Suicide Rate and log(GDP) and Suicide Rate in di�erent years. A cubic smoothing
spline �tting curve is added in each plot.
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σ ε n ρ̂(1)
g ρ̂(2)

g ρ̂(s)
g ρ̂τ ρ̂s ρ̂p

2 1% 300 0.9111 (.0102) 0.9114 (.0102) 0.4538 (.0057) 0.3632 (.0040) 0.6120 (.0051) 1.5256 (.0270)
1000 1.4962 (.0095) 1.4963 (.0095) 0.6917 (.0055) 0.5393 (.0044) 0.9796 (.0056) 2.4065 (.0223)

5% 300 3.7800 (.0128) 3.7811 (.0128) 2.1315 (.0094) 1.5171 (.0072) 2.5729 (.0088) 5.6020 (.0241)
1000 6.7915 (.0147) 6.7920 (.0147) 3.7512 (.0106) 2.7032 (.0066) 4.6069 (.0082) 10.0111 (.0289)

4 1% 300 1.8163 (.0128) 1.8178 (.0128) 0.8741 (.0080) 0.4059 (.0048) 0.7394 (.0058) 4.9148 (.0491)
1000 3.1001 (.0121) 3.1009 (.0121) 1.4171 (.0070) 0.6319 (.0041) 1.2340 (.0050) 8.3176 (.0501)

5% 300 7.1781 (.0239) 7.1841 (.0239) 4.8545 (.0242) 1.8511 (.0057) 3.2721 (.0081) 14.1536 (.0539)
1000 12.100 (.0270) 13.003 (.0270) 8.5919 (.0261) 3.3165 (.0070) 5.8925 (.0088) 25.960 (.0633)

Table 4: The mean and standard deviation (in parenthesis) of
√
nRMSE of each correlation estimator in the contaminated Nor-

mal data.

the number of suicide deaths in a year, divided by the population and multiplied by 100,000. The countries
with the highest suicide rates are Russia and Lithuania. Their suicide rates range from 32 to 52 per 100000
people. Luxembourg is the country with the highest GDP per captia of $48736 in 2000 and $101305 in 2016.
Ethiopia, Burundi, and Somalia are countries with the lowest GDP of $124 in 2000 and $282 in 2016. There is
a high degree of positive skewness in the distribution of GDP, hence we also consider the log transformation
of GDP data to handle the asymmetry. We draw the scatterplot between GDP per capita and SR as well as
the scatterplot between log(GPD) and SR per year in Figure 3. We also add a cubic smoothing spline �tting
curve in each plot. We used default values of parameters of smooth.spline in R to �t the curves. We can see
that the �tted curves demonstrate non-linear relationship between GDP per capita and SR, but almost linear
relationships between log(GDP) and suicide rate except for the year 2010.

Year
Variables Method 2000 2005 2010 2015 2016

r̂(1)
g .1970(.0784) .2767(.0738) .3374(.0636) .3596(.0640) .3642(.0631)
r̂(2)
g .1930(.0772) .2757(.0727) .3368(.0632) .3580(.0638) .3616(.0632)
γ̂1 .2360(.0984) .2998(.0948) .3583(.0753) .3933(.0733) .4070(.0696)

(GDP, SR) γ̂2 .1579(.0700) .2535(.0641) .3165(.0610) .3259(.0635) .3213(.0646)
r̂(s)
g .1005(.0676) .1541(.0627) .2041(.0578) .2386(.0569) .2511(.0587)
r̂τ .0874(.0509) .1371(.0487) .1857(.0448) .2016(.0447) .2051(.0453)
r̂p .1074(.0700) .1404(.0645) .1936(.0583) .2441(.0580) .2584(.0593)

r̂(1)
g .1486(.0714) .2371(.0666) .3028(.0618) .3213(.0630) .3225(.0634)
r̂(2)
g .1483(.0717) .2366(.0671) .3025(.0620) .3213(.0630) .3225(.0634)
γ̂1 .1393(.0775) .2207(.0742) .2891(.0672) .3168(.0659) .3236(.0653)

(log(GDP), SR) γ̂2 .1579(.0700) .2535(.0641) .3165(.0610) .3259(.0635) .3213(.0646)
r̂(s)
g .1376(.0643) .2110(.0600) .2709(.0565) .3022(.0594) .3074(.0604)
r̂τ .0874(.0509) .1371(.0487) .1857(.0448) .2016(.0447) .2051(.0453)
r̂p .1299(.0606) .2037(.0543) .2674(.0518) .2950(.0557) .2985(.0571)

Table 5: All types of correlations for (GDP, SR) and (log(GDP), SR), respectively. The standard deviations are in parenthesis.

