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Abstract: Standard Gini correlation plays an important role in measuring the dependence between random
variables with heavy-tailed distributions. It is based on the covariance between one variable and the rank of
the other. Hence for each pair of random variables, there are two Gini correlations and they are not equal in
general, which brings a substantial difficulty in interpretation. Recently, Sang et al (2016) proposed a symmet-
ric Gini correlation based on the joint spatial rank function with a computation cost of O(n?) where n is the
sample size. In this paper, we study two symmetric and computationally efficient Gini correlations with the
computational complexity of O(n log n). The properties of the new symmetric Gini correlations are explored.
The influence function approach is utilized to study the robustness and the asymptotic behavior of these cor-
relations. The asymptotic relative efficiencies are considered to compare several popular correlations under
symmetric distributions with different tail-heaviness as well as an asymmetric log-normal distribution. Sim-
ulation and real data application are conducted to demonstrate the desirable performance of the two new
symmetric Gini correlations.

Keywords: Asymptotic relative efficiency, computationally efficient Gini correlation, influence function, ro-
bustness, symmetric Gini correlation.

MSC subject classification: 62G35, 62G20

1 Introduction

Measuring the strength of association and correlation between two random variables is of essential impor-
tance in many research fields. Many notions of correlations have been proposed and studied [16, 21]. Perhaps
the most commonly used one is Pearson’s correlation coefficient which measures the linear relationship be-
tween two random variables. Pearson’s correlation is computationally efficient with a computation cost of
0O(n) where n is the sample size. It is the most statistically efficient one for normal variables; however, it is
very sensitive to outliers. Even one single outlier might have a large impact on the coefficient’s value and its
performance [36, 37]. An important tool to study robustness is the influence function, which measures effects
due to infinitesimal perturbations of the underlying distribution [13]. It has been proven that the Pearson
correlation has an unbounded influence function, indicating its lack of robustness [5].

Alternatively, rank based correlations such as Spearman and Kendall’s tau are robust to outliers.
Kendall’s tau is a similarity measure of the ranks of two random variables [17] and Spearman’s correlation
is the Pearson correlation coefficient evaluated on the ranks of the two variables [39]. Both values are widely
used for measuring monotonic relationships. They can be computed efficiently at a cost of O(n log n) [18], and
their influence functions are bounded [3]. The tradeoff to robustness is a loss of statistical efficiency in normal
settings. For the correlation parameter p = 0.1, 0.5, 0.9 in the normal distribution, the asymptotic relative
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efficiencies (ARE) of Kendall’s tau to the Pearson correlation are about 91%, 89% and 84%, respectively, while
the ARE of the Spearman correlation are even lower [3].

Standard Gini correlations [1] are based on the covariance between one variable and the rank of the other.
More specifically, let H be the joint distribution of the random variables X and Y, and let F and G be the
marginal distribution functions of X and Y, respectively. The standard Gini correlations are defined as

_ cov(X, G(Y))

11 =X, Y):= m and v, =+(Y,X) :=

cov(Y, F(X))

cov(Y, G(Y) W

reflecting different roles of X and Y. The representation of the Gini correlations indicates that they have mixed
properties of those of the Pearson and Spearman correlations [39]. As expected, the statistical efficiency and
robustness of Gini correlations are between those of Pearson and Spearman correlations. In terms of balance
between efficiency and robustness, Gini correlations play an important role in measuring association for vari-
ables from heavy-tailed distributions [43]. The Gini correlations are computationally efficient and can be com-
puted at a cost of O(n log n) [31]. They are not symmetric in X and Y in general [31, 32], i.e., v(X, Y) # (Y, X).
In some applications, this asymmetry is natural and useful [9, 12, 33]. In other scenarios, symmetry is a de-
sired property for dependence measures. Some researchers [21, 27] even list symmetry as one of the axioms of
association measures. A symmetric Gini correlation was proposed in [4, 28], which is based on the joint rank
function. It is more statistically efficient than the standard Gini correlations, but it is not computationally
efficient with O(n?) complexity, which means it is prohibitive for large n. Yitzhaki and Olkin [42] proposed
two symmetric Gini correlations which are the arithmetic mean and geometric mean of the standard Gini
correlations, respectively.

+
f(gl) = r(gl)(X, Y):= 712772 and rg,z) = r(gz)(X, Y) := /|l )

Clearly those symmetric Gini correlations inherit the computational efficiency of O(nlog n). However, they
have not been well studied in literature except that Xu et al. [41] studied rg) under the normal settings. In
this paper, we systematically study the properties of these two symmetric Gini correlations and explore their
statistical efficiency. Their robustness is studied by means of their influence functions. The limiting distribu-
tions of sample symmetric Gini correlations are established. It is interesting to see that there are three kinds
of asymptotical sampling distribution of the sample correlation, ?(gz), depending on different cases of rfgz). To
our best knowledge, this is a novel result and can be applied to the geometric mean type of statistics such as
the symmetrized information dependence measure defined in [26].

It is worthwhile to mention that the Gini correlations in (1) and the symmetric versions in (2) are quite
different from the Gini gamma or Gini coefficient [10, 24], although the names are very similar. Gini correla-
tion ~; in (1) is a natural bivariate extension of univariate Gini mean difference (GMD) from the covariance
representation GMD(F) = E|X; - X,| = 4Cov(X, F(X)), where X1, X, are independent copies of X from F.
The Gini gamma was proposed by Gini [11]. Related to the Spearman correlation in a different way, the Gini
gamma is a concordance measure which is defined based on both ranks of X and Y. It is easy to check that the
Gini gamma follows all axioms of concordance stated in [30]. However, neither r(gl) nor r(gz) is a concordance
measure, and neither hold to the coherence axiom.

The paper is organized as follows. In Section 2 we provide properties of rg) and ré,z). Their influence func-
tions are presented in Section 3. The limiting distributions of sample correlations are established in Section
4, Statistical efficiency and computational efficiency of various correlations are compared in Subsection 4.2
and their finite sample performance comparison is conducted through a simulation study on elliptical dis-
tributions and an asymmetric bivariate log-normal distribution in Section 5. A real data application on the
relationship between GDP per capita and suicide rate is presented in Section 6. Final remarks are provided
in Section 7. Proofs are relegated to the Appendix.
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2 Two symmetric Gini correlations

Basic properties of the two symmetric Gini correlations r(gl) and r(gz) in (2) are explored. Their relationships
with the linear correlation parameter, p, in bivariate elliptical distributions and log-normal distributions are
presented.

2.1 General properties
Let X and Y be two random variables from F and G, respectively, with the joint distribution H.

Proposition 2.1. Assume that H is continuous and its first moment exists, then we have

1. P, ) =Py, X).

2. -1cx< rg)(X, Y)<1.

3. IfXandY are statistically independent, then rg,l)(X ,Y)=0.

4. If Y is a monotonic increasing (decreasing) function of X, then r(gl)(X , Y) equals +1(-1).
5. r(gl)(aX +c,bY +d) = sign(ab)rél)(X, Y) for any constants c, d and nonzero a, b.

Proposition 2.2. Under the same assumptions of Proposition 2.1, we have
r@X, v) =12y, X).

0< ré,z)(X, Y)<1.

If X and Y are statistically independent, then r(gz)(X ,Y)=0.

If Y is a monotonic function of X, then r(gz)(X ,V)=1.

r(gz)(aX +c,bY+d) = r(gz)(X , Y) for any constant c, d and nonzero a, b.

=

SN W

The symmetry of r(gl) and r(gz) is obvious noting the commutative property of addition and multiplication.

Properties 2-5 in the above two propositions follow simply from the properties of the original Gini correla-
tions v, and ~,, shown by [31]. Property 5 states that the two symmetric Gini correlations describe a linear
relationship between X and Y.

Note that we assume continuous H in Propositions (2.1) and (2.2). If H is not continuous, some revisions on
definitions in ; and v, are needed for general properties. For example, replacing F(x) with (F(x) + F(x-))/2
and G(x) with (G(x) + G(x-))/2 in (1) keeps v; and ~, in the range [-1, 1]. For simplicity, the continuous
distribution is assumed throughout the paper.

