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Abstract: We define a multivariate medial correlation coefficient that extends the probabilistic interpretation
and properties of Blomqvist’s 8 coefficient, incorporates multivariate marginal dependencies and it preserves
a partial ordering stronger than concordance relation. We illustrate the results in some models and provide
an application on real datasets.

Keywords: Blomgvist 8, multivariate medial correlation, multivariate stochastic order

MSC: 62H20

1 Introduction

Let us consider that X = (X1, X>) is areal random vector, over the probability space (Q, A, P), with continuous
marginal distribution functions Fx,, i = 1, 2, and let (U1, U,) represent the corresponding uniformized vector,
that iS, Ui = FX,-(XI')! i= 1, 2.

The medial correlation coefficient of (X1, X,), which we will represent by B(X;, X,) or B(X), is defined by

gt = (1) (1= 1) 20) - (13- ) (1= ) o). 0

The B coefficient introduced by Blomgvist ([1]), has its value in [-1, 1] and compares the propensity for
the margins of (X1, X») to take both values above or both values below their respective medians, with the
propensity for the occurrence of the contrary event.

Since
B(X1, X)) =2 <P <U1 > % U, > %) +P (U1 < % U, < %)) 1, )
and
B(X1, X)) = 4P (U1 < % U, < %) 1, 3)

if Cx(uy, up) and Cx(u1, us), (u1, uz) € [0, 1%, represent the copula and the survival copula of X ( Nelsen
[8]), respectively, we can say that

ﬁ(Xl’X2)=2<CX (%’%> CX (%’%)) _1’ (4)
and
B(X1,X;) = 4Cx (% %) -1. (5)
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The bivariate medial correlation coefficient 8(X;, X;), which can also be denoted by 8 (Cx), enables to com-
pare Cx(u1, u) on Q. UQy = [0, 3] 2y 13.1] > with Cx(u1, uz) on [0, 1]2\(Q; U Qy) or to compare Cx(u1, u3)
onQ = [0, %]2 with Cx(u1, u») on [0, 1]?\ Q;.

The medial correlation coefficient can be related to other measures of global dependence in (X1, X;), or
in Cx, such as Spearman’s p or Kendall’s T ( Nelsen [8], Joe [3], Lebedev [6] and references therein).

Two bivariate vectors X and Y, or their copulas, can be partially ordered by punctually comparing their
copulas. We say that X is less concordant than Y, and we write for that X<.Y, if Cx(u1, u2) < Cy(uy, up),
(u1, uz) € [0, 112, or equivalent, if Cx(u1, us) < Cy(u1, uz), (ur, us) € [0, 1]2 (Nelsen [8]).

Thus, from the representations (4) or (5), we verify that

if X<cY then B(X) < B(Y). (6)

In addition to the increasing with concordance ordering, the bivariate medial correlation coefficient
satisfies other properties that shape the definition of measure of concordance according to Scarsini ([9]).

Considering the countermonotonicity, independence and comonotonicity copulas, respectively,
Cwlur, uz) = (ug +us — 1) v 0, Cplug, uz) = ugus and Cyuq, uz) = uy A ua, (Ug, uz) € [0, 11?, we have
Cw <c Cx <¢ Cy, B(Cw) = -1, B(Cyy) = 0, B(Cpr) = 1 and we can also represent B(X1, X;) by

waa(a() -l aG) o

For a random vector X = (X, ..., X;) with dimension d > 2, if we think about generalizing (1) to

d d
P <H (Ui - %) > 0) -P (H (Ul- - %) < 0) we definitely loose:

i=1 i=1
(i) interpretation as a measure of propensity for all margins to exceed their respective medians or all margins

to be below their medians, and
d

(i) information about the behaviour of Cx on Q; = HI]-, k=1,..,d-1,where]; = [0, %] forkord -k
j=1

values of jand I; = | %, 1] for the others.
On the other hand, any generalization of B in the multivariate context must preserve at least the property (i)
and also verify
(iii) B(Cr) = 0 and B(Cy) = 1.

The proposals of Nelsen ([7]), Ubeda-Flores ([13]) and Schmid and Schmidt ([10]) manage to keep (i) and
(iii) above.