We have calculated the symmetric Gini correlations for (GDP, SR) and (log(GDP), SR), as well as other
correlations presented for comparison in Table 5. We utilize the jackknife method to provide an estimation
of the variation of the sample correlations. Let r̂(−i) be the jackknife pseudo value of a correlation estimator r̂
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based on the sample with the ith observation deleted. Then the jackknife variance is

v̂r = n − 1
n

n∑
i=1

(r̂(−i) − ¯̂r(·))2 (19)

where ¯̂r(·) = 1/n∑n
i=1 r̂(−i). See [35] for more details. Table 5 lists the jackknife standard deviations in paren-

theses.
From Table 5, we observe that all the listed correlations between GDP per capita and SR are less than

.5000, which indicates a weak ormoderate association between GDP per capita and SR and is consistent with
Figure 3. However, with each year, we notice an increasing trend in the correlations between GDP and SR. The
data suggest that the correlations between the two becomemore signi�cant as time passes. Values of r̂(1)

g and
r̂(2)
g are close to each other, but there is a visible di�erence between the regular Gini correlations, γ̂1 and γ̂2.
After the log transformation on GDP, the di�erence becomes less signi�cant. The monotonic transformation
does not change the rank of the GDP. Kendall’s τ and γ̂2 should maintain the same values before and after
the transformation, which agrees with the values we have shown in Table 5.

r̂(1)
g r̂(2)

g γ̂1 γ̂2 r̂(s)
g r̂τ r̂p

2015 complete .3213(.0630) .3213(.0630) .3168(.0659) .3259(.0635) .3022(.0594) .2016(.0447) .2950(.0557)
deleted .3347(.0718) .3344(.0719) .3148(.0734) .3511(.0718) .3446(.0727) .2015(.0508) .3531(.0685)

2016 complete .3225(.0634) .3225(.0634) 3236(.0653) .3213(.0646) .3074(.0604) .2051(.0453) .2985(.0571)
deleted .3578(.0689) .3574(.0690) .3416(.0705) .3740(.0691) .3656(.0685) .2186(.0499) .3736(.0646)

Table 6: Correlations between log(GDP) and SA for the complete data and the deleted data in 2015 and 2016. The standard
deviations are in parenthesis.

To demonstrate robustness, we delete some outliers and compare the di�erences of each correlation es-
timator in the complete data and in the edited data. We expect the Pearson correlation to show the largest
di�erence, the Kendall’s τ correlation to demonstrate the smallest, and the Gini correlations to be somewhere
in-between. We consider log(GDP) and SA data from 2015 and 2016. We delete all countries with SR > 20. The
results listed in Table 6 con�rmwhatwe expect. In 2015, the Pearson correlation estimator changes from0.295
to 0.353, while symmetric Gini correlations only have a slight change from 0.321 to 0.335. The Kendall’s tau
correlation is themost stable. A similar conclusion can be drawn for the 2016 data. This experiment illustrates
that Pearson correlation is not robust and may not be a good measure of association even though the cubic
smoothing spline �tting lines in the scatter plots in Fig 3 are almost linear in 2015 and 2016, suggesting the
usage of the Pearson correlation. Other correlations are more preferred in this example.

7 Conclusion
We have systematically studied two symmetric Gini correlations r(1)

g and r(2)
g , which are the arithmetic and

geometric means of the traditional Gini correlations γ1 and γ2. We studied basic properties of r(1)
g and r(2)

g , as
well as their relationships to the correlation parameter in the elliptical distributions and log-normal distribu-
tion. Such relationships enable us to obtain Fisher consistent versions of each correlation. We derived their
in�uence functions in order to gauge robustness. They are more robust than the Pearson correlation but less
robust than Kendall’s tau and Spearman correlations. We established asymptotic distributions of the sample
correlations. Usual asymptotic normality holds for r̂(1)

g as well as for r̂(2)
g as long as r(2)

g ≠ 0. Their asymptotic
variances are obtained through the in�uence function approach. For r(2)

g = 0, r̂(2)
g has two di�erent limit-

ing distributions, depending on whether or not both γ1 and γ2 equal 0. We compared their computational
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e�ciency and statistical e�ciency with the rank-based symmetric Gini, Kendall’s tau and the Pearson corre-
lation. r̂(1)

g and r̂(2)
g can be e�ciently calculatedwith a computational complexity ofO(nlogn). Asymptotic e�-

ciency and �nite sample e�ciency of each correlation are obtained under various elliptical distributions and
asymmetric lognormal distributions. In summary, the two symmetric Gini correlations balance well among
statistical e�ciency, robustness, and computational e�ciency.

