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Abstract:We de�ne a multivariate medial correlation coe�cient that extends the probabilistic interpretation
and properties of Blomqvist’s β coe�cient, incorporatesmultivariatemarginal dependencies and it preserves
a partial ordering stronger than concordance relation. We illustrate the results in some models and provide
an application on real datasets.
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1 Introduction
Let us consider thatX = (X1, X2) is a real randomvector, over the probability space (Ω,A, P), with continuous
marginal distribution functions FXi , i = 1, 2, and let (U1, U2) represent the correspondinguniformized vector,
that is, Ui = FXi (Xi), i = 1, 2.

The medial correlation coe�cient of (X1, X2), which we will represent by β(X1, X2) or β(X), is de�ned by

β(X1, X2) = P
((

U1 −
1
2

)(
U2 −

1
2

)
> 0
)
− P
((

U1 −
1
2

)(
U2 −

1
2

)
< 0
)
. (1)

The β coe�cient introduced by Blomqvist ([1]), has its value in [−1, 1] and compares the propensity for
the margins of (X1, X2) to take both values above or both values below their respective medians, with the
propensity for the occurrence of the contrary event.

Since

β(X1, X2) = 2
(
P
(
U1 > 1

2 , U2 > 1
2

)
+ P
(
U1 < 1

2 , U2 < 1
2

))
− 1, (2)

and

β(X1, X2) = 4P
(
U1 < 1

2 , U2 < 1
2

)
− 1, (3)

if CX(u1, u2) and ĈX(u1, u2), (u1, u2) ∈ [0, 1]2, represent the copula and the survival copula of X ( Nelsen
[8]), respectively, we can say that

β(X1, X2) = 2
(
CX
(

1
2 ,

1
2

)
+ ĈX

(
1
2 ,

1
2

))
− 1, (4)

and

β(X1, X2) = 4CX
(

1
2 ,

1
2

)
− 1. (5)
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The bivariate medial correlation coe�cient β(X1, X2), which can also be denoted by β (CX), enables to com-
pare CX(u1, u2) onQL∪QU =

[
0, 1

2
]2 ∪

]1
2 , 1

]2 with CX(u1, u2) on [0, 1]2\(QL ∪ QU) or to compare CX(u1, u2)
on QL =

[
0, 1

2
]2 with CX(u1, u2) on [0, 1]2 \ QL.

The medial correlation coe�cient can be related to other measures of global dependence in (X1, X2), or
in CX, such as Spearman’s ρ or Kendall’s τ ( Nelsen [8], Joe [3], Lebedev [6] and references therein).

Two bivariate vectors X and Y, or their copulas, can be partially ordered by punctually comparing their
copulas. We say that X is less concordant than Y, and we write for that X≺cY, if CX(u1, u2) ≤ CY(u1, u2),
(u1, u2) ∈ [0, 1]2, or equivalent, if ĈX(u1, u2) ≤ ĈY(u1, u2), (u1, u2) ∈ [0, 1]2 (Nelsen [8]).

Thus, from the representations (4) or (5), we verify that

if X≺cY then β(X) ≤ β(Y). (6)

In addition to the increasing with concordance ordering, the bivariate medial correlation coe�cient β
satis�es other properties that shape the de�nition of measure of concordance according to Scarsini ([9]).

Considering the countermonotonicity, independence and comonotonicity copulas, respectively,
CW (u1, u2) = (u1 + u2 − 1) ∨ 0, CΠ(u1, u2) = u1u2 and CM(u1, u2) = u1 ∧ u2, (u1, u2) ∈ [0, 1]2, we have
CW ≺c CX ≺c CM, β(CW ) = −1, β(CΠ) = 0, β(CM) = 1 and we can also represent β(X1, X2) by

β(X1, X2) = 2
(
CX
(

1
2 ,

1
2

)
− CΠ

(
1
2 ,

1
2

)
+ ĈX

(
1
2 ,

1
2

)
− ĈΠ

(
1
2 ,

1
2

))
. (7)

For a random vector X = (X1, ..., Xd) with dimension d > 2, if we think about generalizing (1) to

P
( d∏
i=1

(
Ui −

1
2

)
> 0
)
− P
( d∏
i=1

(
Ui −

1
2

)
< 0
)

we de�nitely loose:

(i) interpretation as a measure of propensity for all margins to exceed their respective medians or all margins
to be below their medians, and

(ii) information about the behaviour of CX on Qk =
d∏
j=1
Ij, k = 1, ..., d − 1, where Ij =

[
0, 1

2
]
for k or d − k

values of j and Ij =
]1

2 , 1
]
for the others.