Starting from the multivariate version of (5), 4CX(%, .oy 1) =1, rescaled by considering the quotient be-
tween its distance to the corresponding value for C; and the maximum value of that distance,

/ 4Cx (%,...,%)—1—(4(%)‘1—1)
B Xy, ..., Xy = : : N

4w (3, ) =1- (4(3)"-1) ©

200y (3,0 3) -1

B 201-1

we find Nelsen’s generalization ([7]).
Ubeda-Flores ([13]) proposes the extension of (4) in

2(Cx(3rees D)+ Cx (3 3)) - 1, )

also rescaled by considering the quotient between its distance to the corresponding value for C;; and the
maximum value of that distance. In this way, we obtain the following generalization of §, which we will
denote by " and where 1 represents the vector of suitable size and coordinates all equal to 1:
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2 (ex (
2(CM(

B (X1, Xa) =

9 eeey

Nl | N[

s 1)+ Cx (3 D)) -1 (5 - 1)
1 1 1
2 2

o 1)) 1= (- 1)

(10)

24 (ex(3)+Ex (3)) -1
- 2411 ’

which coincides with (8) when C = C.
Reasoning in an equivalent way about (7), Schmid and Schmidt ([10]) propose

2 (G(3)-Cn (3 &x()-En(h) 27 (G (1) x(3)
2 (Cu () ~Cn(3)+ Ew (3) - Cn (3)) 2011 ’

finding again the expression of Ubeda-Flores ([13]). In addition to this extension, Schmid and Schmidt ([10])
make a detailed study of a function resulting from a rescaling of Cx(u)+f,‘x(v), u,velo,1]9, putting emphasis
on the tail regions of the copula which determine the degree of large co-movements between the marginal
random variables.

In order to keep (i), (ii) and (iii), we have Joe’s sophisticated proposal ([4]) with an axiomatic on linear

combinations of Co, 01,0, X 3

and Caila,-z...a,-kx <%), 1<iy <..<ig<d k=[%],..,d, where g;X
denotes the j-th reflection of X, that is, the vector (X, X1, X, Xy o X ). Joe’s axiomatic definition
allows for various extensions of B, including those mentioned above and the arithmetic mean of S(X;, X ]-),
l<i<jsd.

The extensions referred for B increase with the multivariate concordance (Joe [5]). We say that X =
(X4, ..., Xy) is less concordant than Y = (Y4, ..., Y,;), or Cx is less concordant than Cy, and in this case we
write X <. Y, when we have

Cx(u) < CY(U) and C‘X(u) < éy(u), (11)

foru € [0, 1]d. In the case of d = 2 the two conditions are equivalent, as we have already mentioned.

The above proposed generalizations start from extensions of the representations of bivariate f in terms
of copulas, considering the corresponding multivariate copulas.
The proposal that we will make, in the next section, for a multivariate correlation coefficient S(X) starts from
a generalization of the probabilistic interpretation of the definition (1) and satisfies almost all the desirable
properties for a multivariate concordance measure (Taylor [11],[12]). It preserves a multivariate partial order
relation that we introduce in section 4. We present several representations for f(X), we demonstrate the main
properties, relate it to the previously mentioned coefficients and illustrate with examples and applications.

2 Motivation for the multivariate medial correlation coefficient

Ford = 2,D = {1,...,d},I c D,X = (Xy,...,X,) with continuous marginal distributions and U =
(Ul, ceey Ud) = (FXl(Xl), ---’FXd(Xd))’ we define

M(D =\/U; and W(D) = \ U;, (12)
iel iel
where v and A are the notations for the maximum and minimum operators, respectively.
When further clarification is needed, we write My (I) and Wx(I). Inequalities between vectors are under-
stood by corresponding inequalities between homologous coordinates. By X; we understand the subvector
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of X with margins in I and P(D) represents the family of subsets of D. When |I| = 1, where |A| denotes the
cardinality of A, we consider Cx, (1) = Cx, (3) = 1.