Continuations of this work could advance in several directions. The jackknife empirical likelihood (JEL)
method proposed by Jing et al. [15] has been proven to be e�ective and reliable in dealing with U-statistics.
Sang et al. [29] have applied JEL to the classical Gini correlations. It could be bene�cial to develop JEL for
the two symmetric Gini correlations. In the current work, comparisons among correlations are made in ellip-
tical distributions and lognormal distributions. It would be worthwhile to explore the comparisons in wide
families of bivariate distributions such as copula family and Farlie-Gumbel-Morgenstern models. Fontanari
et al. [8] proposed a new Archimedean copulas based on the Lorenz curve that is highly related to Gini index
and Gini correlations. It is interesting to study correlations in this family. Dang et al. [4] extended the Gini
mean di�erence in one dimension to the Gini covariancematrix (GCM) in high dimensions. However, its com-
putation cost is O(n2). It would be worthwhile to study the GCM based on r(1)

g or r(2)
g which should be more

computationally e�cient.

Appendix
Proof of Proposition 2.4. The results of (10) and (11) directly follow from

γ1 = 2Φ(ρσ1/
√

2) − 1
2Φ(σ1/

√
2) − 1

and γ2 = 2Φ(ρσ2/
√

2) − 1
2Φ(σ2/

√
2) − 1

,

which are given by [31], although their (2.3) has a typo. The authors didn’t provide a proof in [31], thus for the
purpose of completeness, we provide a detailed proof here.

Related to Φ(x), the cdf of a standard normal variable, the error function is de�ned as

erf (x) = 2√
π

x∫
0

e−t
2
dt.

From the tables of integrals of the error functions [25], two identities we will use in the proof are listed below.

erf (x) = 2Φ(x
√

2) − 1 =⇒ Φ(x) = 1
2 [erf ( x√

2
) + 1]

(
p3, Eq(6) in [25]

)
(20)

∞∫
−∞

erf (x)e−(ax+b)2
dx = −

√
π
a erf ( b√

a2 + 1
)

(
p8, Eq(13) in [25]

)
(21)

We will use the following equation throughout the remainder of the proof:
∞∫

−∞

Φ(z) 1√
2π
e−

1
2 (z−µ)2

dz = Φ
( µ√

2
)
. (22)

This is because
∞∫

−∞

Φ(z) 1√
2π
e−

1
2 (z−µ)2

dz =
∞∫

−∞

1
2 [erf ( z√

2
) + 1] 1√

2π
e−( z√

2−
µ√

2 )2
dz by (20)

= 1
2 + 1

2
1√
π

∞∫
−∞

erf (x)e−(x− µ√
2 )2
dx

= 1
2 + 1

2 erf (
µ
2 ) by (21)

= Φ( µ√
2

).
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Let (X, Y)T follow a lognormal distribution with parameters (µ1, µ2, σ1, σ2, ρ). Then the marginal distri-
butions are F(x) = Φ((log x − µ1)/σ1) and G(y) = Φ((log y − µ2)/σ2), respectively. EX = exp(µ1 + σ2

1/2) and
E(X|Y) = exp(µ1 + ρσ1(log Y − µ2)/σ2 + σ2

1(1 − ρ2)/2) by [23]. We have

EXF(X) =
∞∫

0

xΦ
( ln x − µ1

σ1

) 1√
2πσ1x

e
− (ln x−µ1)2

2σ2
1 dx =

∞∫
−∞

Φ(z) 1√
2π
e−z

2/2eσ1z+µ1dz

= eµ1+σ2
1/2

∞∫
−∞

Φ(z) 1√
2π
e−(z−σ1)2/2dz = eµ1+σ2

1/2Φ(σ1/
√

2).