Before we study the symmetric Gini correlations in elliptical distributions and lognormal distribution,
we would like to provide definitions of other measures of association that will be used and compared in the
paper. For H with a finite second moment, the Pearson correlation ry is

cov(X,Y)

vvar(X)var(Y) '

The rank based Spearman and Kendall’s tau correlations don’t need a moment condition. The Spearman
correlation is defined as the Pearson correlation on the ranks of X and Y, that is,

rs := rp(F(X), G(Y)) = 12Eg(F(X)G(Y)) - 3.

The Kendall’s tau r; is defined as
rr:= Eg{sgn(X; - X,)(Y1 - Y3)} = 2Py(X; - X,)(Y1 - ¥5) > 0) - 1,

where (X1, Y1)T and (X,, Y,)T are independently distributed from H.
For Z = (X, Y)T from H with finite first moment, the joint-rank based symmetric Gini correlation r(gs) [28] is
defined as

©) ._ Ex(XS,(2)) _ En(YS1(2))

T VEaSID)WVE(YS:@)  VERXS1@)VER(YS:(2)
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where $(2) = (51(2), S2(2))T = Ey -2 I ZH is the spatial rank of z = (x, y)T with respect to H and the norm || -

|
is the Euclidean norm.

Those correlations have different properties and may have different values under the same distribution. It
is preferred to consider their Fisher consistent versions so that they correspond to the same quantity or same
parameter [7]. For a distribution H with a parameter p, p, is Fisher consistent for p if

pr(H) = p.

We denote the Fisher consistent versions of Pearson, Spearman and Kendall’s tau correlations as pp, ps and
pr, respectively.

Next the symmetry Gini correlations as well as each of above mentioned correlation are studied in ellip-
tical distributions and lognormal distribution.

2.2 Gini correlations in elliptical distributions

A d-variate continuous random vector Z has an elliptical distribution H if its density function is of the form
flzlp, 2) = |2 2g{(z - W2 - W}, ©)

where u is the location parameter, the positive definite matrix X is the scatter parameter and the nonnegative
function g is the density generating function. One important property for the elliptical distribution is that
the nonnegative random variable R = ||Z~Y2(Z - p)|| is independent of U = {£"/2(Z - u)}/R, where | - ||
is the Euclidean norm and U is uniformly distributed on the unit sphere. When d = 1, the class of elliptical

2
distributions coincides with the location-scale class. Ford = 2, let Z = (X, Y)T and X = (;1 (;122> , then
12 2

the corresponding linear correlation coefficient of X and Y is

012

p=pX,Y):= 5105

(4)

Conventionally, we write the parameters of bivariate elliptical distributions as (i1, u2, 01, 02, p).
If second moment of Z exists, then the covariance matrix exists and is equal to Effzz. In this case, the
Pearson correlationry is well defined and is equal to the parameter p. More details on the elliptical distribution
family refer to [6].
Note that under bivariate elliptical distributions, v; = v, = p [28, 31]. Consequently, we have the relation-
ships between r(’), i=1,2,and p as follows.
(2) _

Proposition 2.3. For bivariate elliptical distributions with finite first moments, we have r(l) =pandrg’ = |p|.

If 01 = 07, the joint-rank based Gini correlation r(gs) proposed in [28] has the following relationship with p.

P, p=0,=1,

,p-1 EI((p+1) 5)

G) _ k(o) =
2 1 otherwise,
P P EE(

p+1)

where EK(x) = "/ 21 /v 1-x2sin? 6 dO and EE(x) = g 12 V1 - x2sin’ @ d6 are the complete elliptic inte-

gral of the first k1nd and the second kind, respectively. The Fisher consistent version of r(gs) is hard to obtain
an explicit form but a numerical solution is possible.

For Kendall’s tau, Blomgvist [2] proved that r; = 2/marcsin(p) in the normal case. Lindskog et al. [20]
proved that this such relationship holds under all elliptical distributions in general. Hence the Fisher consis-

tent version of Kendall’s correlation is
pr = sin (g“) . 6)
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Under elliptical distributions, the Spearman correlation rs = 6/ arcsin(p/2), the result obtained by [22]
for the normal case. Then the Fisher consistent version of Spearman correlation is

. V4
ps =2sin (grs . )
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Figure 1: Various correlations in lognormal distributions with parameters (u1 = p» = 0,01 = 02 = 1, p) in the left plot and

with parameters (41 = p2 = 0,01 = 1, 02 = 2, p) in the right plot. The black solid line is the straight line with slope 1 passing
through the origin.

2.3 Gini correlations in bivariate lognormal distribution

The random vector, (X,Y)T, is said to have a bivariate lognormal distribution with parameters
(U1, U2, 01, 02, p) if (log X, log ¥)T follows a bivariate normal distribution with the same parameters.

Clearly, Kendall’s tau and Spearman correlation are invariant under monotonically increasing transfor-
mations, thus equations (6) and (7) still hold. For the Pearson correlation, it is easy to have

exp(poi07) -1
Ty = . (8)
\/{exp(o%) - 1}{exp(03) - 1}

Then the Fisher consistent version of Pearson correlation for the parameter p in the lognormal distribution is

) log (rp\/exp(o%) - 1\/exp(U§) - 1) +1

Pp 910, 9)
For the two new symmetric Gini correlations, we have derived the functional relationships as below.
Proposition 2.4. Under the bivariate lognormal distribution with parameters (u,, U, 01, 02, p), we have
r(l) _ 1 <2(D(P0'1/ﬁ) -1 + 2(D(P02/ﬂ) - 1) (10)
¢ 2\ 20(01/v2)-1  20(02/vV2)-1)’
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[2) _ \/2<D(p01/ﬁ) - 1| 20(po2/V2) - 1] (1)

§ 20(01/v2)-1| [2®(02/vV2)-1|’

where @ is the cdf of the standard normal variable. Further, if 01 = 0, = 0, the Fisher consistent version of
symmetric Gini correlations are

o= V2o (ré”(z@(o/zﬁ) -1+ 1) , )
o2 -2 (sgn(p)r(gZ)(zm(za/ﬁ) -1+ 1) . )

The proposition states that explicit forms of the Fisher consistent symmetric Gini correlations are only avail-
able for the homogeneous case. Also (13) indicates that the Fisher consistent version of rg) requires informa-
tion of the sign of p. If 01 # 0,, we need a numerical method to approximate them.

Plots in Fig. 1 display the relationship of various correlations to the parameter p in the lognormal distri-
butions. In the left plot, 0; = 0, = 1, we have r(gl) = r(gz) >p>r1s>r1, > rrif 0 < p < 1, otherwise they are
equal at 0 and 1. On the right with 0; = 1and 0, = 2,if 0 < p < 1, then r(gl) > rg), though the differences
between r(gl) and r(gz) are tiny and unnoticeable in the plot. Also we have rfg,z) > rs > rr > rp. Note that the
Pearson correlation, rp, can not reach 1 when o; # 0. The maximum value in the plot above is 0.6642169
when p = 1. From Equation (8), it is easy to prove that r, < 1 for p = 1if 01 # 05. In other words, for a
normal random variable X and a positive constant a # 1, rp(exp(X), exp(aX)) < 1, meaning that the Pearson
correlation is not suitable to describe nonlinear relationships.

3 Influence function

The influence function (IF) introduced by Hampel [13] is now a standard tool which serves two purposes. The
first is to measure local robustness for effects on estimators due to infinitesimal perturbations of distribution
functions. The second is to derive limiting distributions and asymptotic variances. See also [14]. For a cdf H
on R? and a functional T : H — T(H) € R™ with m > 1, the IF of T at H is defined as

m T((1-€)H +€bz) - T(H)

IF(z; T, H) = li , zcR%,
el0 €

where 6 denotes the point mass distribution at z. Under regularity conditions on T (see [14, 34] for details),
we have Eg{IF(Z; T, H)} = 0 and the von Mises expansion

T(Hn) ~ T(H) = 5 TRz T, H) + 0p(n”/2), (14)

i=1

where Hy, denotes the empirical distribution based on a sample z1,...,2,. This representation shows the con-
nection between the IF and the robustness of T, observation by observation. Further, (14) yields the asymp-
totic m-variate normality of T(H,),

vn(T(Hn) - T(H)) 4 N(0, E4(IF(Z; T, H)IF(Z; T, H)")). (15)

We first derive the influence functions for the standard Gini correlations ~; and ~,, which are stated in
the following proposition.