On the other hand, any generalization of β in the multivariate context must preserve at least the property (i)
and also verify
(iii) β(CΠ) = 0 and β(CM) = 1.

The proposals of Nelsen ([7]), Úbeda-Flores ([13]) and Schmid and Schmidt ([10]) manage to keep (i) and
(iii) above.

Starting from the multivariate version of (5), 4CX( 1
2 , ...,

1
2 ) − 1, rescaled by considering the quotient be-

tween its distance to the corresponding value for CΠ and the maximum value of that distance,

β′(X1, ..., Xd) =
4CX

(1
2 , ...,

1
2
)
− 1 −

(
4
(1

2
)d − 1

)
4CM

(1
2 , ...,

1
2
)
− 1 −

(
4
(1

2
)d − 1

)

=
2dCX

(1
2 , ...,

1
2
)
− 1

2d−1 − 1
,

(8)

we �nd Nelsen’s generalization ([7]).
Úbeda-Flores ([13]) proposes the extension of (4) in

2
(
CX
(1

2 , ...,
1
2
)

+ ĈX
(1

2 , ...,
1
2
))
− 1, (9)

also rescaled by considering the quotient between its distance to the corresponding value for CΠ and the
maximum value of that distance. In this way, we obtain the following generalization of β, which we will
denote by β* and where 1

2 represents the vector of suitable size and coordinates all equal to 1
2 :
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β*(X1, ..., Xd) =
2
(
CX
(1

2 , ...,
1
2
)

+ ĈX
(1

2 , ...,
1
2
))
− 1 −

( 1
2d−2 − 1

)
2
(
CM
(1

2 , ...,
1
2
)

+ ĈM
(1

2 , ...,
1
2
))
− 1 −

( 1
2d−2 − 1

)

=
2d−1

(
CX
(1
2
)

+ ĈX
(1
2
))
− 1

2d−1 − 1
,

(10)

which coincides with (8) when C = Ĉ.
Reasoning in an equivalent way about (7), Schmid and Schmidt ([10]) propose

2
(
CX
(1
2
)
− CΠ

(1
2
)

+ ĈX
(1
2
)
− ĈΠ

(1
2
))

2
(
CM
(1
2
)
− CΠ

(1
2
)

+ ĈM
(1
2
)
− ĈΠ

(1
2
)) =

2d−1
(
CX
(1
2
)

+ ĈX
(1
2
))
− 1

2d−1 − 1
,

�nding again the expression of Úbeda-Flores ([13]). In addition to this extension, Schmid and Schmidt ([10])
make adetailed studyof a function resulting froma rescaling of CX(u)+ĈX(v),u, v ∈ [0, 1]d, putting emphasis
on the tail regions of the copula which determine the degree of large co-movements between the marginal
random variables.

In order to keep (i), (ii) and (iii), we have Joe’s sophisticated proposal ([4]) with an axiomatic on linear

combinations of Cσi1 σi2 ...σikX
(
1
2

)
and Ĉσi1 σi2 ...σikX

(
1
2

)
, 1 ≤ i1 < ... < iK ≤ d, k = [ d+1

2 ], ..., d, where σjX

denotes the j-th re�ection of X, that is, the vector (X1, ...Xj−1, −Xj , Xj+1, ..., Xd). Joe’s axiomatic de�nition
allows for various extensions of β, including those mentioned above and the arithmetic mean of β(Xi , Xj),
1 ≤ i < j ≤ d.

The extensions referred for β increase with the multivariate concordance (Joe [5]). We say that X =
(X1, ..., Xd) is less concordant than Y = (Y1, ..., Yd), or CX is less concordant than CY, and in this case we
write X ≺c Y, when we have

CX(u) ≤ CY(u) and ĈX(u) ≤ ĈY(u), (11)

for u ∈ [0, 1]d. In the case of d = 2 the two conditions are equivalent, as we have already mentioned.