The last equation is due to (22). Also

EXG(Y) = E[G(Y)E(X|Y)] = E[G(Y) exp(µ1 + ρσ1(log Y − µ2)/σ2 + σ2
1(1 − ρ2)/2)]

= eµ1+σ2
1(1−ρ2)/2

∞∫
0

Φ
( ln y − µ2

σ2

)
eρσ1(log y−µ2)/σ2 1√

2πσ2y
e−(log y−µ2)2/(2σ2

2)dy

= eµ1+σ2
1(1−ρ2)/2

∞∫
−∞

Φ(z)eρσ1z 1√
2π
e−z

2/2dz

= eµ1+σ2
1(1−ρ2)/2eρ

2σ2
1/2

∞∫
−∞

Φ(z)e−(z−ρσ1)2/2dz

= eµ1+σ2
1/2Φ(ρσ1/

√
2).

Thus,

γ1 = cov(X, G(Y))
cov(X, F(X)) = E[XG(Y)] − E[X]E[G(Y)]

E[XF(X)] − E[X]E[F(X)] = eµ1+σ2
1/2Φ(ρσ1/

√
2) − eµ1+σ2

1/2/2
eµ1+σ2

1/2Φ(σ1/
√

2) − eµ1+σ2
1/2/2

= 2Φ(ρσ2/
√

2) − 1
2Φ(σ2/

√
2) − 1

.

Similar arguments for γ2 complete the proof. �

Proof of Proposition 3.1. To �nd in�uence function of Gini correlation, let T1(H) = cov(X, G(Y)), T2(H) =
cov(X, F(X)), T3(H) = cov(Y , F(X)), T4(H) = cov(Y , G(Y)) and h(t1, t2) = t1/t2. Then γ1 = h(T1, T2) and
γ2 = h(T3, T4). Denote the in�uence function of Ti as Li(u, v) = IF((u, v)T ; Ti , H), for i = 1, 2, 3, 4. Let
H̃ = (1 − ε)H + εδ(u,v)T , then

T1(H̃) = EH̃XG(Y) − EH̃XEH̃G(Y)
= (1 − ε)EXG(Y) + εuG(v) − [(1 − ε)EX + εu][(1 − ε)EG(Y) + εG(v)]
= (1 − ε)EXG(Y) − (1 − ε)2EXEG(Y) + εuG(v) − ε(1 − ε)(uEG(Y) + G(v)EX) − ε2uG(v).

Hence,

L1(u, v) = lim
ε→0

T1(H̃) − T1(H)
ε

= −EXG(Y) + 2EXEG(Y) + uG(v) − uEG(Y) − G(v)EX
= (u − EX)(G(v) − EG(Y)) − cov(X, G(Y)).

Similarly, we have

L2(u, v) = (u − EX)(F(u) − EF(X)) − cov(X, F(X)),
L3(u, v) = (v − EY)(F(u) − EF(X)) − cov(Y , F(X)),
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L4(u, v) = (v − EY)(G(v) − EG(Y)) − cov(Y , G(Y)).

Hence,

IF((u, v); γ1, H) =
2∑
i=1

∂h
∂ti
∣∣
h(T1 ,T2)Li(u, v) = 1

T2
L1(u, v) − T1

T2
2
L2(u, v)

= γ1

(
(u − EX)[G(v) − EG(Y)]

cov(X, G(Y)) − (u − EX)[F(u) − EF(X)]
cov(X, F(X))

)
Similar arguments on IF((u, v); γ2, H) complete the proof. �

Proof of Proposition 3.2. De�ne g1(t1, t2) = t1 + t2
2 and g2 =

√
|t1t2|. Then r(1)

g = g1(γ1, γ2) and r(2)
g =

g2(γ1, γ2). Let IF1(u, v) and IF2(u, v) denote the in�uence functions for γ1 and γ2, respectively. For any r(1)
g ,

we have

IF((u, v)T ; r(1)
g , H) = ∂g1(γ1, γ2)

∂γ1
IF1(u, v) + ∂g1(γ1, γ2)

∂γ2
IF2(u, v) = 1

2IF1(x, y) + 1
2IF2(x, y).