Proposition 3.1. For any continuous bivariate distribution H with finite first moment, the influence functions
of the traditional Gini correlations are given by

T, _ (W -EX)[G(v) -EG(Y)] (u-EX)[F(u)-EF(X)]
IF(Qu, V)5, H) = ( cov(X, G(Y)) cov(X, F(X)) ) ’
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A s, H) = ((v ~EY)[FW - EF0)] _ (v-EV)[GW) - EG(Y)1>

cov(Y, F(X)) cov(Y, G(Y))

The influence functions of the standard Gini correlations are approximately linear in u and v. Comparing with
the quadratic effects of the Pearson correlation coefficient [5],

IF(u, ) ;1p, H) =

(u-EX)(v-EY) 1 (u-EX)? .\ (v-EY)?
Ox0Oy 2 p 0‘)2( 0'%, ’

~1 and v, are more robust than the Pearson correlation. However, they are not strictly robust since their in-
fluence functions are unbounded. Kendall’s tau, rr, and Spearman correlation, rs, have bounded influence
functions [3], which are

IF(u, V)T e, H) 2{2Py[(u-X)(v-Y)>0] -1 -},
IF(u, V) ;rs, H = -3rs-9+12(F)G) + E(FX)I(Y > v)) + E(G(Y)I(X = w)).

In this sense, the standard Gini correlations are more robust than rp but less robust than r; and rs.

Proposition 3.2. For any continuous distribution H with finite first moment, the influence functions of r(gl) and
r?) are given by

IE(w, V)3 0, H) = STF(, 391, B) + S TR, )37, )

Sgn(’Yl’Yz)( IF((u V)T' H) + 1 IF(u V)T' H) i /2 £0;
IF((U, V)T; réz)’ H) _ 2r‘(gz) 2 ’ > V1 a! s » 72> f g s
does not exist, if r(gz) =0.

Since the square root function is not differentiable at zero, the influence function of r(gz) does not exist when

r?) = 0. This brings difficulty in deriving the limiting distribution of sample #{” when r&) = 0, as explained

further in a later section. The influence function of rg) and that of nonzero r(gz) are linear combinations of
the influence functions of v; and v,, and hence are approximately linear in u and v. The symmetric Gini cor-
relation r(gs) proposed in [28] also has an approximately linear influence function. We expect that the newly
studied Gini correlations and the symmetric one based on the joint rank perform similarly in terms of robust-
ness and statistical efficiency.

In Figure 2, we demonstrate the influence functions of rp, 7, ré,s) and rg) and rg) under the bivariate
normal distribution with p; = pu, = 0, 07 = 0, = 1 and p = 0.5. Since we know that rél) = p and r(gz) = |p| for
bivariate normal distributions, the influence functions for the two Gini correlations are identical for p = 0.5,
and thus share the same plot in Figure 2. Indeed under a general elliptical distribution, IF((u, v)T; (gz), H) =
IF((u, )T; r(gl), H) forp > 0and IF((u, v)7; rg), H) = -IF((u, v)T; r(gl), H) for p < 0. Note that scales of the value

of the influence functions in the four plots are quite different.

4 Estimation

Estimation of the two new symmetric Gini correlations can be done easily by plugging in estimators 4; and
47 of 1 and 7,, respectively. Given a random sample 2 = {Z1, Z, ..., Z,} with Z; = (X;, Y;)7, the traditional
Gini correlations ; and v, can be estimated by a ratio of U-statistics. That is,

.Uy 2/Inn- DI e, ha (X5, Y, (X5, V)

T T 20 DI pgen P (i, ¥, (K, V) 1)
Uy 2= DI g s (060, Y0, (1, X))

UL 20 DI pgon e (K1, ¥, (K, 1) i
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IF of rp IF of r¢

(1) (2)
IF of re and re

Figure 2: Influence functions of correlation coefficients ry, rr, rg), r(gl) and r;z) for the bivariate normal distribution with iy =
M2 =0,01=02=1andp =0.5.

where hy ((x1,y1), (x2,¥2)) = h3((y1,x1), (2, x2)) = 1/4[(x1 = x2)I(y1 > y2) + (x2 = x1)I(y> > y1)] and
hy ((x1,¥1), (x2,¥2)) = h4((y1, X1), (¥2, X2)) = 1/4|x1-X2|. Schechtman and Yitzhaki [31] applied U-statistics
theorem to establish consistency and asymptotic normality of 4; and 4;. The same result can be reached
through the influence function approach which is derived in Proposition 3.1. More specifically, for H with
finite second moment,

VA =71) 5 N, v,,) and Va3 -v2) S N(O,v,,)  asn — oo,

where the asymptotic variances v.,, and v., are E[IF((X, Y)7;y1, H)?] and E[IF((X, Y); v,, H)?], respectively.
For a bivariate normal distribution, Xu et al. [41] provided an explicit formula v, = v, = m/3+(71/3 +4\ﬁ)p2 -
4parcsin(p/2) - 4p%\/4 - p2.

Note that a direct computation of U-statistics in (16) and (17) is time-intensive with complexity O(n?).
Rewriting U; and U, as linear combinations of order statistics reduces the computation to O(nlogn) [31].
That is,

1 . 1 ..
4(,1) Z(Zz -1- ”)X(Y(,-)) and U; = m Z(Zl -1-n)Xg,
2/ =1 2) =1

where X is the i" order statistic of X 1,X2,...,Xpand X(Y“)) is the X corresponding to the order statistic Y.
Similarly, U3 and U, are linear combinations of order statistics. This provides computational efficiency for 4,
and .

U, =
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Thus, we have computationally efficient estimators for ?fg,l) and ?g); ?(gl) is the arithmetic mean of v; and
2(2)

72, while 75~ is the geometric mean of 7; and 7.

X Y1 +7 X —
P = sz, " = VAl (18)

which are continuous functions of 4; and 4, and they can be efficiently calculated in O(n log n) of time. The
strong consistency of ?(gl) and ?(gz) follows directly from the strong consistency of 7; and 4,.

Proposition 4.1. LetZ,,Z,, ..., Zy be a random sample from a continuous bivariate distribution H with finite

first moment. Then ?(gl) and ?(gz) given in (18) converge almost surely to r(gl) and r(gz), respectively.

4.1 Limiting distributions

To simplify the presentation, we denote

K -EX)[GY) - EG(Y)] _ (X -EX)[F(X) - EF(X)]

61(X,7) =

cov(X, G(Y)) cov(X, F(X)) ’
5,(X, V) - (Y -EV)[F(X) - EF(X)] _ (Y -EY)[G(Y) - EG(Y)]
243 cov(Y, FX)) cov(Y, G(Y))

With the influence function derived in Proposition 3.2, we can easily obtain the asymptotic normality of A(gl).

Proposition 4.2. LetZ,,Z,, ..., Zy be a random sample from 2-dimensional distribution H with finite second
moment. As n — oo,
VP - 1Py 4 N(O, vg,),

where vg, = E[IF(X, V)75 1, H)?] = 1/4E [{1161(X, ¥) + 1262(X, V)}?].

For a bivariate normal distribution, Xu et al. [41] provided an explicit formula of vg, to be vg, = (1 - p?)(/6 -
parcsin(p/2) + (1 - p%))/\/4 - p2, which is smaller than v.,, the asymptotic variance of 4;. This means that
the symmetric Gini correlation is more statistically efficient than the standard Gini correlation under normal
distributions.

Under the lognormal distribution, asymptotic normality of the Fisher consistent estimator ,[)g) is obtained
by the Delta method. Its asymptotic variance is k1 (p) ?vg,, where

o _ P(por/VDo1/VZ | Wlpos/VDoa/V2
op 20(01/vV2) -1 20(0,/vV2) -1

with 1 and @ being the pdf and cdf of the standard normal random variable, respectively.
To study the asymptotic behavior of ?(gz), we have to overcome the difficulty brought about by the nonex-

ki(p) =

istence of the influence function when r(gz) = 0. It is interesting to see that there are three different limiting
distributions of ?(gz), corresponding to three cases of rfgz). We present the results in the following two proposi-
tions.

For r(gz) # 0, the influence function of r(gz) exists and can be used to establish the asymptotic normality of

?(gz) and calculate its asymptotic variance.

Proposition 4.3. LetZ,,Z,, ..., Zn be a random sample from 2-dimensional distribution H with finite second

moment. When r(gz) #0andasn — oo,

N d
Vi@ - r?) 4 N, vg,),

where vg, = E[IF(X, Y)T; ré,z), H)?] = %E[{&(X, Y) + 6,(X, V)}?.
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Remark 4.1. If 1 = v, # 0, we have vg, = vg,, meaning that two estimators ?g) and ?g) have the same
statistical efficiency.