The above proposed generalizations start from extensions of the representations of bivariate β in terms
of copulas, considering the corresponding multivariate copulas.
The proposal that we will make, in the next section, for a multivariate correlation coe�cient β(X) starts from
a generalization of the probabilistic interpretation of the de�nition (1) and satis�es almost all the desirable
properties for a multivariate concordance measure (Taylor [11],[12]). It preserves a multivariate partial order
relation that we introduce in section 4.We present several representations for β(X), we demonstrate themain
properties, relate it to the previously mentioned coe�cients and illustrate with examples and applications.

2 Motivation for the multivariate medial correlation coe�cient
For d ≥ 2, D = {1, ..., d}, I ⊂ D, X = (X1, ..., Xd) with continuous marginal distributions and U =
(U1, ..., Ud) =

(
FX1 (X1), ..., FXd (Xd)

)
, we de�ne

M(I) =
∨
i∈I
Ui and W(I) =

∧
i∈I
Ui , (12)

where ∨ and ∧ are the notations for the maximum and minimum operators, respectively.
When further clari�cation is needed, we writeMX(I) andWX(I). Inequalities between vectors are under-

stood by corresponding inequalities between homologous coordinates. By XI we understand the subvector
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of X with margins in I and P(D) represents the family of subsets of D. When |I| = 1, where |A| denotes the
cardinality of A, we consider CXI

(1
2
)

= ĈXI
(1
2
)

= 1
2 .

Let’s �x disjoint I and J inP(D). The propensity formargins ofXI andmargins ofXJ simultaneously taking
values below the respective medians or simultaneously values above the respective medians is evaluated by
CXI∪J (12 ) + ĈXI∪J (12 ), that is, the probability of UI∪J taking values in

[
0, 1

2
]|I∪J| ∪ ]1

2 , 1
]|I∪J|. If we want to

compare this probability with the probability of UI∪J taking values in [0, 1]|I∪J| \
([

0, 1
2
]|I∪J| ∪ ]1

2 , 1
]|I∪J|),

we can do it brie�y by calculating the coe�cients

β
(
M(I),M(J)

)
:=

:= P
((
M(I) − 1

2
) (
M(J) − 1

2
)
> 0
)
− P
((
M(I) − 1

2
) (
M(J) − 1

2
)
< 0
)

= 2
(
P
(
M(I) > 1

2 ,M(J) > 1
2
)

+ P
(
M(I) < 1

2 ,M(J) < 1
2
))
− 1

(13)

and
β(W(I),W(J)) :=

:= P
((
W(I) − 1

2
) (
W(J) − 1

2
)
> 0
)
− P
((
W(I) − 1

2
) (
W(J) − 1

2
)
< 0
)

= 2
(
P
(
W(I) > 1

2 ,W(J) > 1
2
)

+ P
(
W(I) < 1

2 ,W(J) < 1
2
))
− 1.

(14)

Let us make some comments about

βI,J(X) :=
β(M(I),M(J)) + β(W(I),W(J))

2 . (15)

(i) The expressions (13), (14) and (15) have β(Xi , Xj) as a particular case, if we take I = {i} and J = {j}.
If I = D, J = ∅ and we consider that M(∅) = −∞ and W(∅) = +∞, then (15) is equal to CX

(1
2
)

+ ĈX
(1
2
)
− 1,

which can be rescaled in order to obtain the proposal of Úbeda-Flores ([13]) and Schmid and Schmidt ([10]).
(ii) Despite the random variablesM(I) andW(I), I ⊂ D, may fail to be uniformly distributed and therefore

their medians may fail to be equal 1/2, we can say from (13) and (14) that the value of βI,J(X) encompasses
the behavior of all the margins of XI and all the margins of XJ in relation to their medians, indicating a mul-
tivariate medial information about X.

(iii) Since βI,J(X) is de�ned as an average of bivariate coe�cients, it can be estimated by the methods
available for the bivariate context (Blomqvist [1], Schmid and Schmidt [10] and references therein).

(iv) If CX = CM we have βI,J(X) = 1 and if CX = CΠ then βI,J(X) = 22−|I|−|J| − 21−|I| − 21−|J| + 1 = (21−|I| −
1)(21−|J| − 1). This value becomes null if and only if |I| = 1 or |J| = 1.