Since g2 is not di�erentiable at γ1 = 0 and/or γ2 = 0, the in�uence function of r(2)
g does not exist for r(2)

g = 0.
For nonzero r(2)

g , we have

IF((u, v)T ; r(2)
g , H) = ∂g2(γ1, γ2)

∂γ1
IF1(u, v) + ∂g2(γ1, γ2)

∂γ2
IF2(u, v)

= sgn(γ1γ2)γ2
2
√
|γ1γ2|

IF1(u, v) + sgn(γ1γ2)γ1
2
√
|γ1γ2|

IF2(u, v)

�
Proof of Proposition 4.1. A proof of the proposition follows directly from the fact of strong consistency of U-
statisticsU1, U2, U3, U4 by theU-statistics theorem [34] and the fact that r̂(1)

g and r̂(1)
g are continuous functions

of U1, U2, U3, U4. By the continuous mapping theorem [34], the strong consistency of r̂(1)
g and r̂(2)

g holds. �

Proof of Proposition 4.2 and 4.3. The asymptotical normality of r̂(1)
g and the asymptotical normality r̂(2)

g
when rg ≠ 0 are an immediate result from the application of the in�uence function approach [14]. �
Proof of Proposition 4.4.We have

r̂(2)
g =

√
|U1
U2

U3
U4
| =
√
U1U3√
U2U4

,

since U2 and U4 are always positive. The denominator
√
U2U4 converges to

√
∆1∆2
4 almost surely by the U

statistics theorem and the continuous mapping theorem [34]. We need to explore the limiting distribution of√
|U1U3|. Then by Slutsky’s theorem [38], the limiting distribution of r̂(2)

g follows. Now consider U1U3, the
product of two U statistics. We have

U1U3 =
(
n
2

)−2 ∑
1≤i<j≤n

h1(Z i , Z j)
∑

1≤k<l≤n
h3(Zk , Z l)

= 6
(
n
2

)−2 ∑
1≤i<j<k<l≤n

g(Z i , Z j , Zk , Z l) + Rn ,

where Rn = op(n−1) and the symmetric kernel g(z1, z2, z3, z4) = 1/4!∑p h1(zi1, zi2)h3(zi3, zi4) with∑p
denoting summation over the 4! permutations (i1, i2, i4, i4) of (1, 2, 3, 4).

De�ne the new U statistic Un =
(n

4
)−1∑

1≤i<j<k<l≤n g(Z i , Z j , Zk , Z l). It is easy to check that U1U3 is asymp-
totically equivalent to Un. Now consider the �rst order and second order projections of the kernel g. We de�ne

g1(z) = Eg(z, Z2, Z3, Z4) = 1
2Eh1(z, Z2)Eh3(Z3, Z4),
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g2(z1, z2) = Eg(z1, z2, Z3, Z4)

= 1
6h1(z1, z2)Eh3(Z3, Z4) + 1

3Eh1(z1, Z3)Eh3(z2, Z4) + 1
3Eh1(z2, Z3)Eh3(z1, Z4).

The second equations in g1 and g2 are due to γ1 = 0, implying Eh1(Z1, Z2) = 0.
Case 1: γ2 ≠ 0.

Let σ2
g = var[g1(Z)] = (γ2∆2/8)2var[Eh1(Z, Z2)|Z]. Then by Hoe�ding decomposition, we have Un =

4
n
∑n

i=1 g1(Z i) + op(n−1/2). By [34],
√
nUn d−→ N(0, 16σ2

g).

Therefore,

√
nU1U3
U2U4

d−→ N(0, 162σ2
g

∆1∆2
).

Hence √n|U1U3
U2U4
| converges to a folded normal. Finally, n1/4 r̂(2)

g converges to the square root of the folded
normal random variable.
Case 2: γ2 = 0

In this case, Eh3(Z3, Z4) = 0 and hence g1(z) = 0, meaning that Un is a degenerate U-statistic. In the
mean time, g2(z1, z2) is simpli�ed to be 1/3Eh1(z1, Z3)Eh3(z2, Z4) + 1/3Eh1(z2, Z3)Eh3(z1, Z4). Therefore,

nUn = 12
n − 1

∑
1≤i<j≤n

g2(Z1, Z2) + op(1).

De�ne g2(z1, z2) = ∑∞
s=1 λsϕs(z1)ϕs(z2), where∫

R2

g2(z1, z2)ϕs(z2)dH(z2) = λsϕs(z1).

By Theorem of Section 5.5.2 of Ser�ing (1980) [34],

nUn d−→ 6
∞∑
s=1

λs(χ2
1s − 1),

where χ2
1s (s=1,2,...) are independent χ2

1 variables. Therefore,

√
n
√
|U1U3|

d−→ 6

√√√√| ∞∑
k=1

λk(χ2
1k − 1)|,

and hence

√
nr̂(2)
g

d−→
24
√∑∞

k=1 λk(χ2
1k − 1)

√
∆1∆2

.

This completes the proof. �
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