Let’s fix disjoint I and J in P(D). The propensity for margins of X; and margins of X; simultaneously taking
values below the respective medians or simultaneously values above the respective medians is evaluated by
Cx,,,(3) + Cx, ,(3), that is, the probability of Uy ; taking values in [0, 3] Iy 13.1] 1 1f we want to
compare this probability with the probability of Uy ; taking values in [0, 1]/"Y/] '\ ([O, 1] MUl U3, Moy ‘)
we can do it briefly by calculating the coefficients

B (M), M())) :=
i~ P((MM)- 1) (MO)- 1) > 0) - P (MO - 3) (MO) - 1) <O) ®)
= 2(PM(D) >3, M()>3)+PMI) <3, MO <3))-1
and
BW(ID), W())) :=
1 1 (14)
= P((WW)-3) (WQ)-3)>0)-P((W(U)- )(WU)—7)<0)
= 2(p (W(I)>1,W(])>1)+P(W(1)< 1,W(])< 3)) - 1.
Let us make some comments about
BM(D, M() + BW (), W())) (15)

B1;X) := 3

(i) The expressions (13), (14) and (15) have B(X;, X;) as a particular case, if we take I = {i} and J = {j}.
IfI = D, ] = 0 and we consider that M(§) = —oo and W(() = +oo, then (15) is equal to Cx (3) + Cx (3)-1,
which can be rescaled in order to obtain the proposal of Ubeda-Flores ([13]) and Schmid and Schmidt ([10]).

(ii) Despite the random variables M(I) and W(I), I C D, may fail to be uniformly distributed and therefore
their medians may fail to be equal 1/2, we can say from (13) and (14) that the value of f; ;(X) encompasses
the behavior of all the margins of X; and all the margins of X; in relation to their medians, indicating a mul-
tivariate medial information about X.

(iii) Since S5 ;(X) is defined as an average of bivariate coefficients, it can be estimated by the methods
available for the bivariate context (Blomqvist [1], Schmid and Schmidt [10] and references therein).

(iv) If Cx = Cjy we have B ;(X) = 1 and if Cx = Cp then ; ;(X) = 227 1I=U1 2111 51l 4 1 = (21-111 -
1)(21VI - 1). This value becomes null if and only if |I| = 1 or |J| = 1.

(v) A linear combination of 8 (i1, {j}(X), 1 < i < j < d, takes into account the bivariate dependencies in X,
but if we consider some function of the coefficients f; ;(X), with I, ] € &, for some family ¥ C P(D) containing
sets with more than one element, then we will be incorporating multivariate marginal dependencies.

The definition we propose, in the next section, for a multivariate medial correlation coefficient, will be

based on the bivariate coefficients B} p\(;1(X), 1 < i < d, incorporating the dependency between each mar-
gin X; and Xp\(;y, 1 <i<d.
Our proposal contains, as a particular case, the Blomqvist bivariate coefficient, extends the probabilistic in-
terpretation (1), takes values in [-1, 1], becoming null naturally when Cx = Cj and taking the maximum
value when Cx = Cjs. The rest of the properties we proved allow us to consider it a measure for a multivariate
concordance relation stronger than concordance order.

3 A multivariate medial correlation coefficient

We will propose to evaluate the multivariate medial correlation by comparing the propensity for all margins
of X simultaneously taking values below the respective medians or all margins to exceed their respective
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medians with the propensity of each margin X; to contradicts this behavior. That is, we will take into account
the coefficients §; ; with the particular choice of I = {i} andJ =D\ {i},i=1,...,d.

Definition 3.1. The multivariate medial correlation coefficient of the vector X with dimension d, or of its copula
Cx, is defined as

d
BX) = % > Biiy.oviy X), (16)
i1

where

U;, M(D \ {i U, WD\ {i
ﬁ{i},p\{i}(X)=B( ( \{l}));—é( ( \{l})), i=1,..,d. (17)

We remark that, from comment (i), it can be concluded that S(X) coincides with the Blomqvist coefficient
when d = 2.

Below we present some representations of B(X) that will be useful to clarify their properties and interpre-
tation.

The following

Biiy.oviy®) = 2(P (Ui < 3, M(D\{i}) < 3) + P (Ui > 3, W(D\{i}) > }))
; 1 : 1 (18)
-P (M (D \ {1}) < j) -P(Ww (D \ {1}) > j) s
holds, generalizing (2). We also have
ﬁ{i},D\{i}(X) =2 (CX (%) + CX (%)) - CXD\{i} (%) - CXD\{i} (%) ’ (19)
generalizing (4). From the previous relation, it follows that
Biiy.oviyX) = Cx (3) + Cx (3) - Coix (3) - Cox (3) » (20)

where 0;X is the i-th reflection of X, that is, 0;X = (X3, ...., Xj_1, -Xi, Xi+1, ..., X4) and therefore Cgix(%) =
Clwy,. Uy 1=Us Uiy U d)(%). We then obtain the following ways of representing the coefficient f.