If r(gz) = 0, the influence function of r(gz) does not exist, and hence we have to rely on U-statistic theory to derive
the limiting distributions of ?(gz). There are two different cases resulting from r(gz) = 0, depending on whether
or not both ; and ~, are zero. Without loss of generality, we assume v; = 0 and the two cases correspond to

~v2 = 0 and v, # 0, respectively.

Proposition 4.4. LetZ1,Z,, ..., Zy be a random sample from 2-dimensional distribution H with finite second
moment. When r(gz) = 0, we have

1. Ifv, #0, ?(gz) converges to the square root of a folded normal random variable. That is,
ni/*@ 4, /7],

where Z is a normal random variable with mean zero and variance given in the proof.
2. Ifv, =0, we have

24 S
Vi) 4, > At - 1),
VA4, pr

where Ay = 4Cov(X, F(X)) and A, = 4Cov(Y, G(Y)) are Gini’s mean differences for F and G, respectively,
X3s (s = 1,2, ...) are independent x? variables and {As} (s = 1, 2, ...) are coefficients given in the proof.

4.2 Asymptotic relative efficiency

We compare the asymptotic efficiency of the symmetric Gini correlations with other correlations under el-
liptical distributions and lognormal distributions. We consider Fisher consistent estimators. Note that the
purpose here is not to estimate parameter p, which is usually provided by likelihood inference. Rather, the
Fisher consistent correlation coefficients estimate the same parameter and hence their asymptotic variances
and statistical efficiencies are comparable. Denote [)Egl), ﬁéz), ﬁg), P~ Pr and pp as corresponding estimators
of symmetric Gini, standard Gini ~;, Kendall’s tau and Pearson correlations. The asymptotic variances of
those estimators are derived by the Delta method.

We consider three elliptical distributions with the same parameters (u; = y, = 0,0; = 0, = 1,p =
0.1, 0.5, 0.9) but different fatness on the tail regions, which are
e normal distribution with g(¢) = 1/(2n)e /2,
o t-distributions with g(¢t) = 1/(27)(1 + t/v)™/2"1, where v = 5, 15 is the degrees of freedom,
e Kotz type distribution with g(t) = 1/ (2n)e‘\ﬁ.
Bivariate lognormal distributions with parameters (u; = g = 0,07 = 0, = 1,p = 0.1,0.5,0.9) and (u; =
U =0,01=1,0, =2,p=0.1,0.5,0.9) are also considered.

We compute the asymptotic variances (ASV) of the Pearson estimators pp, and asymptotic relative effi-
ciencies (ARE) of estimators f)g), [)(gz), [)(gs), p~, and pr relative to pp, which are reported in the first part of
Table 1. The asymptotic relative efficiency (ARE) of one estimator p; with respect to another p, is defined by

ARE(p1, p2) = ASV(p2)/ASV (D).

The second part of Table 1 lists ASV of all correlations under the lognormal distribution with ¢; = 1 and
0, = 2. In this case, the Pearson correlation has extremely large asymptotic variances, the result agreeing
well with [19, 23]. The asymptotic variance of 7, involves the fourth moment and is given by Witting and
Miiller-Funk ([40]) as follows.

2 2
Lp) 022  Tp 04  Oo4 4031 4013

vp =(1+
g 27020002 4 03, 03, 011020 011002
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Dist p | A PP Y P pr || ASV(p)
0.1 0.9776 0.9776 0.9321 0.9558 0.9111 0.9816
Normal 0.5 0.9570 0.9570 0.9769 0.9398 0.8915 0.5631

0.9 0.9053 0.9053 0.9601 0.9004 0.8439 0.0361

0.1 1.0505 1.0505 1.0182 1.0304 1.0146 1.1558
t(15) 0.5 1.0230 1.0230 1.0560 0.9852 0.9896 0.6643
0.9 0.9564 0.9564 1.0289 0.9468 0.8804 0.0427

0.1 2.0233 2.0233 2.0095 1.9502 2.2586 2.8800
t(5) 0.5 1.8646 1.8646 1.9795 1.7666 2.1060 1.5961
0.9 1.5665 1.5665 1.8629 1.5346 1.7940 0.1019

0.1 1.3539 1.3539 1.2081 1.1385 1.2171 1.6382
Kotz 0.5 1.0732 1.0732 1.1850 1.0854 1.1510 0.9378
0.9 0.9882 0.9882 1.1599 0.9789 1.0256 0.0602

0.1 4.1136 4.1136 N/A 2.1825 3.4713 3.7341
Lognormal 0.5 9.8414 9.8414 N/A 6.0519 9.7859 6.1741
(01=0,=1) 0.9 14.630 14.630 N/A 12.491 21.052 0.9006

ASV(EY) | ASV(?) | ASV(Y) | ASV(p,,) | ASV(E:) || ASV(pp)

0.1 4.9484 4.2810 N/A 1.7109 1.0774 18862
Lognormal 0.5 2.7026 2.4453 N/A 1.0202 0.6316 227142
(01=1;0,=2) 0.9 0.1858 0.1820 N/A 0.0721 0.0428 379866

Table 1: Asymptotic relative efficiencies (ARE) of estimators pg), [’)(gz), f)(gs), p~, and p; relative to p, for different distributions,

with asymptotic variance (ASV(pp)) of Pearson estimator . The second part is ASV of all correlations under the lognormal
distribution with 01 = 1 and 0, = 2.

where oy, = E[(X-EX)*(Y-EY)!]. For the lognormal case of p = 0.5, 01 = 1 and 0, = 2, we have vp = 72895.7
and using the Delta method, the ASV of the Fisher consistent Pearson correlation p, is vp multiplied by 3.12.
Since we have yet to determine the relationship between p and rfgf) for the lognormal distribution, the

asymptotic relative efficiencies of p(s)

under the lognormal distribution are not presented in this paper. Note
that by Remark 4.1, we have v; = v, and hence the ASV’s of p(l) and p(z) are same for all cases except for the
second setup of the lognormal distribution. In that case, ﬁ(gz) is 15%, 10% and 2% more efficient than p(l) for
p =0.1,0.5 and 0.9, respectively.

Table 1 shows that the asymptotic variances of py, pg), pg , Pg» P~ and P all decrease as p increases in
elliptical distributions. Asymptotic variances increase for t distributions as the degrees of freedom v decrease.
Under normal distributions, the Pearson correlation estimator is the maximum likelihood estimator of p,
thus is the most efficient asymptotically. The two proposed symmetric Gini estimators p(gl), [)(gz) are both high
in efficiency with ARE’s greater than 90 percent; thus, more efficient than Kendall’s estimator p. and the
traditional Gini correlation estimator p- . For heavy-tailed elliptical distributions, symmetric Gini estimators
p(l) and p(z) are more efficient than Pearson’s estimator pp. They are also more efficient than the traditional
Gini correlation in all elliptical distributions. The rank based symmetric Gini correlation p(gs) has a similar
oM and /3(2) butit has a slight advantage when p = 0.5 and 0.9. Under the lognormal distribution
5D and p(Z)
a large variation in Y will degrade the performance of 4, and consequently p(l) and p(gz) ASV of Kendall’s tau
is the most efficient in this case.

efficiency as pg

with oy = 0, =1, pg are competitive with Kendall’s tau. Under the case of 01 = 1, 0, = 2 however,
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5 Empirical Results

We first conduct a small simulation to compare computational efficiency of each correlation. Then we com-
pare finite sample statistical efficiency of these methods.

5.1 Computational efficiency

To study the computational efficiency of these methods among finite samples, we perform a small simulation
to compare the calculation times of the two symmetric Gini correlation estimators ?g), ?ng) with Kendall’s tau
fr, Spearman s, and Pearson 7p correlation estimators, as well as the symmetric Gini correlation estimator
?(gs). Samples of sizes n = 10000, 50000 and 100000 were drawn from a bivariate Normal distribution with
parameters (u; = U, = 0,01 = 0, = 1, p = 0). For each sample, the computation times of each correlation
measure were recorded. The procedure is then repeated 30 times to procure the mean and standard deviation
of computation times for each measure. In Table 2, we display the mean and standard deviation (in parenthe-
sis) of calculation times for r(l) (2) (S) , T, s, and 7p. The values in Table 2 were achieved on a Windows PC
with an Intel ® Core™ 17-97OOK CPU @ 3.60GHz, 8 cores. The R package "pcaPP" is used for fast computation
of Kendall’s tau correlation.