(v) A linear combination of β{i},{j}(X), 1 ≤ i < j ≤ d, takes into account the bivariate dependencies in X,
but if we consider some function of the coe�cients βI,J(X), with I, J ∈ F, for some familyF ⊂ P(D) containing
sets with more than one element, then we will be incorporating multivariate marginal dependencies.

The de�nition we propose, in the next section, for a multivariate medial correlation coe�cient, will be
based on the bivariate coe�cients β{i},D\{i}(X), 1 ≤ i ≤ d, incorporating the dependency between each mar-
gin Xi and XD\{i}, 1 ≤ i ≤ d.
Our proposal contains, as a particular case, the Blomqvist bivariate coe�cient, extends the probabilistic in-
terpretation (1), takes values in [−1, 1], becoming null naturally when CX = CΠ and taking the maximum
value when CX = CM. The rest of the properties we proved allow us to consider it a measure for a multivariate
concordance relation stronger than concordance order.

3 A multivariate medial correlation coe�cient
We will propose to evaluate the multivariate medial correlation by comparing the propensity for all margins
of X simultaneously taking values below the respective medians or all margins to exceed their respective
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medians with the propensity of eachmargin Xi to contradicts this behavior. That is, we will take into account
the coe�cients βI,J with the particular choice of I = {i} and J = D \ {i}, i = 1, ..., d.

De�nition 3.1. Themultivariate medial correlation coe�cient of the vectorXwith dimension d, or of its copula
CX, is de�ned as

β(X) = 1
d

d∑
i=1

β{i},D\{i}(X), (16)

where

β{i},D\{i}(X) =
β
(
Ui ,M(D \ {i})

)
+ β
(
Ui ,W(D \ {i})

)
2 , i = 1, ..., d. (17)

We remark that, from comment (i), it can be concluded that β(X) coincides with the Blomqvist coe�cient
when d = 2.

Belowwe present some representations of β(X) that will be useful to clarify their properties and interpre-
tation.

The following

β{i},D\{i}(X) = 2
(
P
(
Ui < 1

2 ,M
(
D \ {i}

)
< 1

2
)

+ P
(
Ui > 1

2 ,W
(
D \ {i}

)
> 1

2
))

−P
(
M
(
D \ {i}

)
< 1

2 ) − P(W
(
D \ {i}

)
> 1

2
)
,

(18)

holds, generalizing (2). We also have

β{i},D\{i}(X) = 2
(
CX
(1
2
)

+ ĈX
(1
2
))
− CXD\{i}

(1
2
)
− ĈXD\{i}

(1
2
)
, (19)

generalizing (4). From the previous relation, it follows that

β{i},D\{i}(X) = CX
(1
2
)

+ ĈX
(1
2
)
− CσiX

(1
2
)
− ĈσiX

(1
2
)
, (20)

where σiX is the i-th re�ection of X, that is, σiX = (X1, ...., Xi−1, −Xi , Xi+1, ..., Xd) and therefore CσiX(12 ) =
C(U1 ,...,Ui−1 ,1−Ui ,Ui+1 ,....,Ud)(12 ). We then obtain the following ways of representing the coe�cient β.

Proposition 3.1. The multivariate medial correlation coe�cient of the vector X with dimension d, admits the
following representations:

β(X) = 2
(
P
(
U ≤ 1

2
)

+ P
(
U > 1

2
))

−1
d

d∑
i=1

(
P
(
UD\{i} ≤

1
2

)
+ P
(
UD\{i} >

1
2

))
,

(21)

β(X) = 2
(
CX
(
1
2

)
+ ĈX

(
1
2

))
− 1
d

d∑
i=1

(
CXD\{i}

(
1
2

)
+ ĈXD\{i}

(
1
2

))
, (22)

β(X) = CX
(
1
2

)
+ ĈX

(
1
2

)
− 1
d

d∑
i=1

(
CσiX

(
1
2

)
+ ĈσiX

(
1
2

))
. (23)

The relation (23) rewritten in the form

β(X) = 1
d

d∑
i=1

(
CX
(
1
2

)
− CσiX

(
1
2

)
+ ĈX

(
1
2

)
− ĈσiX

(
1
2

))
, (24)

reinforces the idea that β(X) compares the propensity of each margin Xi to agree with the remaining mar-
gins together, XD\{i}, and the propensity to disagree with them, when they are all above or all below their
respective medians.
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The above representations for β show that by considering β as a mapping on copulas it is linear with respect
to convex combinations.