Proposition 3.1. The multivariate medial correlation coefficient of the vector X with dimension d, admits the
following representations:

BX)= 2(P(U

< 2
d
1 1 1 (1)
_HZ (P <UD\{1} < i + P (UD\{I} > i)) s
1\ . /(1 13 1\ 1
po0=2(ex(3) +x(2)) -3 2 (Gxo (3) *mour (3)): 2
i=1

B(X) = Cx (%) +Cx (%) - é i (Ca,-x (%) + Cox (

)) 23)
The relation (23) rewritten in the form

p00- 3 (ex () -cox () v (3) -2 (3)) a0

reinforces the idea that S(X) compares the propensity of each margin X; to agree with the remaining mar-
gins together, Xp, ;,, and the propensity to disagree with them, when they are all above or all below their
respective medians.
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The above representations for f show that by considering 8 as a mapping on copulas it is linear with respect
to convex combinations.

In the following, we establish relationships between B(X) and the generalizations referred to in the in-
troduction. By applying the definition (10) of 8”, we conclude from the representation (23) that

Q- X +1 1= QU -1DE(0X) + 1
poy = G L Ly GO D oK)+

@¢1-1) 1 d: )
BT = (ﬁ X) - az sz)> .
d
By defining N = Z 1{y,»1}- the representation (23) of 5 leads to
i=1
B(X)=P(N =0)+P(N =d)- (P(N 1)+P(N=d-1)). (26)
That fits Joe’s representation (3.1.1) ([4]) with wg = 1, wy_4 = —7 and the remaining weights w; equal to zero.

Note that in the 3-dimensional case, the multivariate medlal correlation coefficient § satisfies

BX1, Xo) + B(X1, X3) + B(X5, X3)
3 .

BOO - $x (3) +$0x (3) - = B0 -
Thus, in the 3-dimensional case  equals 8” and hence allows a different view on Blomqvist’s § discussed in
Ubeda-Flores ([13]).

We refer the properties of 8(X) in the next section and end this one with three examples.

Example 3.1. Consider Cx(u, ..., us) = (u‘f A uz) ui-® (u§ Aug) ui™® with0 < 8, a < 1, that is, Cx is the
product of two Marshall-Olkin survival copulas ([5]). It holds that

4-6-a
1 - 1 1
a(3)-a()-G)
3-a
1y _¢ 1 1\ _; 1 1
o (i> " oy (i) ™ O (i) = Gy <i) ) (5) ’
3-6
1) _¢ 1 1\ _» 1 1
G (3) =000 (3) = G (3) =B (3) - ()

B(X) _ 25+tx—2 _ 23 _ 26—3.

Therefore,

Inthe case of 6 = a = O the result agrees with what we expect, since in this case the margins of X are independent.
The expression obtained can be related to B(X1, X>) and B(X3, X,) through

ﬁ(X) =2 x 25+zx—3 _pa3 _ 26—3 _ (25+a—3 _ 20(—3) + (26+a—3 _ 25—3)
=207 (20-1) + 27 (2%-1)
= 293 B(X1, X,) + 2°3B(X3, X4),

We verify that B(X) increases with 6 and a, generalizing what we already knew to B(Xy, X,) and B(Xs3, X,).
Therefore B(X) increases with the concordance of X.
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Example 3.2. Let us consider that X has a Gumbel copula

J 5
Cx(ui, ..., ug) =exp< — (Z (-In ui)1/5> , 27)

i=1

with 0 < § < 1. For d = 3 we obtain B(X) = 222" _ 1, coincident with B(X:, X;), 1 i< j <3, as expected, since
in this case B(X) = 8" (X).
With simple calculations we can also conclude that

222

B(-X1,X,5,X3) = 3

and that
BX1, X2, X3) + B(- X1,X2,X3)— ﬁ(Xz,X3)

which corresponds to the verification in this example of a transition property that we present in the next section.
Before we present the general expression of the multivariate correlation coefficient for a Gumbel distribution of
dimension d = 1, let’s also calculate it specifically for d = 4.