A R A N S I L N L N R B

10,000 | .004(.0072) | .001(.0040) | .390(.0061) | .000 (.0000) | .002(.0063) | .000 (.0000)
50,000 | .007(.0079) | .008(.0086) | 9.75(.0286) | .005(.0078) | .011 (.0084) | .000 (.0000)
100,000 | .016(.0061) | .013(.0076) | 39.6(.4872) | .008(.0083) | .024(.0093) | .002(.0053)
(1) A(Z) »(S)

Table 2: The mean and standard deviation (in parenthesis) of calculation times for 7 fg
Normal distribution.

, T, s, and 7 under a bivariate

From the complexity study, we know that r(l) ?éz), 7, and 7 all have calculation times of O(n log n), r(s)
has a calculation time of O(n?), and 7 7p hasa calculatlon time of O(n). In Table 2, we can see that 7, is the most
computationally efficient, with r(l) r(gz), 7, and 75 being only slightly less efficient. It is clear from Table 2 that
all of r(l) r(gz), p, T, and 7s would perform well with most all sample sizes, however, )

well w1th large samples.

would not perform

5.2 Finite sample efficiency

In order to study the efficiency of these methods among finite samples, we conduct a small simulation com-
paring the two symmetric Gini correlations with Kendall’s T, Spearman, and Pearson correlation estimators.

Samples of sizes n = 30 and n = 300 were drawn from 4 t-distributions with degrees of freedom 1, 5, 15, and

‘71
102

The R Package “mnormt" was used to generate data from the multivariate ¢ dlstributions, bivariate normal

distribution and the lognormal distribution by taking the exponential transformation of a bivariate normal
random sample. We generate data from the Kotz distribution by first obtaining uniformly distributed random
vectors on the unit circle by u = (cos 6, sin 6)7 with 6 in [0, 27], then generate r from a Gamma distribution
with shape parameter a=2, and scale parameter $=1. Thus, we obtain X Y2y + U, a sample from a bivariate
Kotz(u, 2) distribution.

oo, and from the Kotz and Lognormal distributions. Let u = (0,0)7 and X = ( P ‘2202 ) be the parameters.
2
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An estimator ﬁ(’") is computed for the m!" sample and the root mean squared error (RMSE) is used for a
criterion for assessing estimators, which is defined as

M
o 1 o
RMSE(Qp) = || 37 >_(B™ - p)?.
m=1

In our experiment, M is set to be 3000. The procedure is then repeated 30 times to procure the mean and
standard deviation of v/nRMSE. In Table 3, we display the mean and standard deviation (in parenthesis) of
VIRMSE of pV, 5@, pr, ps, and pp.

We notice a decreasing trend in /nRMSEs as p increases for each sample size and an increasing trend as
degrees of freedom, v, decrease for t distributions. Under the normal distribution, +/nRMSEs of both proposed
symmetric Gini estimators, f)(gl) and [)(gz), are highly competitive with v/nRMSE of pp. For p = 0.1, [)(gz) outper-
forms pp in all distributions. We include the heavy-tailed distribution, ¢(1), to demonstrate the behavior of
Pearson and Gini estimators when their asymptotic variances may not exist. We observe that for large sample
size, pp is around twice as large as both f)g) and f)(gz). When the sample size is small (n = 30), and degree of
freedom v is large (15, oo) [)(gz) performs the best. For the lognormal distribution, when p is small, we see f)(gz)
outperforms pr and ps. For the remaining cases in the lognormal distribution both proposed symmetric Gini
estimators have a smaller +/nRMSE than the Pearson correlation estimator. As expected, Kendall’s tau and

Spearman’s correlation estimator produced similar «/nRMSE’s under Normal and log-normal distributions.

5.3 Robustness

We also conduct a simulation with contaminated data to demonstrate robustness and show how contamina-
tion affects the performance of each correlations. We generate contaminated data of sizes (n = 300, 1000)
from the following mixture normal model with contamination rates (¢ = 1%, 5%).

(1-e)N(uy =p2=0,01=0,=1,p=0.9)+eN(uy =y =0,0, =0, =0,p =-0.9),

where 0 = 2, 4. The majority of the data is highly positively correlated with a contamination by a small portion
of negatively correlated outliers. The same criterion /nRMSE is used to evaluate the difference between each
correlation estimator and the true parameter value 0.9. M and the number of repetitions are the same as the
previous subsection: 3000 and 30, respectively. The result is listed in Table 4.

In each case above, the Pearson correlation has the highest RMSE. This indicates the Pearson correlation’s
sensitivity to contamination and the high level of degradation those outliers have on its performance. The
most robust correlation is the Kendall’s tau. The performance of the Gini correlations are between those of
the Pearson and Kendall’s correlations. This result supports our findings from the derived influence functions

in Section 3. The two symmetric Gini correlations f)(gl) and ﬁ(gz) perform very similarly, but they are less robust

than the joint rank based Gini correlation [)(gs).

6 Real data analysis

For the purpose of illustration, we apply the developed Gini correlations to the “GDP per captia and Suicide
rates" data which is available on Kaggle. Many factors (mental health issues, weather, culture, etc.) affect
suicide. We would like to explore whether or not an economic factor, such as GDP, relates to suicide rate by
measuring the correlation using several correlation coefficients.