In the following, we establish relationships between β(X) and the generalizations referred to in the in-
troduction. By applying the de�nition (10) of β*, we conclude from the representation (23) that

β(X) = (2d−1 − 1)β*(X) + 1
2d−1 − 1

d

d∑
i=1

(2d−1 − 1)β*(σiX) + 1
2d−1

= (2d−1 − 1)
2d−1

(
β*(X) − 1

d

d∑
i=1

β*(σiX)
)
.

(25)

By de�ning N̄ =
d∑
i=1

1{Ui> 1
2 }

, the representation (23) of β leads to

β(X) = P(N̄ = 0) + P(N̄ = d) − 1
d
(
P(N̄ = 1) + P(N̄ = d − 1)

)
. (26)

That �ts Joe’s representation (3.1.1) ([4]) with wd = 1, wd−1 = − 1
d and the remaining weights wi equal to zero.

Note that in the 3-dimensional case, the multivariate medial correlation coe�cient β satis�es

β(X) = 4
3CX

(1
2
)

+ 4
3 ĈX

(1
2
)
− 1

3 = β*(X) = β(X1, X2) + β(X1, X3) + β(X2, X3)
3 .

Thus, in the 3-dimensional case β equals β* and hence allows a di�erent view on Blomqvist’s β discussed in
Úbeda-Flores ([13]).

We refer the properties of β(X) in the next section and end this one with three examples.

Example 3.1. Consider CX(u1, ..., u4) =
(
uδ1 ∧ u2

)
u1−δ

1
(
uα3 ∧ u4

)
u1−α

3 , with 0 ≤ δ, α ≤ 1, that is, CX is the
product of two Marshall-Olkin survival copulas ([5]). It holds that

CX
(
1
2

)
= ĈX

(
1
2

)
=
(

1
2

)4−δ−α
,

CXD\{1}

(
1
2

)
= ĈXD\{1}

(
1
2

)
= CXD\{2}

(
1
2

)
= ĈXD\{2}

(
1
2

)
=
(

1
2

)3−α
,

CXD\{3}

(
1
2

)
= ĈXD\{3}

(
1
2

)
= CXD\{4}

(
1
2

)
= ĈXD\{4}

(
1
2

)
=
(

1
2

)3−δ
.

Therefore,

β(X) = 2δ+α−2 − 2α−3 − 2δ−3.

In the case of δ = α = 0 the result agreeswithwhatwe expect, since in this case themargins ofXare independent.
The expression obtained can be related to β(X1, X2) and β(X3, X4) through

β(X) = 2 × 2δ+α−3 − 2α−3 − 2δ−3 =
(

2δ+α−3 − 2α−3
)

+
(

2δ+α−3 − 2δ−3
)

= 2α−3
(

2δ − 1
)

+ 2δ−3 (2α − 1
)

= 2α−3β(X1, X2) + 2δ−3β(X3, X4),

We verify that β(X) increases with δ and α, generalizing what we already knew to β(X1, X2) and β(X3, X4).
Therefore β(X) increases with the concordance of X.
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Example 3.2. Let us consider that X has a Gumbel copula

CX(u1, ..., ud) = exp

−
( d∑
i=1

(− ln ui)1/δ
)δ , (27)

with 0 < δ ≤ 1. For d = 3 we obtain β(X) = 22−2δ − 1, coincident with β(Xi , Xj), 1 ≤ i < j ≤ 3, as expected, since
in this case β(X) = β*(X).

With simple calculations we can also conclude that

β(−X1, X2, X3) = −22−2δ + 1
3

and that
β(X1, X2, X3) + β(−X1, X2, X3) = 2

2 + 1β(X2, X3),

which corresponds to the veri�cation in this example of a transition property that we present in the next section.
Before we present the general expression of the multivariate correlation coe�cient for a Gumbel distribution of
dimension d ≥ 1, let’s also calculate it speci�cally for d = 4.