We have
Cx(3) =27, Cx(3) =-1+6x277 —4x27 427",
and
Cpgy (3) =27, Cxypy (3) =3%x22 =227, fori=1,2,3,4.
Then
BX1, X2, X3,X4) =4 x 274 _8x23 19x2? %

These results for d = 2, 3, 4, calculated directly, can also be obtained from the following general result.
If d is even, we have

d-2

- 1;d +Z((d';1) (m))( Dketg=e)’ gy p=d” | (_qyd-1p-(d-1)"

k=1

(considering that a sum with the initial value of the counter greater than the final one is null) and if d is odd, we

have
d-2

g0 159 S () () capnron e

k=1

Example 3.3. Consider X of dimension d = 3 such thatU = (U,1 - U, Us, ..., U,). Then

BX)

2x(0+0)

1 1) .2 C !
-3 (CXD\{I} (§> + Cxpy 1y ( ) + Cxp\ <§) + Oy <§) +O)
1 1
- d oy (2] * Cxogy * CXD\{U " CXD\{Z} 2
1 1)~ 1
o))

It follows that, in this example we have B(X) > - and if, in particular (Us, ..., Ug) = (V, ..., V), then B(X) = - 1.

Uy
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4 Properties of the multivariate medial correlation coefficient

Since the coefficients B;y py {i}(X), i=1,...,d, take values in [-1, 1], the proposed coefficient takes values
in the same range, being null for Cx = Cp;. The maximum value is attainable when Cx = Cy; = 1.

The value of 8(X) may not increase with the concordance of X. We can verify this with an example pro-
posed by an anonymous referee.

Consider X and Y 4-dimensional vetors with copulas, respectively,

Cx (u1, uz, u3, ug) = Cy(u, u2)Cr(us, us)
and
Cy (u1, uz, uz, ug) = Cy(uq, u2)Cylus, ug).

We have X<,Y and however B(X) = -3 > -4 = B(Y).

If X<.Y and, foreachi € D,

Cox (3)

JoX 28
CUiX (%) ’ ( )

IN A

CU:'Y (%)

{ Cov (3)

then, from proposition 3.1, (23), we can conclude that (X) < B(Y).

The verification of condition (28) together with X<.Y, which can be illustrated with example 3.2, tells
us that, in addition to the propensity for all margins to exceed their respective medians or all margins to be
below their medians to be higher in Y, also the propensity for each margin to disagree with the remaining, in
this sense, is lower in Y, reinforcing the relation X~<.Y.

When we have X< Y and (28) we denote this type of relation by X<<Y.

The relation << is a point-wise partial ordering on the set of d-dimensional copulas that implies the
concordance relation. For d = 2 both relations coincide. If Cy = Cy then we have X<Y, Csy ( %) =0 <
Cox (3) and Cpy (3) = 0 < Cox (3). Therefore Cy is the maximal copula.

In particular copula classes, the relation << can induce a total order, as for example in the family of 3-
dimensional copulas of example 3.2. In this class we can also see, from (27), that Cj; is the least element
and << is a well order.

A weaker relation, although not so informative, could be considered in this work by replacing (28) with

5 e (2) o (3) 5 e () 0 (2)

The above properties on the values of the multivariate medial correlation coefficient are arranged in the
following proposition.

Proposition 4.1. The values of the multivariate medial correlation coefficient for vectors of dimension d
satisfy the following properties:

(D) If X< <Y then B(X) < B(Y).

i) pX) € [-1, 1].

(iii) If Cx = Cp then B(X) = 0.

(iv) If Cx = Cp then B(X) = 1.

Proof. Representation (23) leads to (i) and representation (21) leads to (ii).
Relations (iii) and (iv) may be obtained, for example, from (24). O
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In the proposition below we present the properties of continuity, permutation invariance, duality, reflection
symmetry and transition, which together with (i)-(iii) of the previous proposition and following Taylor [11],
[12], justifies calling the proposed coefficient a measure for the relation <<.

Proposition 4.2. The values of the multivariate medial correlation coefficient for vectors of dimension d
satisfy the following properties:
() If {Cx, }n>1 converges uniformly to Cx, n — +oo, then lim B(Xyn) = B(X).
n—+oo

(ii) The value of B(X) is invariant for permutations of the margins of X.
(iit) B(X) = B(-X).
(iv) Z Ble1X1,...,e4X4) = 0.

(6’1 ..... Ed)e{—l,l}d
v) If Y is a (d + 1)-dimensional random vector such that Cy(Ui,...,Ui_1, 1, Ujs1s .o Ug) =

Cx(Upy ooy Uj1, Ujpqs ..., Ug) then %B(X) = B(Y) + B(0;Y).