The data contains information from 160 countries around the world from the years 2000, 2005, 2010,
2015 and 2016. There are 2 missing values in 2000 data and 5 missing values in other years. We drop those
countries with missing values and consider only the complete data for each year. We analyze how GDP and
crude suicide rates are related and how the relationship changes through years. The crude suicide rate is
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Dist p n ‘ ij(gl) ij(gz) ﬁ(gs) pr Ps Pp
30 | 1.0342 (.0122) | 1.0232 (.0124) | 1.0071 (.0116) | 1.0874 (.0129) | 1.0604 (.0131) | 1.0188 (.0117)
300 | 1.0182(.0130) | 1.0091 (.0130) | 1.0117(.0142) | 1.0553 (.0136) | 1.0526 (.0136) | 1.0058 (.0130)
0.1 30 | 1.0240(.0114) | 0.7766(.0112) | 0.9999 (.0149) | 1.0764 (.0110) | 1.0505(.0112) | 1.0086 (.0121)
300 | 1.0039 (.0143) | 0.9430(.0126) | 1.0041(.0126) | 1.0413 (.0150) | 1.0387 (.0151) | 0.9913 (.0134)
Norm 0.5 30 | 0.8022(.0120) | 0.8007 (.0117) | 0.7828 (.0119) | 0.8505 (.0128) | 0.8428 (.0135) | 0.7821 (.0110)
300 | 0.7708(.0097) | 0.7710 (.0097) | 0.7590 (.0105) | 0.8004 (.0096) | 0.8095 (.0099) | 0.7536 (.0094)
0.9 30 | 0.2249(.0050) | 0.2251 (.0050) | 0.2188 (.0041) | 0.2529 (.0057) | 0.2787 (.0066) | 0.2094 (.0047)
300 | 0.2013(.0021) | 0.2013 (.0021) | 0.1943 (.0023) | 0.2104 (.0025) | 0.2252 (.0031) | 0.1911 (.0017)
0.1 30 | 1.0654(.0133) | 0.8088 (.0107) | 1.0379(.0123) | 1.1050(.0142) | 1.0713(.0138) | 1.0739(.0122)
300 | 1.0520(.0154) | 0.9776 (.0135) | 1.0431(.0126) | 1.0745(.0162) | 1.0623 (.0160) | 1.0758 (.0155)
t(15) 0.5 30 | 0.8349(.0101) | 0.8324(.0082) | 0.8179(.0100) | 0.8735(.0110) | 0.8642 (.0113) | 0.8335(.0099)
300 | 0.8053 (.0099) | 0.8056 (.0099) | 0.7965 (.0094) | 0.8238 (.0099) | 0.8344(.0097) | 0.8132(.0101)
0.9 30 | 0.2387(.0047) | 0.2391(.0047) | 0.2284 (.0047) | 0.2636 (.0049) | 0.2965 (.0058) | 0.2266 (.0042)
300 | 0.2148(.0026) | 0.2148 (.0026) | 0.2036 (.0029) | 0.2208 (.0026) | 0.2478 (.0032) | 0.2078 (.0030)
0.1 30 | 1.1753(.0166) | 0.8914(.0126) | 1.1533(.0122) | 1.1534 (.0162) | 1.1039(.0163) | 1.2961 (.0169)
300 | 1.1919(.0169) | 1.0703 (.0117) | 1.1772(.0139) | 1.1312 (.0144) | 1.1009 (.0145) | 1.5167 (.0244)
t(5) 0.5 30 | 0.9374(.0108) | 0.9277 (.0097) | 0.9107 (.0079) | 0.9228 (.0096) | 0.9144(.0107) | 1.0264(.0166)
300 | 0.9286 (.0118) | 0.9297 (.0118) | 0.9039 (.0125) | 0.8801(.0130) | 0.9080 (.0133) | 1.1631 (.0212)
0.9 30 | 0.2807(.0077) | 0.2814 (.0077) | 0.2598 (.0056) | 0.2857 (.0070) | 0.3395 (.0082) | 0.2904 (.0098)
300 | 0.2589 (.0042) | 0.2589 (.0042) | 0.2314(.0039) | 0.2414 (.0039) | 0.3011 (.0049) | 0.3011 (.0082)
0.1 30 | 2.6127(.0208) | 2.1841 (.0211) | 2.4072 (.0303) | 1.3646 (.0181) | 1.2460 (.0177) | 3.3060 (.0228)
300 | 6.4427(.1052) | 5.2414(.0986) | 6.0693 (.0827) | 1.3753(.0134) | 1.2719 (.0145) | 10.2563 (.1223)
t(1) 0.5 30 | 2.2951(.0456) | 1.5163 (.0150) | 2.1902 (.0405) | 1.1217 (.0142) | 1.1390(.0158) | 2.9658 (.0441)
300 | 5.5947 (.1303) | 4.0462 (.0418) | 5.4037(.1292) | 1.1027 (.0107) | 1.4174(.0123) | 9.1351(.1800)
0.9 30 | 1.1631(.0556) | 0.9047 (.0282) | 1.1915 (.0494) | 0.4023 (.0117) | 0.6295 (.0155) | 1.5994 (.0695)
300 | 2.8601(.1712) | 2.2857 (.0754) | 2.7902 (.1719) | 0.3471(.0042) | 0.9411 (.0089) | 4.9999 (.2216)
0.1 30 | 1.1821(.0114) | 0.8978 (.0115) | 1.1503 (.0151) | 1.1884 (.0135) | 1.1291(.0125) | 1.2439 (.0113)
300 | 1.1753(.0186) | 1.0615(.0148) | 1.1644 (.0165) | 1.1660 (.0161) | 1.1248 (.0157) | 1.2714(.0201)
Kotz 0.5 30 | 0.9324(.0130) | 0.9251(.0107) | 0.9089 (.0135) | 0.9451 (.0138) | 0.9355(.0142) | 0.9692 (.0139)
300 | 0.9159 (.0104) | 0.9167 (.0104) | 0.8881 (.0133) | 0.9103 (.0104) | 0.9525(.0109) | 0.9705 (.0109)
0.9 30 | 0.2765(.0041) | 0.2769 (.0041) | 0.2601 (.0075) | 0.2939 (.0055) | 0.3538 (.0057) | 0.2697 (.0044)
300 | 0.2511 (.0038) | 0.2511(.0038) | 0.2282(.0030) | 0.2515 (.0039) | 0.3453 (.0045) | 0.2484(.0032)
0.1 30 | 1.0905(.0117) | 0.8027 (.0114) N/A 1.0783 (.0126) | 1.0522 (.0121) | 1.6570(.0241)
300 | 1.1377(.0136) | 1.0186 (.0123) N/A 1.0401 (.0120) | 1.0375(.0121) | 1.7446 (.0298)
Log- 0.5 30 | 0.9048(.0134) | 0.9160(.0128) N/A 0.8522 (.0133) | 0.8434(.0132) | 1.2171(.0159)
norm 300 | 0.9107 (.0152) | 0.9134(.0152) N/A 0.7977 (.0102) | 0.8065(.0107) | 1.6509 (.0272)
0.9 30 | 0.2855(.0041) | 0.2860 (.0041) N/A 0.2552 (.0035) | 0.2815(.0038) | 0.3287 (.0055)
300 | 0.2584(.0032) | 0.2584(.0032) N/A 0.2115 (.0031) | 0.2261 (.0035) | 0.5059 (.0079)
0.1 30 | 0.8479(.0139) | 0.8203 (.0134) N/A 1.0777 (.0121) | 1.0524(.0115) | 1.6443(.0146)
Log- 300 | 1.3134(.0155) | 1.1014 (.0161) N/A 1.0393(.0108) | 1.0368(.0107) | 1.9501(.0313)
norm 0.5 30 | 0.9925(.0124) | 1.0078 (.0114) N/A 0.8476 (.0098) | 0.8397(.0108) | 1.4877(.0142)
o =1 300 | 1.2022(.0173) | 1.1943 (.0188) N/A 0.8021 (.0092) | 0.8114(.0094) | 3.0405(.0353)
0,=2 0.9 30 | 0.3722(.0059) | 0.3721(.0059) N/A 0.2531 (.0044) | 0.2795(.0052) | 0.5643(.0101)
300 | 0.3556 (.0054) | 0.3534 (.0054) N/A 0.2117 (.0025) | 0.2265(.0030) | 1.9782(.0258)

Table 3: The mean and standard deviation (in parenthesis) of v/nRMSE of

5(1) 5(2) 5

Ps’sPg’s P, Ps, and pp under different distributions.
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Figure 3: Scatter plots between GDP and Suicide Rate and log(GDP) and Suicide Rate in different years. A cubic smoothing

spline fitting curve is added in each plot.
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o £ n ‘ ﬁ(gl) ‘ ﬁ(gz) ij(gS) pr Ps Pp

2 1% 300 | 0.9111(.0102) | 0.9114(.0102) | 0.4538 (.0057) | 0.3632 (.0040) | 0.6120(.0051) | 1.5256(.0270)

1000 | 1.4962 (.0095) | 1.4963 (.0095) | 0.6917 (.0055) | 0.5393 (.0044) | 0.9796 (.0056) | 2.4065 (.0223)

5% 300 | 3.7800(.0128) | 3.7811(.0128) | 2.1315(.0094) | 1.5171 (.0072) | 2.5729(.0088) | 5.6020 (.0241)

1000 | 6.7915 (.0147) | 6.7920(.0147) | 3.7512(.0106) | 2.7032 (.0066) | 4.6069 (.0082) | 10.0111 (.0289)

4 1% 300 | 1.8163(.0128) | 1.8178(.0128) | 0.8741 (.0080) | 0.4059 (.0048) | 0.7394 (.0058) | 4.9148(.0491)

1000 | 3.1001 (.0121) | 3.1009 (.0121) | 1.4171 (.0070) | 0.6319 (.0041) | 1.2340 (.0050) | 8.3176 (.0501)

5% 300 | 7.1781(.0239) | 7.1841(.0239) | 4.8545(.0242) | 1.8511 (.0057) | 3.2721(.0081) | 14.1536 (.0539)

1000 | 12.100 (.0270) | 13.003 (.0270) | 8.5919 (.0261) | 3.3165 (.0070) | 5.8925 (.0088) | 25.960 (.0633)

Table 4: The mean and standard deviation (in parenthesis) of /nRMSE of each correlation estimator in the contaminated Nor-

mal data.

the number of suicide deaths in a year, divided by the population and multiplied by 100,000. The countries
with the highest suicide rates are Russia and Lithuania. Their suicide rates range from 32 to 52 per 100000
people. Luxembourg is the country with the highest GDP per captia of $48736 in 2000 and $101305 in 2016.
Ethiopia, Burundi, and Somalia are countries with the lowest GDP of $124 in 2000 and $282 in 2016. There is
a high degree of positive skewness in the distribution of GDP, hence we also consider the log transformation
of GDP data to handle the asymmetry. We draw the scatterplot between GDP per capita and SR as well as
the scatterplot between log(GPD) and SR per year in Figure 3. We also add a cubic smoothing spline fitting
curve in each plot. We used default values of parameters of smooth.spline in R to fit the curves. We can see
that the fitted curves demonstrate non-linear relationship between GDP per capita and SR, but almost linear

relationships between log(GDP) and suicide rate except for the year 2010.