We have

CX
(1
2
)

= 2−4δ , ĈX
(1
2
)

= −1 + 6 × 2−2δ − 4 × 2−3δ + 2−4δ ,

and

CXD\{i}
(1
2
)

= 2−3δ , ĈXD\{i}
(1
2
)

= 3 × 2−2δ − 2−3δ − 2−1, for i = 1, 2, 3, 4.

Then
β(X1, X2, X3, X4) = 4 × 2−4δ − 8 × 2−3δ + 9 × 2−2δ − 3

2 .

These results for d = 2, 3, 4, calculated directly, can also be obtained from the following general result.
If d is even, we have

β(X) = 1 − d
2 +

d−2∑
k=1

((
d−1
k

)
+
(

d
k+1

))
(−1)k+12−(k+1)δ + 4 × 2−d

δ
+ (−1)d−12−(d−1)δ ,

(considering that a sum with the initial value of the counter greater than the �nal one is null) and if d is odd, we
have

β(X) = 1 − d
2 +

d−2∑
k=1

((
d−1
k

)
+
(

d
k+1

))
(−1)k+12−(k+1)δ − 2−(d−1)δ .

Example 3.3. Consider X of dimension d ≥ 3 such that U = (U, 1 − U, U3, ..., Ud). Then

β(X) = 2 × (0 + 0)

−1
d

(
CXD\{1}

(
1
2

)
+ ĈXD\{1}

(
1
2

)
+ CXD\{2}

(
1
2

)
+ ĈXD\{2}

(
1
2

)
+ 0
)

= −1
d

(
CXD\{1}

(
1
2

)
+ CXD\{2}

(
1
2

)
+ ĈXD\{1}

(
1
2

)
+ ĈXD\{2}

(
1
2

))

= −1
d

(
CXD\{1,2}

(
1
2

)
+ ĈXD\{1,2}

(
1
2

))
.

It follows that, in this example we have β(X) ≥ − 1
d and if, in particular (U3, ..., Ud) = (V , ..., V), then β(X) = − 1

d .
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4 Properties of the multivariate medial correlation coe�cient
Since the coe�cients β{i},D\{i}(X), i = 1, ..., d, take values in [−1, 1], the proposed coe�cient takes values
in the same range, being null for CX = CΠ . The maximum value is attainable when CX = CM = 1.

The value of β(X) may not increase with the concordance of X. We can verify this with an example pro-
posed by an anonymous referee.

Consider X and Y 4-dimensional vetors with copulas, respectively,

CX (u1, u2, u3, u4) = CW (u1, u2)CΠ(u3, u4)

and

CY (u1, u2, u3, u4) = CW (u1, u2)CM(u3, u4).

We have X≺cY and however β(X) = −1
8 > −1

4 = β(Y).

If X≺cY and, for each i ∈ D, {
CσiY

(1
2
)
≤ CσiX

(1
2
)

ĈσiY
(1
2
)
≤ ĈσiX

(1
2
)
,

(28)

then, from proposition 3.1, (23), we can conclude that β(X) ≤ β(Y).

The veri�cation of condition (28) together with X≺cY, which can be illustrated with example 3.2, tells
us that, in addition to the propensity for all margins to exceed their respective medians or all margins to be
below their medians to be higher in Y, also the propensity for each margin to disagree with the remaining, in
this sense, is lower in Y, reinforcing the relation X≺cY.

When we have X≺cY and (28) we denote this type of relation by X≺≺Y.

The relation ≺≺ is a point-wise partial ordering on the set of d-dimensional copulas that implies the
concordance relation. For d = 2 both relations coincide. If CY = CM then we have X≺cY, CσiY

(1
2
)

= 0 ≤
CσiX

(1
2
)
and ĈσiY

(1
2
)

= 0 ≤ ĈσiX
(1
2
)
. Therefore CM is the maximal copula.

In particular copula classes, the relation ≺≺ can induce a total order, as for example in the family of 3-
dimensional copulas of example 3.2. In this class we can also see, from (27), that CΠ is the least element
and≺≺ is a well order.
A weaker relation, although not so informative, could be considered in this work by replacing (28) with∑

i∈D

(
CσiY

(
1
2

)
+ ĈσiY

(
1
2

))
≤
∑
i∈D

(
CσiX

(
1
2

)
+ ĈσiX

(
1
2

))
.