Proof. The statement of (i) can be obtained, for example, from (22). From the representation (26) we can
conclude (ii). The representation (23) leads to (iii) and (iv). Finally to obtain (v), let us note that, by (23), we
have

B(Y) + B(0;Y)

d+1
1 1 1\ - 1\ - 1
A+l e (C“"Y (5) * Caox (5> *Cat (5) * Copox (5>>
J=1,j#1
1 1 - 1

that matches % B(X), applying again (23). O

5 Application to real data

The multivariate medial correlation coefficient in (16) can be estimated through the bivariate coefficients in
(17). Here we consider the respective empirical counterparts. This estimation procedure has already been
addressed in literature (Blomqvist [1], Schmid and Schmidt [10] and references therein).

Let (X1, ..., X4),j = 1, ..., n, be arandom sample generated from (X1, ..., X4). Consider

n
~ N 1 . .
Uij=Fx(Xij) = ——5 ?1 Lix,ex)r 1= Loond, j=1,.0,m,
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aswellas, M; (D \ {i}) = Vyenviy U,;and W; (D \ {i}) = Nren\iiy U, ;. Based on (16) we define
A 1 d
S PILIENUE (29)
i=1

where, according to (17), we take

) B (0t (D\1i})) +B (0s W (D\ (i)
Briy.oviy = 2 ,
with
B (0s 81 (D\ (1))
1 n
- HZ( (021723 L o\(ip<1/2} +]l{fl,-,,->1/2}]l{Mj(D\{i})>1/2}) 1
j=1
and
E( W(D\{z}))
1
EZ( (O=123 Lo\ ips1/2) +“{ffi,;n/z}ﬂ{wf(n\{i}wz}) L.

j=1

We are going to apply the multivariate medial correlation coefficient estimator B in (29) on two datasets.

First, we consider the main GDP aggregates per capita in the European Union (EU), Germany and Portu-
gal, available in https://ec.europa.eu/eurostat/data/database. We consider annual data from 2008 to 2019.
The respective scatterplots are in Figure 1. Germany and EU seem the most correlated. The estimates of the
bivariate coefficients B;, p\(;; and of the multivariate medial correlation coefficient  are in Table 1. The
propensity of each country’s annual GNP to agree with the remaining when compared to the propensity to
disagree with them, in the sense of being all above or all below their respective medians, is estimated at
0.778. We can see that the bivariate medial correlation between Portugal and the remaining EU and Germany
presents the lowest contribution to the estimated multivariate medial correlation.

Germany
22000
1

20000
1

o

o

%o

24000
|
%o
o

T
18000

T
19000

T
20000

T
21000

Portugal

16500 17500

15500

%o

18000

19000

20000

21000

Portugal

16500 17500

15500

T T T T T T
20000 21000 22000 23000 24000 25000

Germany

Figure 1: Annual main GDP aggregates per capita in the European Union versus Germany (left), European Union versus Portugal
(center) and Germany versus Portugal (right).

Now we consider a dataset related to white variants of the Portuguese “Vinho Verde" wine, available
in http://archive.ics.uci.edu/ml/datasets/Wine+Quality. See also Cortez et al. ([2]). Our analysis focuses on
variables residual sugar, total sulfur dioxide, density and alcohol, whose respective scatterplots are plotted
in Figure 2. It is visible some negative association with variable alcohol. The estimates of the bivariate coef-
ficients By;y p\(iy and of the multivariate medial correlation coefficient f (Table 2) reflect this lack of concor-
dance, with a larger negative bivariate coefficient between alcohol and the remaining variables. Indeed, the
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Table 1: Estimates of the bivariate coefficients ;3 p\(;; and of the multivariate medial correlation coefficient 8 of the annual
main GDP aggregates per capita in the European Union, Germany and Portugal, from 2008 to 2019.

{i} ‘ D\ {i} ‘ﬁ{i},D\{i} ‘ B

{EU} {Germany, Portugal} 0.833
{Germany} {EU, Portugal} 0.833 0.778
{Portugal} {EU, Germany} 0.667

propensity for all variables simultaneously taking values below the respective medians or all of them to ex-
ceed their respective medians in comparison with the propensity of each variable to contradict this behavior
is estimated at —0.063, i.e., an almost null multivariate medial correlation coefficient.
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Figure 2: Scatterplots of the variables within the wine dataset: residual sugar versus density (top-left), residual sugar versus
alcohol (top-center) and density versus alcohol (top-right); density versus total sulfur dioxide (bottom-left), residual sugar
versus total sulfur dioxide (bottom-center) and total sulfur dioxide versus alcohol (bottom-right).