Year

Variables  Method 2000 2005 2010 2015 2016
i | .1970(.0784) .2767(.0738) .3374(.0636) .3596(.0640) .3642(.0631)
7@ | .1930(.0772) .2757(.0727) .3368(.0632) .3580(.0638) .3616(.0632)
A1 | .2360(.0984) .2998(.0948) .3583(.0753) .3933(.0733) .4070(.0696)
(GDP, SR) 4 | .1579(.0700) .2535(.0641) .3165(.0610) .3259(.0635) .3213(.0646)
79 | .1005(.0676) .1541(.0627) .2041(.0578) .2386(.0569) .2511(.0587)
Pr | .0874(.0509) .1371(.0487) .1857(.0448) .2016(.0447) .2051(.0453)
fp | .1074(.0700) .1404(.0645) .1936(.0583) .2441(.0580) .2584(.0593)
i | .1486(.0714) .2371(.0666) .3028(.0618) .3213(.0630) .3225(.0634)
7P | .1483(.0717) .2366(.0671) .3025(.0620) .3213(.0630) .3225(.0634)
A | .1393(.0775) .2207(.0742) .2891(.0672) .3168(.0659) .3236(.0653)
(l0g(GDP),SR) 42 | .1579(.0700) .2535(.0641) .3165(.0610) .3259(.0635) .3213(.0646)
79 | .1376(.0643) .2110(.0600) .2709(.0565) .3022(.0594) .3074(.0604)
Pr | .0874(.0509) .1371(.0487) .1857(.0448) .2016(.0447) .2051(.0453)
fp | .1299(.0606) .2037(.0543) .2674(.0518) .2950(.0557) .2985(.0571)

Table 5: All types of correlations for (GDP, SR) and (log(GDP), SR), respectively. The standard deviations are in parenthesis.

We have calculated the symmetric Gini correlations for (GDP, SR) and (log(GDP), SR), as well as other
correlations presented for comparison in Table 5. We utilize the jackknife method to provide an estimation
of the variation of the sample correlations. Let 7_; be the jackknife pseudo value of a correlation estimator 7
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based on the sample with the i" observation deleted. Then the jackknife variance is

N n-1« “ 2 \2
Vr=— B UEE ) (19)

i=1

where f’(,) =1/n Z?zl ?(_i). See [35] for more details. Table 5 lists the jackknife standard deviations in paren-
theses.

From Table 5, we observe that all the listed correlations between GDP per capita and SR are less than
.5000, which indicates a weak or moderate association between GDP per capita and SR and is consistent with
Figure 3. However, with each year, we notice an increasing trend in the correlations between GDP and SR. The
data suggest that the correlations between the two become more significant as time passes. Values of ?(gl) and
?g) are close to each other, but there is a visible difference between the regular Gini correlations, 4; and 4,.
After the log transformation on GDP, the difference becomes less significant. The monotonic transformation
does not change the rank of the GDP. Kendall’s 7 and 4, should maintain the same values before and after
the transformation, which agrees with the values we have shown in Table 5.

‘ ?g) ?g) o2} 2 f’és) Pr Tp

2015 complete
deleted

.3213(.0630) .3213(.0630) .3168(.0659) .3259(.0635) .3022(.0594) .2016(.0447) .2950(.0557)
.3347(.0718) .3344(.0719) .3148(.0734) .3511(.0718) .3446(.0727) .2015(.0508) .3531(.0685)

2016 complete
deleted

.3225(.0634) .3225(.0634) 3236(.0653) .3213(.0646) .3074(.0604) .2051(.0453) .2985(.0571)
.3578(.0689) .3574(.0690) .3416(.0705) .3740(.0691) .3656(.0685) .2186(.0499) .3736(.0646)

Table 6: Correlations between log(GDP) and SA for the complete data and the deleted data in 2015 and 2016. The standard

deviations are in parenthesis.

To demonstrate robustness, we delete some outliers and compare the differences of each correlation es-
timator in the complete data and in the edited data. We expect the Pearson correlation to show the largest
difference, the Kendall’s 7 correlation to demonstrate the smallest, and the Gini correlations to be somewhere
in-between. We consider log(GDP) and SA data from 2015 and 2016. We delete all countries with SR > 20. The
results listed in Table 6 confirm what we expect. In 2015, the Pearson correlation estimator changes from 0.295
to 0.353, while symmetric Gini correlations only have a slight change from 0.321 to 0.335. The Kendall’s tau
correlation is the most stable. A similar conclusion can be drawn for the 2016 data. This experiment illustrates
that Pearson correlation is not robust and may not be a good measure of association even though the cubic
smoothing spline fitting lines in the scatter plots in Fig 3 are almost linear in 2015 and 2016, suggesting the
usage of the Pearson correlation. Other correlations are more preferred in this example.

7 Conclusion

We have systematically studied two symmetric Gini correlations r(gl) and r(gz), which are the arithmetic and
geometric means of the traditional Gini correlations v; and ~,. We studied basic properties of r(gl) and r(gz), as
well as their relationships to the correlation parameter in the elliptical distributions and log-normal distribu-
tion. Such relationships enable us to obtain Fisher consistent versions of each correlation. We derived their
influence functions in order to gauge robustness. They are more robust than the Pearson correlation but less
robust than Kendall’s tau and Spearman correlations. We established asymptotic distributions of the sample
correlations. Usual asymptotic normality holds for ?(gl) as well as for ?(gz) as long as rfgz) # 0. Their asymptotic
variances are obtained through the influence function approach. For r(gz) =0, ?(gz) has two different limit-

ing distributions, depending on whether or not both v; and v, equal 0. We compared their computational
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efficiency and statistical efficiency with the rank-based symmetric Gini, Kendall’s tau and the Pearson corre-
lation. r(l) and r(z) can be efficiently calculated with a computational complexity of O(nlogn). Asymptotic effi-
ciency and ﬁmte sample efficiency of each correlation are obtained under various elliptical distributions and
asymmetric lognormal distributions. In summary, the two symmetric Gini correlations balance well among
statistical efficiency, robustness, and computational efficiency.

Continuations of this work could advance in several directions. The jackknife empirical likelihood (JEL)
method proposed by Jing et al. [15] has been proven to be effective and reliable in dealing with U-statistics.
Sang et al. [29] have applied JEL to the classical Gini correlations. It could be beneficial to develop JEL for
the two symmetric Gini correlations. In the current work, comparisons among correlations are made in ellip-
tical distributions and lognormal distributions. It would be worthwhile to explore the comparisons in wide
families of bivariate distributions such as copula family and Farlie-Gumbel-Morgenstern models. Fontanari
et al. [8] proposed a new Archimedean copulas based on the Lorenz curve that is highly related to Gini index
and Gini correlations. It is interesting to study correlations in this family. Dang et al. [4] extended the Gini
mean difference in one dimension to the Gini covariance matrix (GCM) in high dimensions. However, its com-
putation cost is O(n?). It would be worthwhile to study the GCM based on r(gl) or r(gz) which should be more
computationally efficient.

Appendix

Proof of Proposition 2.4. The results of (10) and (11) directly follow from

_20(po1/vV2)-1 _20(poy/V2)-1
=——=—- - and ypp,="7"—""——"—-,
20(01/Vv2) -1 20(02/vV2) -1
which are given by [31], although their (2.3) has a typo. The authors didn’t provide a proof in [31], thus for the
purpose of completeness, we provide a detailed proof here.
Related to @(x), the cdf of a standard normal variable, the error function is defined as

erf(x) = %/e’tzdt.
0

From the tables of integrals of the error functions [25], two identities we will use in the proof are listed below.