The above properties on the values of the multivariate medial correlation coe�cient are arranged in the
following proposition.

Proposition 4.1. The values of the multivariate medial correlation coe�cient for vectors of dimension d
satisfy the following properties:
(i) If X≺≺Y then β(X) ≤ β(Y).
(ii) β(X) ∈ [−1, 1].
(iii) If CX = CΠ then β(X) = 0.
(iv) If CX = CM then β(X) = 1.

Proof. Representation (23) leads to (i) and representation (21) leads to (ii).
Relations (iii) and (iv) may be obtained, for example, from (24).
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In the proposition below we present the properties of continuity, permutation invariance, duality, re�ection
symmetry and transition, which together with (i)-(iii) of the previous proposition and following Taylor [11],
[12], justi�es calling the proposed coe�cient a measure for the relation≺≺.

Proposition 4.2. The values of the multivariate medial correlation coe�cient for vectors of dimension d
satisfy the following properties:
(i) If {CXn}n≥1 converges uniformly to CX, n → +∞, then lim

n→+∞
β(Xn) = β(X).

(ii) The value of β(X) is invariant for permutations of the margins of X.
(iii) β(X) = β(−X).
(iv)

∑
(ϵ1 ,...,ϵd)∈{−1,1}d

β(ϵ1X1, ..., ϵdXd) = 0.

(v) If Y is a (d + 1)-dimensional random vector such that CY(u1, ..., ui−1, 1, ui+1, ..., ud) =
CX(u1, ..., ui−1, ui+1, ..., ud) then d

d + 1β(X) = β(Y) + β(σiY).

Proof. The statement of (i) can be obtained, for example, from (22). From the representation (26) we can
conclude (ii). The representation (23) leads to (iii) and (iv). Finally to obtain (v), let us note that, by (23), we
have

β(Y) + β(σiY)

= CY
(1
2
)

+ CσiY
(1
2
)

+ ĈY
(1
2
)

+ ĈσiY
(1
2
)

− 1
d + 1

(
CσiY

(
1
2

)
+ ĈσiY

(
1
2

)
+ CσiσiY

(
1
2

)
+ ĈσiσiY

(
1
2

))

− 1
d + 1

d+1∑
j=1,j≠i

(
CσjY

(
1
2

)
+ CσjσiY

(
1
2

)
+ ĈσjY

(
1
2

)
+ ĈσjσiY

(
1
2

))

= CX
(1
2
)

+ ĈX
(1
2
)
− 1
d + 1

(
CX
(
1
2

)
+ ĈX

(
1
2

))

− 1
d + 1

d∑
j=1

(
CσjX

(
1
2

)
+ ĈσjX

(
1
2

))

= d
d + 1

(
CX
(
1
2

)
+ ĈX

(
1
2

))
− d
d + 1

1
d

d∑
j=1

(
CσjX

(
1
2

)
+ ĈσjX

(
1
2

))
,

that matches d
d + 1β(X), applying again (23).

5 Application to real data
The multivariate medial correlation coe�cient in (16) can be estimated through the bivariate coe�cients in
(17). Here we consider the respective empirical counterparts. This estimation procedure has already been
addressed in literature (Blomqvist [1], Schmid and Schmidt [10] and references therein).

Let (X1,j , ..., Xd,j), j = 1, ..., n, be a random sample generated from (X1, ..., Xd). Consider

Ûi,j = F̂Xi (Xi,j) = 1
n + 1

n∑
l=1

1{Xi,l≤Xi,j}, i = 1, ..., d, j = 1, ..., n ,
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as well as, M̂j
(
D \ {i}

)
=
∨
r∈D\{i} Ûr,j and Ŵj

(
D \ {i}

)
=
∧
r∈D\{i} Ûr,j. Based on (16) we de�ne

β̂ = 1
d

d∑
i=1

β̂{i},D\{i}, (29)

where, according to (17), we take

β̂{i},D\{i} =
β̂
(
Ûi , M̂

(
D \ {i}

))
+ β̂
(
Ûi , Ŵ

(
D \ {i}

))
2 ,

with

β̂
(
Ûi , M̂

(
D \ {i}

))
= 2

1
n

n∑
j=1

(
1{Ûi,j≤1/2}1{M̂j(D\{i})≤1/2} + 1{Ûi,j>1/2}1{M̂j(D\{i})>1/2}

) − 1

and

β̂
(
Ûi , Ŵ

(
D \ {i}

))
= 2

1
n

n∑
j=1

(
1{Ûi,j≤1/2}1{Ŵj(D\{i})≤1/2} + 1{Ûi,j>1/2}1{Ŵj(D\{i})>1/2}

) − 1.