Table 2: Estimates of the bivariate coefficients By p\;3 and of the multivariate medial correlation coefficient § for the vari-
ables residual sugar, total sulfur dioxide, density and alcohol within the wine dataset.

{i} | D\ {i} | B | B
{residual sugar} {total sulfur dioxide, density, alcohol} 0.088 -0.063
{total sulfur dioxide} {residual sugar, density, alcohol} 0.027
{density} {residual sugar, total sulfur dioxide, alcohol} 0.046

{alcohol} {residual sugar, total sulfur dioxide, density} | -0.415
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6 Conclusion

The multivariate medial correlation coefficient that we propose extends the probabilistic interpretation and
properties of the Blomqvist 8 coefficient, it is calculable from the copula, incorporates the dependence be-
tween each margin of the vector and the vector of the remaining margins and is a measure of a strong mode
of multivariate concordance.

The estimation is addressed based on bivariate inferential methodology existing in literature and we
illustrate its application using real data.

The adopted approach envisages the possibility of considering other functions of bivariate coefficients
involving extremes of subvectors of X, as well as the possibility of adapting the method to generalize other
coefficients of bivariate dependence.

Acknowledgements: The authors thank the reviewers and the associated editor for the very important and
valuable comments and corrections that contributed to the improvement of this work.

The first author was partially supported by the research unit Centre of Mathematics and Applications of
University of Beira Interior UIDB/00212/2020 - FCT (Fundacdo para a Ciéncia e a Tecnologia). The sec-
ond author was financed by Portuguese Funds through FCT - Fundacdo para a Ciéncia e a Tecnologia
within the Projects UIDB/00013/2020 and UIDP/00013/2020 of Centre of Mathematics of the University of
Minho, UIDB/00006/2020 of Centre of Statistics and its Applications of University of Lishon and PTDC/MAT-
STA/28243/2017.

References

[1] Blomqvist, N. (1950). On a measure of dependence between two random variables. Ann. Math. Statist. 21(4), 593-600.

[2] Cortez, P, A. Cerdeira, F. Almeida, T. Matos and ).Reis (2009). Modeling wine preferences by data mining from physicochem-
ical properties. Decis. Support Syst. 47(4), 547-553.

[3] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

[4] Joe, H.(1990). Multivariate Concordance. J. Multivariate Anal. 35(1), 12-30.

[5] Joe, H. (2015). Dependence Modeling with Copulas. CRC Press, Boca Raton FL.

[6] Lebedev, A.V. (2019). On the Interrelation between dependence coefficients of bivariate extreme value copulas. Markov
Process. Relat. 25(4), 639-648.

[7]1 Nelsen, R.B. (2002). Concordance and Copulas: A Survey. In C.M. Cuadras, Fortiana J., Rodriguez-Lallena J.A. (Eds.) Distri-
butions With Given Marginals and Statistical Modelling, pp 169-177. Springer, Dordrecht.

[8] Nelsen, R.B. (2006). An Introduction to Copulas. Second edition. Springer, New York.

[9] Scarsini, M. (1984). On Measures of Concordance. Stochastica 8(3), 201-218.

[10] Schmid, F. and R. Schmidt (2007). Nonparametric inference on multivariate versions of Blomqvist’s beta and related mea-
sures of tail dependence. Metrika 66(3), 323-354.

[11] Taylor, M. D. (2007). Multivariate measures of concordance. Ann. Inst. Statist. Math. 59(4), 789-806.

[12] Taylor, M. D. (2016). Multivariate measures of concordance for copulas and their marginals. Depend. Model. 4, 224-236

[13] Ubeda-Flores, M. (2005) Multivariate versions of Blomqvist’s beta and Spearman’s footrule. Ann. Inst. Statist. Math. 57(4),
781-788.



	1 Introduction
	2 Motivation for the multivariate medial correlation coefficient
	3 A multivariate medial correlation coefficient
	4 Properties of the multivariate medial correlation coefficient
	5 Application to real data
	6 Conclusion