2!

erf(x) = 20(xv2) -1 = O(x) = %[erf(%) +1]  (p3,Eq(6)in [25]) (20)

—(ax+b)’ 5, _ _ Vv
/ erf(x)e dx 2

—oco

\/ai%l (08, Eq(13) in [25]) @)

We will use the following equation throughout the remainder of the proof:

/(D(Z) 1 e 2@ gy = o(+=). (22)

Sy

This is because

oo

/cD(z) e 1EW gy = /f[erf(7)+1]fe 7 dz by (20)

—co

1 11 —(-£)?
= _ N — V2

5+ 2\/ﬁ/erf(x)e 2’ dx
_1
T2

-
—CD(ﬁ)-

N %erf(%) by (21)
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Let (X, Y)T follow a lognormal distribution with parameters (u1, yz, 01, 02, p). Then the marginal distri-
butions are F(x) = ®@((log x — p1)/01) and G(y) = @((logy - u3)/02), respectively. EX = exp(u; + 02/2) and
E(X|Y) = exp(uy + po(log Y - uy)/ 02 + 05(1 - p?)/2) by [23]. We have

T Inx -y 1 - );1) / —22/2 012+
EXF(X) = [ x® e ¥ dx= [ @Oz elFthi gy
) / ( 01 )\/Znalx ( )

_ et1*01/2 / @(z)\/%ef(zfgl)z/zdz = "' 2(0,/V/2).
VA

The last equation is due to (22). Also

EXG(Y) = E[G(Y)E(X|V)] = E[G(Y) exp(u1 + pa1(log ¥ — u2)/ 02 + 61(1 - p?)/2)]
_ 7 lny yz 1o / 1 —(log y-u>)*/(202)
_ e},l1+0‘%(1 pz)/Z/dj epal( g y-U2)/02 = pllogy 2q
V2nioyy Y

0

_ Hi+02(1-p?)/2 / 0012 1 _2p
= e D(z)ef’* ——e dz
V2n

—co

_ eﬂﬁa%(lfpz)/Zepzaf/Z / (p(z)e—(zfpal)z/zdz

= e“”"%/zd)(pm/ﬁ).
Thus,

_ cov(X, G(Y)) _ E[XG(Y)] - EIXE[G(Y)] _ e*1/2@(p0y//2) - e1*91/2 2
T covX, FX))  EXFX)] - EXIE[FX)] el 02 (g, //2) - e1+93/2)2

_20(poy/V2)-1

 20(02/vV2) -1

Similar arguments for v, complete the proof. O

Proof of Proposition 3.1. To find influence function of Gini correlation, let T1(H) = cov(X, G(Y)), T>(H) =
cov(X, F(X)), T3(H) = cov(Y, F(X)), T,(H) = cov(Y, G(Y)) and h(ty, t,) = t1/t2. Then v; = h(Ty, T,) and
42 = h(T3, T4). Denote the influence function of T; as Li(u,v) = IF((u,v)T; T;, H), fori = 1,2,3, 4. Let
H=(1-¢)H +&b,,, then

T:(H) = E;XG(Y) - EfXE;G(Y)
=(1-8EXG(Y) +euG(v) - [(1 - &)EX + eu][(1 - )EG(Y) + eG(V)]
= (1-&)EXG(Y) - (1 - €)’EXEG(Y) + euG(v) - e(1 - &) WEG(Y) + GW)EX) - €2uG(v).

Hence,

T,(H) - T,(H)
€
= -EXG(Y) + 2EXEG(Y) + uG(v) - uEG(Y) - G(v)EX

= (u - EX)(G(v) - EG(Y)) - cov(X, G(Y)).

Li(u,v) = Sh_%

Similarly, we have

Ly(u,v) = (u-EX)(F(u) - EF(X)) - cov(X, F(X)),
L3(u,v) = (v-EY)(F(u) - EF(X)) - cov(Y, F(X)),
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Ly(u,v) = (v-EY)(G(v) - EG(Y)) - cov(Y, G(Y)).

Hence,
oh
IF((u, v); 71, H) = Z Nncr,, my Li V) = L1(u v) - Lz(u v)
_ ((u ~EX[GV) -EG(Y)] _ (u- EX)[F(u) - EF(X)] >
- cov(X, G(Y)) cov(X, F(X))
Similar arguments on IF((u, v); v, H) complete the proof. a

1 tz and g, = /|t1t2]- Then r(l) = g1(y1,72) and r(z) =

g2(7v1,72). Let IF1 (u, v) and IF,(u, v) denote the 1nﬂuence functions for v, and ~,, respectively. For any r(l)
we have

Proof of Proposition 3.2. Define g{(t, t;) =

IF((, )7 1D, B = 98100921 o, 4y 4 981009218 4y 2 LiE () + 2IFy(, ),
oM 0v2 2 2

Since g, is not differentiable at v; = 0 and/or v, = 0, the influence function of r(gz) does not exist for rg,z) = 0.
For nonzero r(gz), we have

IF((U V)T r(Z) H) - agZ((;/yla’YZ)IFl(u’v) " agZ('):yls VZ)IFz(u, V)

sgn(y172)72 sgn(y172)71
zm 2l IR (U, v) + zm 1F,(u, v)

(|
Proof of Proposition 4.1. A proof of the proposition follows directly from the fact of strong consistency of U-
statistics Uy, U,, U3, U, by the U-statistics theorem [34] and the fact that 7 “(1) and 7 A(l) are continuous functions
of Uy, U,, Us, Uy. By the continuous mapping theorem [34], the strong con51stency of r(l) and r(z) holds. O
Proof of Proposition 4.2 and 4.3. The asymptotical normality of 7 A(l) and the asymptotical normality r(z)
when rg # 0 are an immediate result from the application of the 1nﬂuence function approach [14]. D
Proof of Proposition 4.4. We have

A(z) \/‘ﬂﬁ _ \/U1U3

U2 U4 U2 U4

7121‘2 almost surely by the U
statistics theorem and the continuous mapping theorem [34]. We need to explore the limiting distribution of
+/|U1 U3|. Then by Slutsky’s theorem [38], the limiting distribution of r(z) follows. Now consider U; Us, the

product of two U statistics. We have

since U, and U, are always positive. The denominator /U, U, converges to

-2
UpUs = (;’) > mEzuz) Y hs(ZZ)

1<i<jsn 1<k<lsn

-2
n
=6(2> Z g(Z,-,Zj,Zk,Zl)+Rn,

1<i<j<k<lsn

where Rn, = op(n™!) and the symmetric kernel g(z1, 22, 23, 24) = 1/4! Zp h1(zi1, zin)h3(zi3, zi4) With Zp
denoting summation over the 4! permutations (i1, i, i4, i5) of (1, 2, 3, 4).

Define the new U statistic Un = (}) -1 D 1cicjckelen 8(Z;, Z;, Zy, Z)). 1t is easy to check that U, U; is asymp-
totically equivalent to U,. Now consider the first order and second order projections of the kernel g. We define

1
81(2) =Eg(z,Z,,25,Z,) = EEhl(z’ Z,)Ehs(Z3,Z,),
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82(21,22) = Eg(z1, 22, Z3, Z,)
1 1 1
= Eh1(21,22)Eh3(Z3,Z4) + §Eh1(z1,zz)Eh3(22,Z4) + §Eh1(zz,zz)Eh3(Z1,Z4)-

The second equations in g, and g, are due to ; = 0, implying Eh,(Z,, Z>) = 0.
Case1: v, # 0.

Let oé = var[g1(Z)] = (y24,/8)*var[Ehy(Z, Z,)|Z]. Then by Hoeffding decomposition, we have U, =
431 &1(Z) + 0p(nV?). By [34],

VAU, -4 N(0, 1602).
Therefore,

2.2
U1U3 i}N(O 16 O'g

ﬁU2U4 M,

).

Hence /n| g; gj | converges to a folded normal. Finally, nt/ 4@2) converges to the square root of the folded
normal random variable.
Case2:+, =0

In this case, Eh3(Z5, Z,) = 0 and hence g,(z) = 0, meaning that U, is a degenerate U-statistic. In the
mean time, g,(21, 2») is simplified to be 1/3Eh (21, Z3)Ehs3(23, Z4) + 1/3Eh1(z, Z3)Ehs3(21, Z4). Therefore,

12
nUn = ml i. g2(21,22)+0p(1).
<i<jsn

Define g5(z1, 22) = -1 As¢s(21)¢s(22), where

/ 82(21, 22)s(22)dH(z2) = Asps(z1).

RZ
By Theorem of Section 5.5.2 of Serfling (1980) [34],
nUn i} 62/\5(}(%5 - 1)9
s=1

where x3, (s=1,2,...) are independent x3 variables. Therefore,

VAT -2 6, |13 A - DI,
k=1

and hence
oo 2 _
N N 24\/ 2 Ay -1 .
g VA4S
This completes the proof. O
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