We are going to apply the multivariate medial correlation coe�cient estimator β̂ in (29) on two datasets.
First, we consider the main GDP aggregates per capita in the European Union (EU), Germany and Portu-

gal, available in https://ec.europa.eu/eurostat/data/database. We consider annual data from 2008 to 2019.
The respective scatterplots are in Figure 1. Germany and EU seem the most correlated. The estimates of the
bivariate coe�cients β{i},D\{i} and of the multivariate medial correlation coe�cient β are in Table 1. The
propensity of each country’s annual GNP to agree with the remaining when compared to the propensity to
disagree with them, in the sense of being all above or all below their respective medians, is estimated at
0.778.We can see that the bivariatemedial correlation between Portugal and the remaining EU and Germany
presents the lowest contribution to the estimated multivariate medial correlation.
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Figure 1: Annual main GDP aggregates per capita in the European Union versus Germany (left), European Union versus Portugal
(center) and Germany versus Portugal (right).

Now we consider a dataset related to white variants of the Portuguese “Vinho Verde" wine, available
in http://archive.ics.uci.edu/ml/datasets/Wine+Quality. See also Cortez et al. ([2]). Our analysis focuses on
variables residual sugar, total sulfur dioxide, density and alcohol, whose respective scatterplots are plotted
in Figure 2. It is visible some negative association with variable alcohol. The estimates of the bivariate coef-
�cients β{i},D\{i} and of the multivariate medial correlation coe�cient β (Table 2) re�ect this lack of concor-
dance, with a larger negative bivariate coe�cient between alcohol and the remaining variables. Indeed, the

https://ec.europa.eu/eurostat/data/database
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Table 1: Estimates of the bivariate coe�cients β{i},D\{i} and of the multivariate medial correlation coe�cient β of the annual
main GDP aggregates per capita in the European Union, Germany and Portugal, from 2008 to 2019.

{i} D \ {i} β̂{i},D\{i} β̂
{EU} {Germany, Portugal} 0.833

{Germany} {EU, Portugal} 0.833 0.778
{Portugal} {EU, Germany} 0.667

propensity for all variables simultaneously taking values below the respective medians or all of them to ex-
ceed their respective medians in comparison with the propensity of each variable to contradict this behavior
is estimated at −0.063, i.e., an almost null multivariate medial correlation coe�cient.
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Figure 2: Scatterplots of the variables within the wine dataset: residual sugar versus density (top-left), residual sugar versus
alcohol (top-center) and density versus alcohol (top-right); density versus total sulfur dioxide (bottom-left), residual sugar
versus total sulfur dioxide (bottom-center) and total sulfur dioxide versus alcohol (bottom-right).

Table 2: Estimates of the bivariate coe�cients β{i},D\{i} and of the multivariate medial correlation coe�cient β for the vari-
ables residual sugar, total sulfur dioxide, density and alcohol within the wine dataset.

{i} D \ {i} β̂{i},D\{i} β̂
{residual sugar} {total sulfur dioxide, density, alcohol} 0.088 -0.063

{total sulfur dioxide} {residual sugar, density, alcohol} 0.027
{density} {residual sugar, total sulfur dioxide, alcohol} 0.046
{alcohol} {residual sugar, total sulfur dioxide, density} -0.415
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6 Conclusion
The multivariate medial correlation coe�cient that we propose extends the probabilistic interpretation and
properties of the Blomqvist β coe�cient, it is calculable from the copula, incorporates the dependence be-
tween each margin of the vector and the vector of the remaining margins and is a measure of a strong mode
of multivariate concordance.

The estimation is addressed based on bivariate inferential methodology existing in literature and we
illustrate its application using real data.

The adopted approach envisages the possibility of considering other functions of bivariate coe�cients
involving extremes of subvectors of X, as well as the possibility of adapting the method to generalize other
coe�cients of bivariate dependence.
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